首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present investigations showed that after oral prostacyclin administration (100 micrograms/kg) as soon as the intracellular level of cAMP is elevated the activation of cAMP-dependent protein kinase follows in both parts (antrum and fundus) of rat gastric mucosa. The enzyme activation seems to be more significant in the fundic region which is in a complete agreement with the previously published results, i.e. the fundic mucosa reacts with de novo protein synthesis toward noxious agents (resulting finally in new cell formation), while the antral mucosa is more durable against damaging noxae. Taking into consideration all available data in the literature it seems that the intracellular effect of the exogenously administered prostacyclin in the gastric mucosa is a polyphasic effect, which contains the following consecutive steps: 1. Binding to the cell surface; 2. Effect on the intracellular second messenger system, (cAMP, cGMP); 3. Activation of the calmodulin system; 4. cAMP-dependent protein kinase activation; 5. DNA, RNA changes; 6. Influence on protein synthesis, and finally; 7. New cell formation.  相似文献   

2.
In the mixed venous blood of anaesthetized, heparinized cats prostacyclin de-aggregated platelet thrombi, which were formed on the surface of blood-superfused collagen strips or on the surface of blood-superfused aortic strips from atherosclerotic rabbits. The reversal of platelet aggregation by prostacyclin was still achieved 3 hrs after the formation of platelet clumps. After an intravenous injection of prostacyclin the ID50 for its de-aggregatory action was 7.5 μg/kg. Theophylline ethyldiamine (aminophylline), at a dose of 3 mg/kg i.v., did not reverse platelet aggregation but it enhanced the duration of the de-aggregatory action of prostacyclin; it had little effect on the hypotensive action of prostacyclin. It is concluded that prostacyclin disintegrates platelet clumps long after they are formed in heparinized blood and that its anti-platelet action, but not hypotensive action, is selectively potentiated by a phosphodiesterase inhibitor. The above experimental data indicate the possibility of the combined use of theophylline and prostacyclin in arterial thrombosis.  相似文献   

3.
In the mixed venous blood of anaesthetized, heparinized cats prostacyclin de-aggregated platelet thrombi, which were formed on the surface of blood-superfused collagen strips or on the surface of blood-superfused aortic strips from atherosclerotic rabbits. The reversal of platelet aggregation by prostacyclin was still achieved 3 hrs after the formation of platelet clumps. After an intravenous injection of prostacyclin the ID50 for its de-aggregatory action was 7.5 μg/kg. Theophylline ethyldiamine (aminophylline), at a dose of 3 mg/kg i.v., did not reverse platelet aggregation but it enhanced the duration of the de-aggregatory action of prostacyclin; it had little effect on the hypotensive action of prostacyclin. It is concluded that prostacyclin disintegrates platelet clumps long after they are formed in heparinized blood in vivo and that its anti-platelet action, but not hypotensive action, is selectively potentiated by a phosphodiesterase inhibitor. The above experimental data indicate the possibility of the combined use of theophylline and prostacyclin in arterial thrombosis.  相似文献   

4.
It seems that prostacyclin has an increasing effect on gastric mucosal (antral and fundic) calmodulin level in rats. Using either the calcium channel blocker verapamil or anti-calmodulin drugs (diazepam, trifluoperazine,) the cytoprotective effect of prostacyclin can be inhibited. Therefore, it is probable that calcium ions and calcium-activated calmodulin play a role in the effect of prostacyclin.  相似文献   

5.
In the mixed venous blood of anaesthetized, heparinized cats prostacyclin de-aggregated platelet thrombi, which were formed on the surface of blood-superfused collagen strips or on the surface of blood-superfused aortic strips from atherosclerotic rabbits. The reversal of platelet aggregation by prostacyclin was still achieved 3 hrs after the formation of platelet clumps. After an intravenous injection of prostacyclin the ID50 for its de-aggregatory action was 7.5 microgram/kg. Theophylline ethyl-diamine (aminophylline), at a dose of 3 mg/kg i.v., did not reverse platelet aggregation but it enhanced the duration of the de-aggregatory action of prostacyclin; it had little effect on the hypotensive action of prostacyclin. It is concluded that prostacyclin disintegrates platelet clumps long after they are formed in heparinized blood in vivo and that its anti-platelet action, but not hypotensive action, is selectively potentiated by a phosphodiesterase inhibitor. The above experimental data indicate the possibility of the combined use of theophylline and prostacyclin in arterial thrombosis.  相似文献   

