首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The Na/K/Cl-dependent component of the binding of the loop diuretic bumetanide to basolateral membrane vesicles from the rabbit parotid is studied. A Scatchard analysis indicates that this binding is due to a single high-affinity site withK D =3.2±0.3 m (n=9) at 100mm sodium, 100mm potassium and 5mm chloride. When KCl-dependent22Na transport and tracer [3H]-bumetanide binding are monitored simultaneously as a function of (unlabeled) bumetanide concentration it is found that theK 0.5 for bumetanide inhibition of both processes are identical indicating that the high-affinity bumetanide binding site studied here is identical with a bumetanide-inhibitory site on the Na/K/Cl cotransport system previously identified in this preparation (R.J. Turner, J.N. George and B.J. Baum,J. Membrane Biol. 94:143–152, 1986). High-affinity bumetanide binding exhibits a hyperbolic dependence on both [Na] and [K] consistent with Na/bumetanide and K/bumetanide binding stoichiometries of 11 andK 0.5 values of approximately 33mm for sodium and 23mm for potassium. In contrast, the dependence on [Cl] is biphasic, with bumetanide binding increasing from 0 to 5mm chloride and decreasing toward baseline levels thereafter. Scatchard analysis of this latter inhibitory effect of chloride indicates a competitive interaction with bumetanide in agreement with earlier indications that bumetanide inhibits Na/K/Cl cotransport at a chloride site. However, studies of the effects of various anions on bumetanide binding and22Na transport show a poor correlation between the specificities of these two processes, suggesting that the inhibitory chloride site is not a chloride transport site.  相似文献   

2.
Summary It was recently reported (Turner, R.J., George, J.N., 1990,J. Membrane Biol. 113:203–210) that the high affinity bumetanide binding site of the rabbit parotid Na/K/Cl cotransporter could be extracted from a basolateral membrane preparation from this gland using relatively low concentrations of the non-ionic detergent Triton X-100. At the detergent: protein ratios required for complete membrane solubilization bumetanide binding activity in this extract was lost but could be recovered by the addition of crude soybean lipids. In the present paper the ability of various purified lipids to restore high affinity bumetanide binding activity in detergent solubilized rabbit parotid basolateral membranes is studied. We show that the effect of exogenous lipid on the detergent-inactivated bumetanide binding site is to increase the affinity of binding without affecting the number of binding sites. Of the 11 lipid species tested, several relatively minor, negatively charged membrane phospholipids are the most effective in restoring binding activity (phosphatidylserine phosphatidylglycerol > phosphatidylinositol > cardiolipin). while the major mammalian plasma membrane lipid components phosphatidylcholine, phosphatidylethanolamine, sphingomyelin and cholesterol are without effect. In addition, we show that in the presence of these minor lipids the affinity of bumetanide binding is considerably increased over that observed in the native membrane (e.g.,K d 0.06 m in membranes extracted with 0.3% Triton and treated with 0.15% wt/vol phosphatidylserine,vs. K d 3 m in native basolateral membranes). This dramatic dependence of bumetanide binding affinity on the presence of certain lipid species suggests that the properties of the bumetanide binding proteinin situ may be quite dependent on the minor lipid content of the plasma membrane. This effect may account for the relatively large variations in bumetanide binding affinity observed from tissue to tissue.  相似文献   

