首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light scattering measurements were performed on dilute solutions of α-crystallin mixed with different combinations of βH, βL and γ-fractions of bovine lens crystallins. Light scattering intensities were obtained as a function of scattering angle, concentration and temperature. The temperature dependence of the second virial coefficients was used to obtain partial molar enthalpy and end entropy of solutions. The difference between the thermodynamic parameters of the crystallin mixtures and those of the weighted averages of the individual components yielded the excess enthalpy and entropy functions of the solutions. Both the excess enthalpy and entropy functions indicated that thermodynamic stability of α-crystallin is progressively enhanced by its interactions with γ(βH+γ)(βH+βL+γ) crystallins. The last two combinations showed negative values both for excess enthalpy as well for excess entropy of solutions. Other combinations demonstrated increasing positive values. This implies that the combination of all four crystallins in the vertebrate lens enables the best solvation property as well as the best packing as opposed to any other single or combinatorial arrangements of crystallins. Similar conclusions have been obtained in the past from water and other vapor sorption studies.  相似文献   

2.
The tertiary and quaternary structure of α-crystallin is still a matter of controversy. We have characterized the native α-crystallin quaternary structure by isolating it at the in vivo temperature and solvent conditions. It can be represented by a distribution of expanded particles with a weight average molar mass of 550 000 g/mol. On decreasing (to 4°C) or increasing (up to 50°C) the temperature, the size distribution increases to larger particles. Only at lower temperatures (4°C), a stable population of particles is obtained with weight average molar mass of 700 000 g/mol. In all conditions, α-crystallin behaves as a very expanded particle with a maximum hydrodynamic volume of 3.15 ml/g. The transitions in quaternary structure are rather slow: it takes several hours to evolve from a population of aggregates, characteristic for given solvent conditions, to another distribution in size and quaternary structure on changing the environment. The quaternary structure of α-crystallin is an uncharacteristic parameter of the particle: a broad distribution of values can be obtained on changing the environment. Any realistic model should include this property. Our studies favor an open loose structure, where peptides can be added or removed without drastic changes of secondary and tertiary structure of the peptides.  相似文献   

3.
α-Crystallin is a multimeric lenticular protein that has recently been shown to be expressed in several non-lenticular tissues as well. It is shown to prevent aggregation of non-native proteins as a molecular chaperone. By using a non-thermal aggregation model, we could show that this process is temperature-dependent. We investigated the chaperone-like activity of α-crystallin towards photo-induced aggregation of γ-crystallin, aggregation of insulin and on the refolding induced aggregation of β- and γ-crystallins. We observed that α-crystallin could prevent photo-aggregation of γ-crystallin and this chaperone-like activity of α-crystallin is enhanced several fold at temperatures above 30°C. This enhancement parallels the exposure of its hydrophobic surfaces as a function of temperature, probed using hydrophobic fluorescent probes such as pyrene and 8-anilinonaphthalene-1-sulfonate. We, therefore, concluded that α-crystallin prevents the aggregation of other proteins by providing appropriately placed hydrophobic surfaces; a structural transition above 30°C involving enhanced or re-organized hydrophobic surfaces of α-crystallin is important for its chaperone-like activity. We also addressed the issue of conformational aspects of target proteins and found that their aggregation prone molten globule states bind to α-crystallin. We trace these developments and discuss some new lines that suggest the role of tertiary structural aspects in the chaperone process.  相似文献   

4.
α-Crystallin is renown for resisting crystallization and electron microscopic image analysis. The spatial conformation thus remaining elusive, the authors explored the structure and chaperone functioning by analyzing the effects of site-directed mutagenesis, the properties of naturally occurring aberrant forms of α-crystallin and the influence of chemical modifications. The authors observed that the globular multimeric structure, as well as the chaperoning capacity are remarkably tolerant towards changes and modifications in the primary structure. The essential features of the quaternary structure—globular shape, flexibility, highly polar exterior and accessible hydrophobic surface pockets—support a ‘pitted-flexiball’ model, which combines tetrameric subunit building blocks in an open micelle-like arrangement.  相似文献   

5.
α-Crystallins possess molecular chaperone properties and are one of the most abundant of the lenticular proteins. Posttranslational modifications of these proteins have been implicated as a possible etiology of human cataracts. This article will review current knowledge concerning the effects of known posttranslational modifications upon the molecular chaperone properties and aggregation behavior of α-A and α-B crystallin. Based upon these effects, experimental approaches will be discussed that may be useful in the development of reagents that may selectively inhibit the cataractogenic process in the aging human lens.  相似文献   