6.
The effects of different regimens of 40 mg aspirin on platelet thromboxane A2 synthesis and vascular prostacyclin synthesis were determined in patients who were undergoing elective surgery for removal of varicose veins. Aspirin 40 mg taken at intervals of 48 hours consistently reduced platelet thromboxane A2 synthesis to a level at which it failed to support platelet aggregation and the associated release reaction. This effect lasted for at least 36 hours. In contrast, aspirin 40 mg every 72 hours did not have the same consistent effect. Both dose regimens led to a reduction in vascular prostacyclin synthesis 12 hours after the last dose, but 36 or 72 hours after the last dose prostacyclin synthesis was not reduced; thus the inhibition of prostacyclin synthesis was short lived. If the balance between platelet thromboxane A2 and vascular prostacyclin synthesis is important in thrombosis 40 mg aspirin every 48 hours may have the maximum antithrombotic effect.  相似文献   

7.
The effect of prostacyclin and stable thromboxane analog A2 on endothelial culture of human aorta was studied. It was shown that prostacyclin inhibited accumulation of cholesterol in the cells and their proliferation, while thromboxane exhibited an opposite effect. Calcium antagonists potentiated effects of prostacyclin and inhibited them in respect to thromboxane. Screening of a number of synthetic agents affecting arachidonic acid metabolism was carried out. It was found that lipoxygenase inhibitors suppress cholesterol accumulation and proliferation in cells presumably due to enhancement of prostacyclin synthesis and inhibition of leukotriene formation. The balance between various eicosanoids is supposed to be an important factor of atherogenesis regulation, while antiatherogenic effect of calcium antagonists is somehow associated with the impact of eicosanoids on atherogenesis regulation.  相似文献   

8.
The effect of prostacyclin infusion into the renal artery of the isolated perfused hog kidney on the release of active and inactive renin was investigated. Infusion of prostacyclin at a rate of 0.1 μg/min resulted in a significant increase (p<0.01) in active renin and a significant fall (p<0.01) in inactive renin. Prostacyclin also increased urinary kallikrein excretion (p<0.05). The results indicate that the kidney secretes not only active renin but also inactive renin, and suggest that prostacyclin stimulates the conversion of inactive renin to the active form through the activation of the renal kallikrein system.  相似文献   

9.
The effects of estradiol on the arachidonic acid pool and prostacyclin biosynthetic activity in rat aortic smooth muscle cells were studied. Estradiol has no significant effect on the distribution of [14C]arachidonic acid in cells with respect to prostacyclin production assay, the endogenous fatty acid (specifically, arachidonic acid) composition of cellular phospholipid fractions and cellular phospholipase (or/and lipase) activities. However, estradiol significantly stimulates both prostaglandin cyclooxygenase and prostacyclin synthetase activities of cells, and induction of new protein biosynthesis is involved in the effect of estradiol on the stimulation of prostacyclin biosynthetic activity.  相似文献   

10.
Effect of human breast milk or its fractions on prostaglandin synthesis was investigated in cultured human skin fibroblasts. Prostaglandins released into the media were measured by radioimmunoassay. Incorporation of breast milk (2% level) into 10% fetal calf serum media (for 48 hours) stimulated the synthesis of 6-keto-PGF1 alpha (stable product of prostacyclin) by 800%. This stimulating effect of milk persisted after cold acetone extraction to remove phospholipids and potentiated further after dialysis. Stimulation by one of the commercial formulas (Similac) was less than 50% of the milk effect. Milk also stimulated PGE2 synthesis, although to a much lesser degree. These studies show for the first time that a) human breast milk contains potent factor(s) capable of influencing prostaglandin synthesis and suggest that b) these factors might have a role in the development of lipid synthetic pathways during early life.  相似文献   