3.
Summary We demonstrate that the high affinity bumetanide binding site of the rabbit parotid acinar cell can be extracted from a basolateral membrane fraction using relatively low concentrations (0.07%, wt/vol; 1 mg membrane protein/ml) of the nonionic detergent Triton X-100. This extracted site cannot be sedimented by ultracentrifugation at 100,000 ×g × 1 hr. Bumetanide binding to this site retains the ionic characteristics of bumetanide binding to native membranes but shows a fivefold increase in binding affinity (K d=0.57±0.15 m vs.K d=3.3±0.7 m for native membranes). Inactivation of the extracted bumetanide binding site observed at detergent/protein ratios>1 can be prevented or (partially) reversed by the addition of exogenous lipid (0.2% soybean phosphatidylcholine). When the 0.07% Triton extract is fractionated by sucrose density gradient centrifugation in 0.24% Triton X-100, 0.2% exogenous lipid and 200mm salt, the high affinity bumetanide binding site sediments as a single band withS 20,w =8.8±0.8 S. This corresponds to a molecular weight 200 kDa for the bumetanide binding protein-detergent-lipid complex and represents a sevenfold purification of this site relative to the starting membrane fraction. In contrast to previous attempts to purify Na/K/Cl cotransport proteins and their associated bumetanide binding sites, the present method avoids harsh detergent treatment as well as direct covalent modification (inactivation) of the transporter itself. As a consequence, one can follow the still active protein through a series of extraction and purification steps by directly monitoring its bumetanide binding properties.  相似文献   

4.
Summary pH gradient-dependent sodium transport in highly purified rat parotid basolateral membrane vesicles was studied under voltage-clamped conditions. In the presence of an outwardly directed H+ gradient (pHin=6.0, pHout=8.0)22Na uptake was approximately ten times greater than uptake measured at pH equilibrium (pHin=pHout=6.0). More than 90% of this sodium flux was inhibited by the potassium-sparing diuretic drug amiloride (K 1 =1.6 m) while the transport inhibitors furosemide (1mm), bumetanide (1mm) SITS (0.5mm) and DIDS (0.1mm) were without effect. This transport activity copurified with the basolateral membrane marker K+-stimulatedp-nitrophenyl phosphatase. In addition22Na uptake into the vesicles could be driven against a concentration gradient by an outwardly directed H+ gradient. pH gradient-dependent sodium flux exhibited a simple Michaelis-Menten-type dependence on sodium concentration cosistent with the existence of a single transport system withK M =8.0mm at 23°C. A component of pH gradient-dependent, amiloride-sensitive sodium flux was also observed in rabbit parotid basolateral membrane vesicles. These results provide strong evidence for the existence of a Na+/H+ antiport in rat and rabbit parotid acinar basolateral membranes and extend earlier less direct studies which suggested that such a transporter was present in salivary acinar cells and might play a significant role in salivary fluid secretion.  相似文献   

5.
Summary Sodium (22Na) transport was studied in a basolateral membrane vesicle preparation from rabbit parotid. Sodium uptake was markedly dependent on the presence of both K+ and Cl in the extravesicular medium, being reduced 5 times when K+ was replaced by a nonphysiologic cation and 10 times when Cl was replaced by a nonphysiologic anion. Sodium uptake was stimulated by gradients of either K+ or Cl (relative to nongradient conditions) and could be driven against a sodium concentration gradient by a KCl gradient. No effect of membrane potentials on KCl-dependent sodium flux could be detected, indicating that this is an electroneutral process. A KCl-dependent component of sodium flux could also be demonstrated under equuilibrium exchange conditions, indicating a direct effect of K+ and Cl on the sodium transport pathway. KCl-dependent sodium uptake exhibited a hyperbolic dependence on sodium concentration consistent with the existence of a single-transport system withK m =3.2mm at 80mm KCl and 23°C. Furosemide inhibited this transporter withK 0.5=2×10–4 m (23°C). When sodium uptake was measured as a function of potassium and chloride concentrations a hyperbolic dependence on [K] (Hill coefficient =1.31±0.07) were observed, consistent with a Na/K/Cl stoichiometry of 112. Taken together these data provide strong evidence for the electroneutral coupling of sodium and KCl movements in this preparation and strongly support the hypothesis that a Na+/K+/Cl cotransport system thought to be associated with transepithelial chloride and water movements in many exocrine glands is present in the parotid acinar basolateral membrane.  相似文献   