6.
Sequences of 40 very diverse representatives of the α-crystallin–small heat-shock protein (α-Hsp) superfamily are compared. Their characteristic C-terminal ‘α-crystallin domain' of 80–100 residues contains short consensus sequences that are highly conserved from prokaryotes to eukaryotes. There are, in addition, some positions that clearly distinguish animal from non-animal α-Hsps. The α-crystallin domain is predicted to consist of two hydrophobic β-sheet motifs, separated by a hydrophilic region which is variable in length. Combination of a conserved α-crystallin domain with a variable N-terminal domain and C-terminal extension probably modulates the properties of the various α-Hsps as stress-protective and structural oligomeric proteins. Phylogeny reconstruction indicates that multiple α-Hsps were already present in the last common ancestor of pro- and eukaryotes. It is suggested that during eukaryote evolution, animal and non-animal α-Hsps originated from different ancestral gene copies. Repeated gene duplications gave rise to the multiple α-Hsps present in most organisms.  相似文献   

7.
α-

New results obtained from a two-dimensional sequence analysis of the small heat shock protein (shsp) family are described. It is confirmed that the conserved C-terminal α-crystallin domain is essentially made of β-strands, most probably two groups of β-strands separated by a large loop. A direct correspondence between the putative β-strands that have been identified in shsps and the seven β-strands of a classical immunoglobulin-like fold is proposed. The hypothesis that the shsp family could belong to the immunoglobulin superfamily (IgSF) is consistent with the ubiquitous distribution and the multifunctional properties of the crystallins that are now emerging.  相似文献   

8.
The subunit molecular mass of α-crystallin, like many small heat-shock proteins (sHsps), is around 20 kDa although the protein exists as a large aggregate of average mass around 800 kDa. Despite this large size, a well-resolved 1H NMR spectrum is observed for α-crystallin which arises from short, polar, highly-flexible and solvent-exposed C-terminal extensions in each of the subunits, αA- and αB-crystallin. These extensions are not involved in interactions with other proteins (e.g. β- and γ-crystallins) under non-chaperone conditions. As determined by NMR studies on mutants of αA-crystallin with alterations in its C-terminal extension, the extensions have an important role in acting as solubilising agents for the relatively-hydrophobic α-crystallin molecule and the high-molecular-weight (HMW) complex that forms during the chaperone action. The related sHsp, Hsp25, also exhibits a flexible C-terminal extension. Under chaperone conditions, and in the HMW complex isolated from old lenses, the C-terminal extension of the αA-crystallin subunit maintains its flexibility whereas the αB-crystallin subunit loses, at least partially, its flexibility, implying that it is involved in interaction with the ‘substrate’ protein. The conformation of ‘substrate’ proteins when they interact with α-crystallin has been probed by 1H NMR spectroscopy and it is concluded that α-crystallin interacts with ‘substrate’ proteins that are in a disordered molten globule state, but only when this state is on its way to large-scale aggregation and precipitation. By monitoring the 1H and 31P NMR spectra of α-crystallin in the presence of increasing concentations of urea, it is proposed that α-crystallin adopts a two-domain structure with the larger C-terminal domain unfolding first in the presence of denaturant. All these data have been combined into a model for the quaternary structure of α-crystallin. The model has two layers each of approximately 40 subunits arranged in an annulus or toroid. A large central cavity is present whose entrance is ringed by the flexible C-terminal extensions. A large hydrophobic region in the aggregate is exposed to solution and is available for interaction with ‘substrate’ proteins during the chaperone action.  相似文献   

9.
The effects of α,β-amyrin, a pentacyclic triterpene isolated from Protium heptaphylum was investigated on rat model of orofacial pain induced by formalin or capsaicin. Rats were pretreated with α,β-amyrin (10, 30, and 100 mg/kg, i.p.), morphine (5 mg/kg, s.c.) or vehicle (3% Tween 80), before formalin (20 μl, 1.5%) or capsaicin (20 μl, 1.5 μg) injection into the right vibrissa. In vehicle-treated controls, formalin induced a biphasic nociceptive face-rubbing behavioral response with an early first phase (0–5 min) and a late second phase (10–20 min) appearance, whereas capsaicin produced an immediate face-rubbing (grooming) behavior that was maximal at 10–20 min. Treatment with α,β-amyrin or morphine significantly inhibited the face-rubbing response in both test models. While morphine produced significant antinociception in both phases of formalin test, α,β-amyrin inhibited only the second phase response, more prominently at 30 mg/kg, in a naloxone-sensitive manner. In contrast, α,β-amyrin produced much greater antinociceptive effect at 100 mg/kg in the capsaicin test, which was also naloxone-sensitive. These results provide first time evidence to show that α,β-amyrin attenuates orofacial pain atleast, in part, through a peripheral opioid mechanism but warrants further detailed study for its utility in painful orofacial pathologies.  相似文献   