11.
The synthesis and metabolism of leukotrienes (LTs) by endothelial cells was investigated using reverse-phase high-performance liquid chromatography. Cells were incubated with [14C]arachidonic acid. LTA4 or [3H]LTA4 and stimulated with ionophore A23187. The cells did not synthesize leukotrienes from [14C]arachidonic acid. LTA4 and [3H]LTA4 were converted to LTC4, LTD4, LTE4 and 5,12-diHETE. Endothelial cells metabolized [3H]LTC4 to [3H]LTD4 and [3H]LTE4. The metabolism of [3H]LTC4 was inhibited by L-serine-borate complex, phenobarbital and acivicin in a concentration-related manner, with maximal inhibition occurring at a concentration of 0.1 M, 0.01 M and 0.01 M, respectively. LTC4, LTB4 and LTD4 stimulated the synthesis of prostacyclin, measured by radioimmunoassays as 6-keto-PGF1 alpha. The stimulation by LTC4 was greater than that by LTD4 or LTB4. LTE4, 14,15-LTC4 and 14,15-LTD4 failed to stimulate the synthesis of prostacyclin. LTD4 and LTB4 also stimulated the release of PGE2, whereas LTC4 did not. Serine-borate and phenobarbital inhibited LTC4-stimulated synthesis of prostacyclin in a concentration-related manner. They also inhibited the release of prostacyclin by histamine, A23187 and arachidonic acid. Acivicin had no effect on the release of prostacyclin by LTC4, histamine or A23187. Furthermore, FPL-55712, an LT receptor antagonist, inhibited LTC4-stimulated prostacyclin synthesis but had no effect on histamine-stimulated release of prostacyclin or PGE2. Indomethacin inhibited both LTC4- and histamine-stimulated release. The results show that (a) endothelial cells metabolize LTA4, LTC4 and LTD4 but do not synthesize LTs from arachidonic acid; (b) LTC4 act directly at the leukotriene receptor to stimulation prostacyclin synthesis; (c) the presence of the glutathione moiety at the C-6 position of the eicosatetraenoic acid skeleton is necessary for leukotriene stimulation of prostacyclin release; and (d) the metabolism of LTC4 to LTD4 and LTE4 does not appear to alter the ability of LTC4 to stimulate the synthesis of PGI2.  相似文献   

12.
Prostacyclin is generated by cultured rat endothelial cells. Compound blocking activity of protein kinase C and cyclic nucleotide-dependent protein kinases (H7) and compound blocking interaction between Ca2+ and calmodulin (W7) diminish generation of prostacyclin in rat endothelial cells. These compounds give a synergistic effect when they are introduced to the endothelial cell cultures simultaneously. Compound HA1004, an inhibitor of cAMP- and cGMP-dependent protein kinases has no effect on prostacyclin generation. Lipoxin A4, a potent direct stimulator of protein kinase C, rapidly induces prostacyclin generation in rat endothelium in a dose- and time-dependent fashion. Lipoxin A4-induced generation of prostacyclin can be inhibited by H7 and W7 but not by HA1004. Lipoxin B4 has no significant effect on prostacyclin generation in rat endothelium. In conclusion, our results demonstrate that generation of prostacyclin by rat endothelial cells is regulated via a pathway involving protein kinase C and Ca2+.  相似文献   

13.
Cultured endothelial cells isolated from bovine carotid aorta produce prostacyclin (prostaglandin I2) and a small amount of prostaglandin E2. The effects of kallikrein (EC 3.4.21.8) on the release of prostacyclin from the cells were studied with the radioimmunoassay technique. Kallikrein stimulated the release of prostacyclin in a dose-dependent manner. The maximal stimulation reached up to 9.2-fold at 0.1 micrograms/ml of kallikrein. The effect was not associated with the activation of the fatty acid cyclooxygenase, but with the stimulation of arachidonic acid release. But kallikrein itself did not have phospholipase activity. On the other hand, at the same doses, kallikrein failed to induce platelet aggregation or enhance platelet aggregation induced by collagen. Our findings suggest that the vasodilator effect of kallikrein is mediated in part by prostacyclin production. Furthermore, we investigated the possibility that the stimulatory effect of kallikrein on prostacyclin production in endothelial cells is associated with kinin formation. Bradykinin and lysylbradykinin (kallidin) also stimulated the release of prostacyclin, but the effects were far less than that of kallikrein. And the stimulation due to the addition of both kallikrein and bradykinin on prostacyclin and arachidonic acid release was not competitive or additive, but synergistic. Moreover, even if fetal calf serum was incubated with kallikrein, bradykinin was not detected at all. When kallikrein was pre-incubated with aporotinin, which is an inactivator of kallikrein, the effect of kallikrein was completely abolished. These findings suggest that the stimulatory effect of kallikrein on the release of prostacyclin from vascular cells is possibly not due to kinin formation, but to other substance(s) produced by this serine proteinase.  相似文献   