6.
The method of tight-seal whole0cell recording was used to study the amino-acid specificity of the Na+/alanine cotransporter in pancreatic acinar cells. Single cells or small clusters of electrically coupled cells were obtained by enzymatic dissociation of mouse pancreas. Inward currents were measured under ‘zero-trans’ conditions, i.e., at finite concentrations of Na+ and amino acid at the extracellular side and vanishing concentrations at the cytoplasmic side. The cotransporter, which corresponds to ‘system A’, as previously defined in the literature, was found to exhibit a wide tolerance to neutral amino acids (l-cysteine, l-serine, l-alanine, glycine, l-phenylalanine). Competition experiments with 2-methylaminoisobutyric acid (MeAIB) indicate that for glycine a second electrogenic transport system exists in pancreatic acinar cells.  相似文献   

7.
Summary We have successfully maintained and biochemically characterized differentiated rat parotid acinar cells cultured for long periods (6 mo.). The cells were cultured on a reconstituted basement membrane matrix in a medium containing a variety of agents that promote cellular proliferation and differentiation. The cultured cells retain the characteristics of the parental parotid acinar cells. They exhibit both secretory granules and abundant cellular organelles required for protein synthesis and secretion. In situ hybridization and immunocytochemistry demonstrate high levels of proline-rich protein mRNA and protein, and lower levels of amylase mRNA and protein, in their cytoplasm. These findings suggest that rat parotid acinar cells can be maintained in a differentiated state in vitro for long periods, and can serve as a useful model system for studying the regulation of exocrine secretory processes.  相似文献   

8.
9.
Summary The loop diuretic bumetanide binds specifically to the Na/K/2Cl cotransporter of many cell types including duck erythrocytes. Membranes isolated from these erythrocytes retain the ability to bind bumetanide when cells are exposed to cotransport activity stimuli prior to membrane isolation. An extensive study of the effects of ions on specific [3H]bumetanide binding to such membranes is presented here and compared to the activity of these ions in supporting transport function in intact cells. Both Na+ and K+ enhanced bumetanide binding in a saturable manner consistent with a single-site interaction. The K m for each ion was dependent on the concentration of the other cation suggesting heterotropic cooperative interactions between the Na+ and K+ binding sites. Na+ and K+ were partially replaceable, with the selectivity of the Na+ site being Na+ > Li+ > NH 4 + ; N-methyl-d-glucamine+, choline+ and tetramethylammonium+ also supported a small amount of specific binding when substituted for Na+. The selectivity of the K+ site was K+ Rb+ > NH 4 + > Cs+; N-methyl-d-glucamine+, choline+ and tetramethylammonium+ were inactive at this site. The results of transport experiments revealed a slightly different pattern. Li+ could partially substitute for Na+ in supporting coteansport, but other monovalent cations were completely inactive. The order of potency at the K+ site was NH 4 + > K+ Rb+ > Cs+ other monovalent cations. The effect of Cl- on bumetanide binding was biphasic, being stimulatory at low [Cl-] but inhibitory at high [Cl-]. As this implies the existence of two Cl- binding sites (termed Cl H and Cl L for the high- and low- affinity sites, respectively) each phase was examined individually. Cl- binding to Cl H could be described by a rectangular hyperbola with a K m of 2.5 mm, while kinetic analysis of the inhibition of bumetanide binding at high [Cl-] revealed that it was of a noncompetitive type (K i = 112.9 mm). The selectivity of anion binding to the two sites was distinct. Cl H was highly selective with Cl- > SCN- > Br-; F-, NO 3 - , ClO 4 - , MeSO 4 - , gluconate- and SO 4 2- were inactive. The efficacy of anion inhibition of binding to Cl L was ClO 4 - > I- > SCN- > NO3 > Cl-; F-, MeSO 4 - , gluconate-, and SO 4 2- were inactive. Thus, Cl H is much more selective than Cl L and largely accounts for the specificity of the system with respect to anion transport. SO 4 - , NO 3 - , I-, SCN- and ClO 4 - did not support cotransport when bound to Cl L and the latter three anions were inhibitory. Mg2+ was found to stimulate binding at a narrowly defined peak around 1.5 mm, but was inhibitory at higher concentrations. Other divalent cations caused a similar inhibition of bumetanide binding but did not exert a stimulatory effect at 1.5 mm. Divalent cations have little effect on cotransport in intact cells at concentrations up to 20 mm, suggesting that their effects on diuretic binding reflect interactions at internally disposed sites. Bumetanide binding was optimal at a pH of 7.8–8.1 and declined sharply as the pH was lowered towards 6. The titration curve correlated well with the effect of pH on cotransport in intact cells; the inhibitory effect of low pH suggests that protonation of the cotransporter may inhibit its function.We thank Drs. Brad Pewitt, John Westley and Mrinalini Rao for discussion, Sara Leung and Artelia Watson for their excellent technical assistance, and Dr. R.J. Turner for his gift of [3H] bumetanide. This work was supported in part by Cystic Fibrosis Center grant #CF RO11 7-04.  相似文献   

