首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
An electrophoretic method has been devised to investigate the changes in the enzymes and isoenzymes of carbohydrate metabolism, upon adding glucose to derepressed yeast cells. (i) Of the glycolytic enzymes tested, enolase II, pyruvate kinase and pyruvate decarboxylase were markedly increased. This increase was accompanied by an overall increase in glycolytic activity and was prevented by cycloheximide, an inhibitor of protein synthesis. (ii) In contrast, respiratory activity decreased after adding glucose. This decrease was clearly shown to be the result of repression of respiratory enzymes. A rapid decrease within a few minutes of adding glucose, by analogy with the so-called ' Crabtree effect', was not observed in yeast. (iii) The gluconeogenic enzymes, fructose-1,6-bisphosphatase and malate dehydrogenase, which are inactivated after adding glucose, showed no significant changes in electrophoretic mobilities. Hence, there was no evidence of enzyme modifications, which were postulated as initiating degradation. However, it was possible to investigate cytoplasmic and mitochondrial malate dehydrogenase isoenzymes separately. Synthesis of the mitochondrial isoenzyme was repressed, whereas only cytoplasmic malate dehydrogenase was subject to glucose inactivation.  相似文献   

2.
Treatment of a yeast suspension with ozone inactivates a number of cytosolic enzymes. Among 15 studied, the most drastic inactivation was found for glyceraldehyde-3-phosphate dehydrogenase and to lesser extents: NAD-glutamate dehydrogenase, pyruvate decarboxylase, phosphofructokinase-1 and NAD-alcohol dehydrogenase. Ozone treatment also effects the quantity of ATP and of other nucleoside triphosphates, reducing to about 50% of the initial value. The ATP missing in the cells appears in the medium. NAD and protein also accumulate in the medium suggesting that the yeast cells have been permeabilized. Permeabilization of the yeast cells by treatment with ozone preceeds the inactivation of glyceraldehyde-3-phosphate dehydrogenase and other cytosolic enzymes.Dedicated to Prof. Dr. B. Hess at the occasion of his 65th birthday  相似文献   

3.
High-cell-density fed-batch processes for bakers' yeast production will involve a low-average-specific growth rate due to the limited oxygen-transfer capacity of industrial bioreactors. The relationship between specific growth rate and fermentative capacity was investigated in aerobic, sucrose-limited fed-batch cultures of an industrial bakers' yeast strain. Using a defined mineral medium, biomass concentrations of 130 g dry weight/L were reproducibly attained. After an initial exponential-feed phase (mu = 0.18 h(-1)), oxygen-transfer limitation necessitated a gradual decrease of the specific growth rate to ca. 0.01 h(-1). Throughout fed-batch cultivation, sugar metabolism was fully respiratory, with a biomass yield of 0.5 g biomass/g sucrose(-1). Fermentative capacity (assayed off-line as ethanol production rate under anaerobic conditions with excess glucose) showed a strong positive correlation with specific growth rate. The fermentative capacity observed at the end of the process (mu = 0.01 h(-1)) was only half that observed during the exponential-feed phase (mu = 0.18 h(-1)). During fed-batch cultivation, activities of glycolytic enzymes, pyruvate decarboxylase and alcohol dehydrogenase in cell extracts did not exhibit marked changes. This suggests that changes of fermentative capacity during fed-batch cultivation were not primarily caused by regulation of the synthesis of glycolytic enzymes.  相似文献   