14.
Acetylcholine causes pulmonary vasodilation, but its mechanism of action is unclear. We hypothesized that acetylcholine-induced pulmonary vasodilation might be associated with prostacyclin formation. Therefore, we used isolated rat lungs perfused with a recirculating cell- and plasma-free physiological salt solution to study the effect of acetylcholine infusion on pulmonary perfusion pressure, vascular responsiveness and lung prostacyclin production. Acetylcholine (20 ug infused over 1 minute) caused immediate vasodilation during ongoing hypoxic vasoconstriction and prolonged depression of subsequent hypoxic and angiotensin II-induced vasoconstrictions. Both effects of acetylcholine were abolished by atropine pretreatment. The prolonged acetylcholine effect, but not the immediate response, was blocked by meclofenamate, an inhibitor of cyclooxygenase. The prolonged effect, but not the immediate response, of acetylcholine was associated with an increase in perfusate 6-keto-PGF concentration. The acetylcholine stimulated increase in 6-keto-PGF production was inhibited by meclofenamate and by atropine. Thus, blockade of prostacyclin production corresponded with blockade of the prolonged acetylcholine effect. In conclusion, acetylcholine caused in isolated rat lungs an immediate vasodilation and a prolonged, time-dependent depression of vascular responsiveness. Whereas both acetylcholine effects were under muscarinic receptor control, only the prolonged effect depended on the cyclooxygenase pathway and, presumably, protacyclin synthesis.  相似文献   

15.
Our study evaluated the relationship between the endogenous production of prostacyclin and the antiarrhythmic effect of ischemic preconditioning against ischemic and reperfusion-induced tachyarrhythmia. Langendorff perfused rat hearts underwent 30 min regional ischemia with reperfusion. Preconditioning was induced by a single episode of 5 min ischemia and 15 min reperfusion. Prostaglandin 6-keto F1 (a stable metabolite of prostacyclin) was determined in the coronary effluent.In the control group the incidence of tachyarrhythmia was 31 % during ischemia and 67% during reperfusion. Preconditioning did not affect ischemic arrhythmias but attenuated arrhythmias a reperfusion (8%, p < 0.01) and was associated with increased release of prostacyclin prior to reperfusion. Aspirin abolished the antiarrhythmic effect of preconditioning against reperfusion tachyarrhythmias. However, no relationship was found between suppression of prostacyclin production and the occurrence of arrhythmia in individual hearts.Thus, our findings suggest that metabolites of arachidonic acid via the cyclooxygenase pathway are involved in the protective effect of ischemic preconditioning against reperfusion-induced tachyarrhythmias. (Mol Cell Biochem 160/161: 249–255, 1996)  相似文献   

16.
Because zinc attenuates endothelial cell dysfunction that proceeds atherosclerosis, depressed zinc status may be involved in the initiation of endothelial dysfunction. However, before recommending a zinc-enriched diet to reduce the risks for atherosclerosis, the effect of excess zinc on endothelial cell functions in normozincemic status should be known. Therefore, in this study, the effect of dietary zinc on normal endothelial cell functions in animals subjected to a diet containing 334±58 ppm zinc for 30 d was studied to see whether supplemented zinc has an effect on endothelial cells. Despite a slight increase in blood zinc, unaltered aortic and kidney zinc contents were associated with unchanged blood pressure in rats subjected to a zinc-enriched diet. Increased basal nitric oxide and prostacyclin were accompanied by a normal response to phenylephrine. Dietary zinc influenced neither endothelial-dependent nor endothelial-independent relaxations significantly. However, it elevated the share of M1-type cholinoceptor response as well as dilator prostaglandin release, which seems to be nitric oxide dependent. There was a strong correlation (r=0.826, p<0.05) between M1-type cholinoceptor response and prostacyclin release in zinc-treated rings. These results suggested that zinc ions increases M1-mediated prostacyclin release in normal endothelial cells without altering intracellular pathways.  相似文献   