10.
Summary Salivary gland fluid secretion following neurotransmitter stimulation is Ca2+-dependent. We have studied the control of cellular Ca2+ following secretory stimuli in rat parotid gland acinar cells. After muscarinic-cholinergic receptor activation, cytosolic Ca2+ is elevated 4–5 fold, due to both intracellular Ca2+ pool mobilization and extracellular Ca2+ entry. Fluid movement ensues due to the Ca2+-activated enhancement of membrane permeability to K+ and Cl. Basal cytosolic Ca2+ levels are tightly controlled at 150–200 nM through the action of high affinity and high capacity ATP-dependent Ca2+ transporters in the basolateral and endoplasmic reticulum membranes. Activity of these Ca2+ transporters can be modulated to facilitate rapid responsiveness and a sustained fluid secretory response necessary for alimentary function.  相似文献   

11.
Can loop diuretics like ethacrynic acid and furosemide, when administered intravenously, significantly alter ion transport and fluid dynamics in CNS? To shed light on this unresolved issue, we tested the ability of these agents to effect redistribution of Na, K and Cl in adult rat brain. Cl penetration into various CNS regions was assessed as the volume of distribution, i.e., uptake, of36Cl from blood. Ethacrynic acid and furosemide (50 mg/kg IV) reduced by 20–30% the rate of permeation of36Cl across the blood-CSF barrier, and they elevated [K] and [Cl] in choroid plexus (CP) by 15–25%. The loop diuretic-induced buildup of K and Cl in CP (lateral and 4th ventricle) was likely a reflection of decreased movement of these ions across the apical membrane into CSF.36Cl activity in parietal cortex and pons-medulla decreased in treatment with furosemide and ethacrynic acid, due to slowing of Cl transport across blood-brain and/or blood-CSF barriers. Our inhibitory findings in intact rats are consistent with those from previous in vitro experiments demonstrating diminution by loop diuretics of Na, K and Cl transport across isolated CP membranes.  相似文献   

12.
Summary The present studies were designed to test our previous suggestion that Na+/H+ exchange was activated by muscarinic stimulation of rat parotid acinar cells. Consistent with this hypothesis, we demonstrate here that intact rat parotid acini stimulated with the muscarinic agonist carbachol in HCO 3 -free medium show an enhanced recovery from an acute acid load as compared to similarly challenged untreated preparations. Amiloride-sensitive22Na uptake, due to Na+/H+ exchange, was also studied in plasma membrane vesicles prepared from rat parotid acini pretreated with carbachol. This uptake was stimulated twofold relative to that observed in vesicles from control (untreated) acini. This stimulation was time dependent, requiring 15 min of acinar incubation with carbachol to reach completion, and ws blocked by the presence of the muscarinic antagonist atropine (2×10–5 m) in the pretreatment medium. The effect of carbachol was dose dependent withK 0.53×10–6 m. Stimulation of the exchanger was also seen in vesicles prepared from acini pretreated with the -adrenergic agonist epinephrine, but not with the -adrenergic agonist isoproterenol, or with substance P. Kinetic analysis indicated that the stimulation induced by carbachol was due to an alkaline shift in the pH responsiveness of the exchanger in addition to an increasedapparent transport capacity. Taken together with previous results from this and other laboratories, these results strongly suggest that the Na+/H+ exchanger and its regulation are intimately involved in the fluidsecretory response of the rat parotid.  相似文献   