4.
Evans RC 《Plant physiology》1976,57(5):812-816
Growth of the fungus Helminthosporium maydis race T in a basal glucose-l-asparagine liquid medium, pH 5, is inhibited by thiamine-HCl. Analysis of the media for organic acids reveals that the extracellular pyruvate concentration decreases as the thiamine-HCl concentration of the medium increases. Extracellular ethanol, in contrast to pyruvate, increases in concentration as the thiamine-HCl concentration of the medium increases under both aerobic and anaerobic conditions.The changes in ethanol and pyruvate levels in the presence of thiamine-HCl occur via a thiamine-mediated increase in the activity of pyruvate decarboxylase but not alcohol dehydrogenase. This increase in pyruvate decarboxylase activity appears to be due to an increase in the quantity of enzyme present rather than an activation of pre-existing enzyme. Whereas thiamine-pyrophosphate stimulates pyruvate decarboxylase activity in vitro, thiamine-HCl has no effect. Neither thiamine derivative affects alcohol dehydrogenase activity. The increase in pyruvate decarboxylase activity which accompanies an increase in the thiamine-HCl concentration of the medium is correlated with a decrease in the level of intracellular pyruvate.  相似文献   

5.
An electrophoretic method has been devised to investigate the changes in the enzymes and isoenzymes of carbohydrate metabolism, upon adding glucose to derepressed yeast cell. (i) Of the glycolytic enzymes tested, enolase II, pyruvate kinase and pyruvate decarboxylase were markedly increased. This increase was accompanied by an overall increase in glycolytic activity and was prevented by cycloheximide, an inhibitor of protein synthesis. (ii) In contrast, respiratory activity decreased after adding glucose. This decrease was clearly shown to be the result of repression of respiratory enzymes. A rapid decrease within a few minutes of adding glucose, by analogy with the so-called ‘Crabtree effect’, was not observed in yeast. (iii) The gluconeogenic enzymes, fructose-1,6-bisphosphatase and malate dehydrogenase, which are inactivated after adding glucose, showed no significant changes in electrophoretic mobilities. Hence, there was no evidence of enzyme modifications, which were postulated as initiating degradation. However, it was possible to investigate cytoplasmic and mitochondrial malate dehydrogenase isoenzymes separately. Synthesis of the mitochondrial isoenzyme was repressed, whereas only cytoplasmic malate hydrogenase was subject to glucose inactivation.  相似文献   

6.

Background

The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and can easily be modified by genetic engineering, this microorganism is a promising host for the fermentative production of higher amounts of isobutanol.

Results

Isobutanol production could be improved by re-locating the valine biosynthesis enzymes Ilv2, Ilv5 and Ilv3 from the mitochondrial matrix into the cytosol. To prevent the import of the three enzymes into yeast mitochondria, N-terminally shortened Ilv2, Ilv5 and Ilv3 versions were constructed lacking their mitochondrial targeting sequences. SDS-PAGE and immunofluorescence analyses confirmed expression and re-localization of the truncated enzymes. Growth tests or enzyme assays confirmed enzymatic activities. Isobutanol production was only increased in the absence of valine and the simultaneous blockage of the mitochondrial valine synthesis pathway. Isobutanol production could be even more enhanced after adapting the codon usage of the truncated valine biosynthesis genes to the codon usage of highly expressed glycolytic genes. Finally, a suitable ketoisovalerate decarboxylase, Aro10, and alcohol dehydrogenase, Adh2, were selected and overexpressed. The highest isobutanol titer was 0.63?g/L at a yield of nearly 15?mg per g glucose.

Conclusion

A cytosolic isobutanol production pathway was successfully established in yeast by re-localization and optimization of mitochondrial valine synthesis enzymes together with overexpression of Aro10 decarboxylase and Adh2 alcohol dehydrogenase. Driving forces were generated by blocking competition with the mitochondrial valine pathway and by omitting valine from the fermentation medium. Additional deletion of pyruvate decarboxylase genes and engineering of co-factor imbalances should lead to even higher isobutanol production.  相似文献   