17.
We have previously reported that estradiol treatment stimulates prostacyclin production by cultured rat aortic smooth muscle cells, through the stimulation of fatty acid cyclooxygenase and prostacyclin synthetase activities. In order to see whether estradiol stimulates the fatty acid cyclooxygenase activity in platelets, intact rats were treated with estradiol, and thromboxane biosynthesis in platelets and prostacyclin production by aortas were investigated. Estradiol significantly stimulates prostacyclin production by aortas. However, no significant effect on thromboxane biosynthesis in platelets is observed. Our present results support the idea that estradiol would be a protective hormone in atherosclerotic heart disease.  相似文献   

18.
The effects of elastase on prostacyclin biosynthesis in cultured rat aortic smooth muscle cells were investigated. Prostacyclin is the major product formed from arachidonic acid by aortic smooth muscle cells. When intact cells were incubated with elastase, a significant stimulatory effect on prostacyclin biosynthetic activity in cells was evident. However, the addition of elastase directly to the cell-free homogenates did not show any effects on prostacyclin biosynthesis. The maximal effect of elastase on the stimulation of prostacyclin biosynthesis without any cellular damage was observed at a concentration of 50 unit/ml elastase. Elastase also caused a marked release of arachidonic acid. At higher concentrations of elastase (75-100 units/ml), the release of arachidonic acid and prostacyclin synthesis was observed, but, at these concentrations of elastase, cells were slightly damaged. On the other hand, the releases of prostacyclin and arachidonic acid were markedly enhanced, when cells were preincubated with elastase (1 unit/ml) for 3 days. These results indicate that elastase, even at low concentrations, causes the releases of arachidonic acid and prostacyclin, especially when aortic smooth muscle cells are pre-treated with elastase.  相似文献   

19.
The actions of prostacyclin (PGX) and several other derivatives of arachidonic acid were examined on spiral strips of bovine coronary artery. The strips were contracted by PGE2 and thromboxane A2. Although PGH2 usually caused a transient contraction followed by a relaxation, a few strips were only contracted whilst others were only relaxed. Prostacyclin invariably relaxed coronary artery strips. Sodium arachidonate usually relaxed the strips but occasionally had no effect.Indomethacin increased the resting tone and abolished or substantially reduced the relaxation induced by sodium arachidonate. 15-Hydroperoxy arachidonic acid (15-HPAA), a specific inhibitor of prostacyclin synthetase, also increased the resting tone, abolished the effects of sodium arachidonate and the relaxation component of the PGH2 response, but did not greatly modify the relaxation induced by exogenous prostacyclin. These results strongly suggest that prostacyclin mediates the relaxation induced by arachidonic acid in bovine coronary artery strips. As PGH2 is avidly converted into prostacyclin by the vascular tissue of several species including man, prostacyclin is probably involved in the local regulation of the coronary vascular bed.  相似文献   

20.
ATP-stimulated prostacyclin release from veins was investigated using epigastric veins isolated from hamsters. Veins were perfused with MOPS-buffered physiological salt solution (PSS). ATP was administered into the perfusate, and the bath solution (MOPS-PSS) was collected and assayed for the presence of the stable prostacyclin metabolite 6-keto-PGF1alpha. ATP (100 microM) resulted in reproducible increases in bath concentration from 73 +/- 22 to 279 +/- 50 pg/ml (P < 0.05, n = 5). This response was abolished by indomethacin (10 microM, P < 0.05). To ascertain whether the endothelium was the source of prostacyclin, endothelium was disrupted using air (n = 10) or deoxycholic acid (n = 6). Perfusion with air significantly reduced (P < 0.05) but did not completely abolish ATP-stimulated release of prostacyclin, while deoxycholic acid totally abolished the response (P < 0.05). The nonselective P2 receptor antagonist reactive blue 2 (100 microM) attenuated ATP-mediated release of prostacyclin but did not significantly alter ACh-stimulated release of prostacyclin. The nonselective adenosine receptor antagonist xanthine amine congener (1 microM) had no effect on ATP-stimulated release, and adenosine did not stimulate the release of prostacyclin. These results show that increases in intraluminal concentration of ATP stimulate abluminal release of prostacyclin from the venous endothelium. This effect is mediated by P2 receptors while adenosine and its receptors are not involved in this response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号