10.
In addition to being refractive proteins in the vertebrate lens, the two α-crystallin polypeptides (αA and αB) are also molecular chaperones that can protect proteins from thermal aggregation. The αB-crystallin polypeptide, a functional member of the small heat shock family, is expressed in many tissues in a developmentally regulated fashion, is stress-inducible, and is overexpressed in many degenerative diseases and some tumors indicating that it plays multiple roles. One possible clue to α-crystallin functions is the fact that both polypeptides are phosphorylated on serine residues by cAMP-dependent and cAMP-independent mechanisms. The cAMP-independent pathway is an autophosphorylation that has been demonstrated in vitro, depends on magnesium and requires cleavage of ATP. Disaggregation of αA-, but not αB-crystallin into tetramers results in an appreciable increase in autophosphorylation activity, reminiscent of other heat shock proteins, and suggests the possibility that changes in the aggregation state of αA-crystallin are involved in yet undiscovered signal transduction pathways. The α-crystallin polypeptides differ with respect to their abilities to undergo cAMP-dependent phosphorylation, with preference given to the αB-crystallin chain. These differences and complexities in α-crystallin phosphorylations, coupled with the differences in expression patterns of the two α-crystallin polypeptides, are consistent with the idea that each polypeptide has distinctive structural and metabolic roles.  相似文献   

11.
Laminin-5 and α3β1 integrin promote keratinocyte survival; however, the downstream signaling pathways for laminin-5/α3β1 integrin-mediated cell survival had not been fully established. We report the unexpected finding of multiple interactions between 14-3-3 isoforms and proapoptotic proteins in the survival signaling pathway. Ln5-P4 motif within human laminin-5 α3 chain promotes cell survival and anti-apoptosis by inactivating Bad and YAP. This effect is achieved through the formation of 14-3-3ζ/p-Bad and 14-3-3σ/p-YAP complexes, which is initiated by α3β1 integrin and FAK/PI3K/Akt signaling. These complexes result in cytoplasmic sequestration of Bad and YAP and their subsequent inactivation. An increase in Akt1 activity in cells induces 14-3-3ζ and σ, p-Bad, and p-YAP, promoting cell survival, whereas decreasing Akt activity suppresses the same proteins and inhibits cell survival. Suppression of 14-3-3ζ with RNA-interference inhibits cell viability and promotes apoptosis. These results reveal a new mechanism of cell survival whereby the formation of 14-3-3ζ/p-Bad and 14-3-3σ/p-YAP complexes is initiated by laminin-5 stimulation via the α3β1 integrin and FAK/PI3K/Akt signaling pathways, thereby resulting in cell survival and anti-apoptosis.  相似文献   

12.
The peptides, phalloidin and α-amanitin, contain two unusual indole-derived chromophores, whose absorption, fluorescence and phosphorescence in aqueous solutions are described. Fluorescence is very weak, but phosphorescence at 77 K is intense. Phalloidin seems to undergo adiabatic photodissociation in alkaline solutions and to fluorescence from the indole anion form. In contrast, neither the phenolic nor the indolic protons of α-amanitin undergo photodissociation. The pKa value of the phenolic hydroxy group of α-amanitin is 9.71 at 23°C.  相似文献   

13.
The iodination of the tryosyl residues of αs1-casein has been studied and a spectrophotometric procedure for differentiating monoiodotyrosine, diiodotyrosine and tyrosine is described. The calcium-induced aggregation behaviour of the iodinated caseins has been investigated. The initial stages of the reaction are shown to be dominated by electrostatic charge effects. The iodinated caseins behave as native αs1-casein when the extent of conversion to diiodotyrosine is taken into account. The later stages of the reaction are found to be influenced by effects of the iodination not related to the change in charge.  相似文献   