7.
An approach to broaden the product range of the ethanologenic, gram-negative bacterium Zymomonas mobilis by means of genetic engineering is presented. Gene alaD for L-alanine dehydrogenase (EC 1.4.1.1.) from Bacillus sphaericus was cloned and introduced into Z. mobilis. Under the control of the strong promoter of the pyruvate decarboxylase (pdc) gene, the enzyme was expressed up to a specific activity of nearly 1 mu mol . min -1 . mg of protein -1 in recombinant cells. As a results of this high L-alanine dehydrogenase activity, growing cells excreted up to 10 mmol of alanine per 280 mmol of glucose utilized into a mineral salts medium. By the addition of 85 mM NH4+ to the medium, growth of the recombinant cells stopped, and up to 41 mmol alanine was secreted. As alanine dehydrogenase competed with pyruvate decarboxylase (PDC) (EC 4.1.1.1.) for the same substrate (pyruvate), PDC activity was reduced by starvation for the essential PDC cofactor thiamine PPi. A thiamine auxotrophy mutant of Z. mobilis which carried the alaD gene was starved for 40 h in glucose-supplemented mineral salts medium and then shifted to mineral salts medium with 85 mM NH4+ and 280 mmol of glucose. The recombinants excreted up to 84 mmol of alanine (7.5 g/liter) over 25 h. Alanine excretion proceeded at an initial velocity of 238 nmol . min-1 . mg [dry weight]-1. Despite this high activity, the excretion rate seemed to be a limiting factor, as the intracellular concentration of alanine was as high as 260 mM at the beginning of the excretion phase and decreased to 80 to 90 mM over 24 h.  相似文献   

8.
An approach to broaden the product range of the ethanologenic, gram-negative bacterium Zymomonas mobilis by means of genetic engineering is presented. Gene alaD for L-alanine dehydrogenase (EC 1.4.1.1.) from Bacillus sphaericus was cloned and introduced into Z. mobilis. Under the control of the strong promoter of the pyruvate decarboxylase (pdc) gene, the enzyme was expressed up to a specific activity of nearly 1 mu mol . min -1 . mg of protein -1 in recombinant cells. As a results of this high L-alanine dehydrogenase activity, growing cells excreted up to 10 mmol of alanine per 280 mmol of glucose utilized into a mineral salts medium. By the addition of 85 mM NH4+ to the medium, growth of the recombinant cells stopped, and up to 41 mmol alanine was secreted. As alanine dehydrogenase competed with pyruvate decarboxylase (PDC) (EC 4.1.1.1.) for the same substrate (pyruvate), PDC activity was reduced by starvation for the essential PDC cofactor thiamine PPi. A thiamine auxotrophy mutant of Z. mobilis which carried the alaD gene was starved for 40 h in glucose-supplemented mineral salts medium and then shifted to mineral salts medium with 85 mM NH4+ and 280 mmol of glucose. The recombinants excreted up to 84 mmol of alanine (7.5 g/liter) over 25 h. Alanine excretion proceeded at an initial velocity of 238 nmol . min-1 . mg [dry weight]-1. Despite this high activity, the excretion rate seemed to be a limiting factor, as the intracellular concentration of alanine was as high as 260 mM at the beginning of the excretion phase and decreased to 80 to 90 mM over 24 h.  相似文献   

9.
ABSTRACT: BACKGROUND: The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and can easily be modified by genetic engineering, this microorganism is a promising host for the fermentative production of higher amounts of isobutanol. RESULTS: Isobutanol production could be improved by re-locating the valine biosynthesis enzymes Ilv2, Ilv5 and Ilv3 from the mitochondrial matrix into the cytosol. To prevent the import of the three enzymes into yeast mitochondria, N-terminally shortened Ilv2, Ilv5 and Ilv3 versions were constructed lacking their mitochondrial targeting sequences. SDS-PAGE and immunofluorescence analyses confirmed expression and re-localization of the truncated enzymes. Growth tests or enzyme assays confirmed enzymatic activities. Isobutanol production was only increased in the absence of valine and the simultaneous blockage of the mitochondrial valine synthesis pathway. Isobutanol production could be even more enhanced after adapting the codon usage of the truncated valine biosynthesis genes to the codon usage of highly expressed glycolytic genes. Finally, a suitable ketoisovalerate decarboxylase, Aro10, and alcohol dehydrogenase, Adh2, were selected and overexpressed. The highest isobutanol titer was 0.63 g/L at a yield of nearly 15 mg per g glucose. CONCLUSION: A cytosolic isobutanol production pathway was successfully established in yeast by re-localization and optimization of mitochondrial valine synthesis enzymes together with overexpression of Aro10 decarboxylase and Adh2 alcohol dehydrogenase. Driving forces were generated by blocking competition with the mitochondrial valine pathway and by omitting valine from the fermentation medium. Additional deletion of pyruvate decarboxylase genes and engineering of co-factor imbalances should lead to even higher isobutanol production.  相似文献   