13.
Incubation of L1210 murine leukemia cells in vitro with 10 μM of the bifunctional alkylating agent bis(2-chloroethyl)methylamine (nitrogen mustard, HN2) for 10 min brought about a fall of more than 99.9% in their ability to form colonies when the cells were suspended in 0.5% nutrient agar. Incubation with HN2 also inhibited the influx of the potassium congener 86Rb+ to exponentially proliferating L1210 cells in a concentration-dependent manner. This inhibition was specific and was accounted for by a reduction of a diuretic-sensitive component of 86Rb+ influx, identified in the preceding paper (Wilcock, C. and Hickman, J.A. (1988) Biochim. Biophys. Acta 946, 359–367) as being mediated by a Na+/K+/Cl cotransporter. Inhibition by 10 μM HN2 was complete after a 3-h incubation. There was no inhibition at this time of the ouabain-sensitive component of 86Rb+ influx, mediated by Na+/K+-ATPase. After 3 h of incubation with 10 μM HN2 there was also no change in the membrane potential of the treated cells as measured by the distribution of the [3H]TPMP+, no decrease in cellular ATP concentration and no change in intracellular pH, and the ability of the cells to exclude the vital dye Trypan blue was not significantly different from control values. These effects of HN2, therefore, appeared to follow lethal damage, but precede cell death. In the stationary phase of L1210 cell growth, the component of HN2 and diuretic-sensitive K+ influx to L1210 cells was reduced, whilst the component constituting the HN2-insensitive ouabain-sensitive sodium pump was increased. The monofunctional alkylating agent MeHN1 (2-chloroethyldimethylamine) which cannot cross-link cellular targets and has no antitumour activity, did not inhibit 86Rb+ influx to L1210 cells when incubated at equimolar or equitoxic concentrations to HN2. Intracellular potassium concentration was maintained close to control values of 138 ± 10 mM in HN2-treated cells because of an approx. 35% fall in cell volume. The results suggest that the Na+/K+/Cl cotransporter is a selectively inhibitable target for HN2, and the lesion is discussed with reference to the cytotoxic effects of this agent.  相似文献   

14.
The application of Ca2+ mobilizing secretagogues to rat parotid acini results in a significant decrease in cell volume (15-30%) due to isotonic salt loss. It is often assumed that the effects of such an isotonic volume decrease can be mimicked by anisotonic cell shrinkage. We demonstrate that the Na+-K+-2Cl- cotransporter in these cells is up-regulated by Ca2+ mobilizing secretagogues as well as by cell shrinkage in hypertonic media. However, we find that although the protein kinase inhibitors staurosporine (0.3 M) and K252a (0.6 M) significantly blunt the latter up-regulation, they are without effect on the former. These observations suggest that hypertonic and isotonic shrinkage do not result in the activation of the same intracellular signalling pathways, and indicate that anisotonic volume perturbations may not provide good experimental models of physiologic isotonic volume changes.  相似文献   