14.
15.
In the course of searching for BACE1 (beta-secretase) inhibitors from natural products, the ethyl acetate soluble fraction of Smilax Rhizoma (the dried rhizomes of Smilax china L.) showed potent inhibitory activity. The active compounds were identified as a trans/cis-resveratrol mixture, oxyresveratrol, veraphenol, and cis-scirpusin A. They were shown to non-competitively inhibit BACE1 with the Ki values of 5.4 x 10(-6), 5.4 x 10(-6), 3.4 x 10(-6), and 5.4 x 10(-6)M and IC(50) values of 1.5 x 10(-5), 7.6 x 10(-6), 4.2 x 10(-6), and 1.0 x 10(-5)M, respectively. The active compounds were less inhibitory to alpha-secretase (TACE) and other serine proteases such as chymotrypsin, trypsin, and elastase, suggesting that they were relatively specific inhibitors of BACE1.  相似文献   

16.
Mouse peritoneal macrophages activated by bacillus Calmette-Guerin (BCG) were incubated with human α2-macroglobulin converted to its ‘fast’ form with either trypsin or methylamine before being stimulated with phorbol myrystate acetate. Both α2-macroglobulin-trypsin and α2-macroglobulin-methylamine inhibited macrophage production of superoxide anion (O2) while native α2-macroglobulin had little effect except at high concentration. The α2-macroglobulin ‘fast’ forms, which bind with a Kd of about 8 nM, inhibited 50% generation of O2(ID50) at a concentration of 7 nM while α2-macroglobulin inhibited O2 production with an ID50 of 141 nM. The ‘fast’ forms of α2-macroglobulin may play a role in the feedback regulation of inflammatory reactions.  相似文献   

17.
Folding type-specific secondary structure propensities of 20 naturally occurring amino acids have been derived from α-helical, β-sheet, α/β, and α+β proteins of known structures. These data show that each residue type of amino acids has intrinsic propensities in different regions of secondary structures for different folding types of proteins. Each of the folding types shows markedly different rank ordering, indicating folding type-specific effects on the secondary structure propensities of amino acids. Rigorous statistical tests have been made to validate the folding type-specific effects. It should be noted that α and β proteins have relatively small α-helices and β-strands forming propensities respectively compared with those of α+β and α/β proteins. This may suggest that, with more complex architectures than α and β proteins, α+β and α/β proteins require larger propensities to distinguish from interacting α-helices and β-strands. Our finding of folding type-specific secondary structure propensities suggests that sequence space accessible to each folding type may have differing features. Differing sequence space features might be constrained by topological requirement for each of the folding types. Almost all strong β-sheet forming residues are hydrophobic in character regardless of folding types, thus suggesting the hydrophobicities of side chains as a key determinant of β-sheet structures. In contrast, conformational entropy of side chains is a major determinant of the helical propensities of amino acids, although other interactions such as hydrophobicities and charged interactions cannot be neglected. These results will be helpful to protein design, class-based secondary structure prediction, and protein folding. © 1998 John Wiley & Sons, Inc. Biopoly 45: 35–49, 1998  相似文献   

18.
19.
20.
Porcine circovirus is the only mammalian DNA virus so far known to contain a single-stranded circular genome (Tischer et al. (1982) Nature 295, 64–66). Replication of its small viral DNA (1.76 kb) appears to be dependent on cellular enzymes expressed during S-phase of the cell cycle (Tischer et al. (1987) Arch. Virol. 96, 39–57). In this paper we have exploited the porcine circovirus genome to probe for in vitro initiation and elongation of DNA replication by different preparations of calf thymus DNA polymerase α and δ as well as by a partially purified preparation from pig thymus. The results indicated that three different purification fractions of calf thymus DNA polymerase α and one from pig thymus initiate DNA synthesis at several sites on the porcine circovirus DNA. It appears that the sites at which DNA primase synthesizes primers are not entirely random. Subsequent DNA elongation by a highly purified DNA polymerase α holoenzyme which had been isolated by the criterion of replicating single-stranded M13 DNA (Ottiger et al. (1987) Nucleic Acids Res. 15, 4789–4807) is very efficient. Complete conversion to the double-stranded form is obtained in less than 1 min. When the DNA synthesis by DNA polymerase α is blocked with the DNA polymerase α specific monoclonal antibody SJK 132-20 after initiation by DNA primase, DNA polymerase δ can efficiently replicate from the primers. This in vitro DNA replication system may be used in analogy to the bacteriophage systems in E. coli to study initiation and elongation of DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号