10.
The levels of several enzymes have been studied during sporulation of Saccharomyces cerevisia. The specific activities of ribonuclease and aminopeptidase I raised several-fold after transfer of the cells to sporulation medium, whereas the specific activities of phosphofructokinase, glucose-6-phosphate dehydrogenase, tryptophan synthase and pyruvate decarboxylase were not significantly altered. The specific activities of NAD-dependent glutamate dehydrogenase, isocitrate lyase, malate dehydrogenase and fructose bisphosphatase all decreased from the onset of sporulation. The inactivation of these latter enzymes was inhibited by cycloheximide and by inhibitors of energy metabolism. Hexokinase, alcohol dehydrogenase and glutamate oxaloacetate transaminase were partially lost from the cells during the period of ascus maturation. None of the enzyme changes observed proved to be 'sporulation-specific' in that it occurred exclusively in sporulating diploid yeast cells. Therefore it is postulated that the meiotic events and the metabolic changes required for ascospore formation are under separate genetic control in this organism. During sporulation, the cellular content of cytochromes b, c, and aa3 was reduced to 20% or less of that present in vegetative derepressed cells. Since the relative percentage of total to cycloheximide-insensitive mitochondrial protein synthesis was not significantly altered throughout sporulation, and the pattern of mitochondrially synthesized polypeptides was rather similar both in vegetative and in sporulating cells, it appeared that not only degradation but also synthesis and therefore turnover of the mitochondrially coded polypeptides of cytochromes b and aa3 took place during sporulation. The activity ratio of cytochrome c oxidase to F1-ATPase in submitochondrial particles isolated from vegetative cells and from purified asci was almost identical. This indicates that the loss of membrane-bound mitochondrial cytochromes during sporulation is probably due to a nonselective degradation of inner mitochondrial membrane proteins.  相似文献   

11.
Spheroplasts of the yeast Saccharomyces cerevisiae oxidize pyruvate at a high respiratory rate, whereas isolated mitochondria do not unless malate is added. We show that a cytosolic factor, pyruvate decarboxylase, is required for the non-malate-dependent oxidation of pyruvate by mitochondria. In pyruvate decarboxylase-negative mutants, the oxidation of pyruvate by permeabilized spheroplasts was abolished. In contrast, deletion of the gene (PDA1) encoding the E1alpha subunit of the pyruvate dehydrogenase did not affect the spheroplast respiratory rate on pyruvate but abolished the malate-dependent respiration of isolated mitochondria. Mutants disrupted for the mitochondrial acetaldehyde dehydrogenase gene (ALD7) did not oxidize pyruvate unless malate was added. We therefore propose the existence of a mitochondrial pyruvate dehydrogenase bypass different from the cytosolic one, where pyruvate is decarboxylated to acetaldehyde in the cytosol by pyruvate decarboxylase and then oxidized by mitochondrial acetaldehyde dehydrogenase. This pathway can compensate PDA1 gene deletion for lactate or respiratory glucose growth. However, the codisruption of PDA1 and ALD7 genes prevented the growth on lactate, indicating that each of these pathways contributes to the oxidative metabolism of pyruvate.  相似文献   