15.
Myo-inositol (MI) is involved in several important aspects of cell physiology including cell signaling and the control of intracellular osmolarity i.e. by serving as a “compatible osmolyte”. Currently, three MI cotransporters have been identified: two are Na+-dependent (SMIT1 and SMIT2) and one is H+-dependent (HMIT) and predominantly expressed in the brain. The goal of this study was to characterize the expression of SMIT2 in rabbit kidney and to compare it to SMIT1. First, we quantified mRNA levels for both transporters using quantitative real-time PCR and found that SMIT1 was predominantly expressed in the medulla while SMIT2 was mainly in the cortex. This distribution of SMIT2 was confirmed on Western blots where an antibody raised against a SMIT2 epitope specifically detected a 75 kDa protein in both tissues. Characterization of MI transport in brush-border membrane vesicles (BBMV), in the presence of d-chiro-inositol and l-fucose to separately identify SMIT1 and SMIT2 activities, showed that only SMIT2 is expressed at the luminal side of proximal convoluted tubules. We thus conclude that, in the rabbit kidney, SMIT2 is predominantly expressed in the cortex where it is probably responsible for the apical transport of MI into the proximal tubule.  相似文献   

16.
Transepithelial Cl(-) secretion in polarized renal A6 cells is composed of two steps: (1) Cl(-) entry step across the basolateral membrane mediated by Na(+)/K(+)/2Cl(-) cotransporter (NKCC) and (2) Cl(-) releasing step across the apical membrane via cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. We estimated CFTR Cl(-) channel activity and transcellular Cl(-) secretion by measuring 5-nitro 2-(3-phenylpropylamino)benzoate (NPPB, a blocker of CFTR Cl(-) channel)-sensitive transepithelial conductance (Gt) and short-circuit current (Isc), respectively. Pretreatment with 1 microM insulin for 24 h had no effects on NPPB-sensitive Gt or Isc. On the other hand, in A6 cells treated with carbobenzoxy-L-leucyl-leucyl-L-leucinal (MG132; 100 microM for 2 h) that inhibits endocytosis of proteins at the plasma membrane into the cytosolic space, insulin pretreatment increased the NPPB-sensitive Isc with no effects on NPPB-sensitive Gt. Genistein (100 microM) induced sustained increases in NPPB-sensitive Gt and Isc, which were diminished by brefeldin A (a blocker of protein translocation to Golgi apparatus from endoplasmic reticulum). Co-application of insulin and genistein synergically stimulated the NPPB-sensitive Isc without any effects on NPPB-sensitive Gt. These observations suggest that: (1) insertion and endocytosis of NKCC are stimulated by insulin, (2) the insulin-induced stimulation of NKCC insertion into the basolateral membrane is offset by the stimulatory action on NKCC endocytosis from the basolateral membrane, (3) genistein stimulates insertion of both CFTR Cl(-) channel into the apical membrane and NKCC into the basolateral membrane, and (4) insulin and genistein synergically stimulated NKCC insertion into the basolateral membrane.  相似文献   

17.
Electron probe X-ray microanalysis of frozen-hydrated sections was carried out for sodium, potassium, chlorine, calcium, magnesium, sulphur, phosphorus and water concentrations in the lumen and epithelial cells of freshly-fed adult female desert locusts, and in blood of fed and starved locusts.Sodium and chloride were found to be at a much lower level in the lumen and cells than potassium, and at a much higher level in the blood. The luminal folds were plugged with a dense organic matrix, presumed to be polyanionic glycosaminoglycans, which appeared to restrict access of charged moieties of the absorptive sites. The data were consistent with a model of caecal fluid absorption in which a passive flux of potassium from lumen to blood, possibly assisted by an active absorption of chloride, drives fluid into the blood. Unlike the case of the vertebrate intestine, active absorption of sodium from the lumen would not contribute significantly to the fluid transport in vivo.  相似文献   