12.
The activities of key enzymes that are members of D-glucose metabolic pathways in Schizosaccharomyces pombe undergoing respirative, respirofermentative, and fermentative metabolisms are monitored. The steady-state activities of glycolytic enzymes, except phosphofructokinase, decrease with a reduced efficiency in D-glucose utilization by yeast continuous culture. On the other hand, the enzymic activities of pentose monophosphate pathway reach the maximum when the cell mass production of the cultures is optimum. Enzymes of tricarboxylate cycle exhibit the maximum activities at approximately the washout rate. The steady-state activity of pyruvate dehydrogenase complex increases rapidly when D-glucose is efficiently utilized. By comparison, the activity of pyruvate decarboxylase begins to increase only when ethanol production occurs. Depletion of dissolved oxygen suppresses the activity of pyruvate dehydrogenase complex but facilitates that of pyruvate decarboxylase. Acetate greatly enhances the acetyl CoA synthetase activity. Similarly, ethanol stimulates alcohol dehydrogenase and aldehyde dehydrogenase activities. Evidence for the existence of alcohol dehydrogenase isozymes in the fission yeast is presented.  相似文献   

13.
Intraperitoneal injection of hydroxythiamine to rats (1 mmol per kg bw) resulted after 2-4 h in a more than 4-fold decrease in the activity of the oxoglutarate dehydrogenase complex, pyruvate dehydrogenase complex and NADP-dependent isocitrate dehydrogenase in adrenal mitochondria. Inhibition of hyaloplasmic transketolase, 6-phosphogluconate dehydrogenase and NADP-dependent malate dehydrogenase occurred later. Based on the correlation of the time course of enzymatic activity in the adrenals and the decreased concentration of 11-hydroxycorticosteroids in the blood the paramount role in the maintenance of the steroidogenesis among thiamine pyrophosphate-containing enzymes is assigned to the oxoglutarate dehydrogenase and pyruvate dehydrogenase complexes.  相似文献   

14.

Background and purpose

Based on the fact that traumatic brain injury is associated with mitochondrial dysfunction we aimed at localization of mitochondrial defect and attempted to correct it by thiamine.

Experimental approach

Interventional controlled experimental animal study was used. Adult male Sprague-Dawley rats were subjected to lateral fluid percussion traumatic brain injury. Thiamine was administered 1?h prior to trauma; cortex was extracted for analysis 4?h and 3?d after trauma.

Key results

Increased expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor receptor 1 (TNF-R1) by 4?h was accompanied by a decrease in mitochondrial respiration with glutamate but neither with pyruvate nor succinate. Assays of TCA cycle flux-limiting 2-oxoglutarate dehydrogenase complex (OGDHC) and functionally linked enzymes (glutamate dehydrogenase, glutamine synthetase, pyruvate dehydrogenase, malate dehydrogenase and malic enzyme) indicated that only OGDHC activity was decreased. Application of the OGDHC coenzyme precursor thiamine rescued the activity of OGDHC and restored mitochondrial respiration. These effects were not mediated by changes in the expression of the OGDHC sub-units (E1k and E3), suggesting post-translational mechanism of thiamine effects. By the third day after TBI, thiamine treatment also decreased expression of TNF-R1. Specific markers of unfolded protein response did not change in response to thiamine.

Conclusion and implications

Our data point to OGDHC as a major site of damage in mitochondria upon traumatic brain injury, which is associated with neuroinflammation and can be corrected by thiamine. Further studies are required to evaluate the pathological impact of these findings in clinical settings.  相似文献   

15.
Studies of thiamine diphosphate-dependent enzymes appear to have commenced in 1937, with the isolation of the coenzyme of yeast pyruvate decarboxylase, which was demonstrated to be a diphosphoric ester of thiamine. For quite a long time, these studies were largely focused on enzymes decarboxylating α-keto acids, such as pyruvate decarboxylase and pyruvate dehydrogenase complexes. Transketolase, discovered independently by Racker and Horecker in 1953 (and named by Racker) [1], did not receive much attention until 1992, when crystal X-ray structure analysis of the enzyme from Saccharomyces cerevisiae was performed [2]. These data, together with the results of site-directed mutagenesis, made it possible to understand in detail the mechanism of thiamine diphosphate-dependent catalysis. Some progress was also made in studies of the functional properties of transketolase. The last review on transketolase, which was fairly complete, appeared in 1998 [3]. Therefore, the publication of this paper should not seem premature.  相似文献   

16.
Thiamine thiazolone diphosphate (TTPP) was capable of penetrating through the mitochondrial membrane and of inhibiting the pyruvate dehydrogenase complex (PDC) in intact mitochondria. TTPP depressed the activity of mammalian PDC in a mixed manner (Ki = 5.10(-8) M) and yeast pyruvate decarboxylase (Ki = 5.10(-6) M) via a competitive mechanism with respect to thiamine diphosphate. It was shown that decarboxylation of pyruvate in intact and disrupted mitochondria of rat liver and brain is less inhibited by TTPP than the overall activity of PDC determined by the formation of acetyl-CoA. It was assumed that TTPP as a transition state analog participates only in oxidative reactions (but not in simple decarboxylation of pyruvate).  相似文献   

17.
Thiamine pyrophosphate (TPP) is an essential cofactor of the cytosolic transketolase and of three mitochondrial enzymes involved in the oxidative decarboxylation of either pyruvate, α-ketoglutarate or branched chain amino acids. Thiamine is taken up by specific transporters into the cell and converted to the active TPP by thiamine pyrophosphokinase (TPK) in the cytosol from where it can be transported into mitochondria. Here, we report five individuals from three families presenting with variable degrees of ataxia, psychomotor retardation, progressive dystonia, and lactic acidosis. Investigation of the mitochondrial energy metabolism showed reduced oxidation of pyruvate but normal pyruvate dehydrogenase complex activity in the presence of excess TPP. A reduced concentration of TPP was found in the muscle and blood. Mutation analysis of TPK1 uncovered three missense, one splice-site, and one frameshift mutation resulting in decreased TPK protein levels.  相似文献   

18.
Although higher initial rates of phenylacetyl carbinol formation were observed in fermentations containing a high starting benzaldehyde level, a massive reduction in yeast viability was observed resulting in early cessation of production formation. Pulse feeding to maintain lower benzaldehyde concentrations resulted in a lower initial reaction rate, but prolonged yeast viability and the biotransformation. This resulted in higher overall product tilers. As benzaldehyde concentration was increased, yeast growth rate was reduced (0.5 g/L), inhibited (1-2 g/L), or cell viability reduced (3 g/L). Benzaldehyde appeared to alter the cell permeability barrier to substrates and products. Reductions in yeast biomass levels and especially protein and lipid content were observed during the biotransformation. The effects of benzaldehyde and reaction products on yeast pyruvate decarboxylase and alcohol dehydrogenase stability were determined. Homogenized yeast cells produced similar phenylacetyl carbinol levels to whole yeast only if supplemented with thiamine pyrophosphate and magnesium.  相似文献   

19.
20.
The incorporation of labelled precursors into mitochondrial proteins of liver under different duration of oxythiamine (antivitamin B1) effect was studied in the whole organism and in a cell-free system. After 24 hrs following the injection, oxythiamine at a dose of 400 mg/kg of body weight increases the mitochondrial protein synthesis in vivo without changing the protein-synthesizing capacity of isolated mitochondria. After 72 hrs following the injection of the same dose of preparation, a sharp increase in the rate of protein label incorporation into the mitochondria was observed. The protein synthesis in mitochondria in the whole body studies also showed an increase. It is assumed that oxythiamine enhances the inductive synthesis of mitochondrial thiamine phosphate-dependent enzymes or activates the syntheses of other enzymic systems, capable of increasing the utilization of alpha-keto acids accumulated under conditions of thiamine deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号