18.
The sublingual salt gland is the primary site of salt excretion in sea snakes; however, little is known about the mechanisms mediating ion excretion. Na+/K+–ATPase (NKA) and Na+/K+/2Cl cotransporter (NKCC) are two proteins known to regulate membrane potential and drive salt secretion in most vertebrate secretory cells. We hypothesized that NKA and NKCC would localize to the basolateral membranes of the principal cells comprising the tubular epithelia of sea snake salt glands. Although there is evidence of NKA activity in salt glands from several species of sea snake, the localization of NKA and NKCC and other potential ion transporters remains unstudied. Using histology and immunohistochemistry, we localized NKA and NKCC in salt glands from three species of laticaudine sea snake: Laticauda semifasciata, L. laticaudata, and L. colubrina. Antibody specificity was confirmed using Western blots. The compound tubular glands of all three species were found to be composed of serous secretory epithelia, and NKA and NKCC were abundant in the basolateral membranes. These results are consistent with the morphology of secretory epithelia found in the rectal salt glands of marine elasmobranchs, the nasal glands of marine birds and the gills of teleost fishes, suggesting a similar function in regulating ion secretion.  相似文献   

19.
Salivary gland duct ligation is an alternative to gland excision for treating sialorrhea or reducing salivary gland size prior to tumor excision. Duct ligation also is used as an approach to study salivary gland aging, regeneration, radiotherapy, sialolithiasis and sialadenitis. Reports conflict about the contribution of each salivary cell population to gland size reduction after ductal ligation. Certain cell populations, especially acini, reportedly undergo atrophy, apoptosis and proliferation during reduction of gland size. Acini also have been reported to de-differentiate into ducts. These contradictory results have been attributed to different animal or salivary gland models, or to methods of ligation. We report here a bilateral double ligature technique for rabbit parotid glands with histologic observations at 1, 7, 14, 30, 60 days after ligation. A large battery of special stains and immunohistochemical procedures was employed to define the cell populations. Four stages with overlapping features were observed that led to progressive shutdown of gland activities: 1) marked atrophy of the acinar cells occurred by 14 days, 2) response to and removal of the secretory material trapped in the acinar and ductal lumens mainly between 30 and 60 days, 3) reduction in the number of parenchymal (mostly acinar) cells by apoptosis that occurred mainly between 14–30 days, and 4) maintenance of steady-state at 60 days with a low rate of fluid, protein, and glycoprotein secretion, which greatly decreased the number of leukocytes engaged in the removal of the luminal contents. The main post- ligation characteristics were dilation of ductal and acinar lumens, massive transient infiltration of mostly heterophils (rabbit polymorphonuclear leukocytes), acinar atrophy, and apoptosis of both acinar and ductal cells. Proliferation was uncommon except in the larger ducts. By 30 days, the distribution of myoepithelial cells had spread from exclusively investing the intercalated ducts pre-ligation to surrounding a majority of the residual duct-like structures, many of which clearly were atrophic acini. Thus, both atrophy and apoptosis made major contributions to the post-ligation reduction in gland size. Structures also occurred with both ductal and acinar markers that suggested acini differentiating into ducts. Overall, the reaction to duct ligation proceeded at a considerably slower pace in the rabbit parotid glands than has been reported for the salivary glands of the rat.  相似文献   

20.
Summary Mono-, dicarboxylic acid-, andd-glucose transport were measured in brush border vesicles from renal cortex after treatment with reagents known to modify terminal amino, lysyl, -amino, guanidino, serine/threonine, histidyl, tyrosyl, tryptophanyl and carboxylic residues. All three sodium-coupled cotransport systems proved to possess sulfhydryl (and maybe tryptophanyl sulfhydryl, disulfide, thioether and tyrosyl) residues but not at the substrate site or at the allosteric cavity for the Na coion. Histidyl groups seem to be located in the active site of the dicarboxylic transporter in that the simultaneous presence of Na and succinate protects the transporter against the histidyl specific reagent diethylpyrocarbonate. Lithium, which specifically competes for sodium sites in the dicarboxylic acid transporter, substantially blocked the protective effect of Na and succinate. Hydroxylamine specifically reversed the covalent binding of diethylpyrocarbonate to the succinate binding site. The pH dependence of the Na/succinate cotransport is consistent with an involvement of histidyl and sulfhydryl residues. We conclude that a histidyl residue is at, or is close to, the active site of the dicarboxylate transporter in renal brush border membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号