首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of surfactant depletion on clearance from the lungs of inhaled technetium-99m-labeled diethylenetriamine pentaacetate (99mTc-DTPA) was studied in rabbits. Surfactant was removed by repeated lung lavage with isotone saline. To minimize structural damage to the lungs, pressure generated insufflation with short expiration was utilized. Aerosolized 99mTc-DTPA was administered via a bag-in-bottle system. Radioactivity was measured with a gamma camera and time-activity curves were obtained over the base of the right lung. Six nonlavaged rabbits served as controls. In six lavaged rabbits clearance of 99mTc-DTPA was significantly faster than in controls. In three rabbits given natural surfactant into the trachea after lung lavage, 99mTc-DTPA was eliminated faster than in controls but slower than in surfactant-depleted animals. The results indicate a role of surfactant on clearance rate of 99mTc-DTPA from rabbit lungs. Measurements of 99mTc-DTPA clearance may be useful in studying the function of the surfactant system in different lung disorders.  相似文献   

2.
To investigate the effect of high-frequency oscillatory ventilation (HFOV) on the pulmonary epithelial permeability, we measured the clearance rate of nebulized sodium pertechnetate (99mTcO4-) and diethylenetriaminepentaacetate (99mTc-DTPA) before and after a 4-h period of mechanical ventilation in anesthetized mongrel dogs. The animals also underwent experiments with 4 h of spontaneous breathing (SB) and intermittent positive-pressure ventilation (IPPV) with and without addition of positive end-expiratory pressure (PEEP) for comparison. After IPPV and SB there was no change in the clearance rate of either 99mTcO4- or 99mTc-DTPA. After IPPV + PEEP and HPOV (8 and 16 Hz), there was an increase in the clearance rate of 99mTc-DTPA, but an increase in clearance rate of 99mTcO4- was seen after IPPV + PEEP only. In a separate group of dogs an increase in end-tidal lung volume was demonstrated after 4 h of ventilation with IPPV + PEEP (but not after HFOV), and this may account for the measured increase in 99mTcO4- clearance. We conclude that an increase in 99mTc-DTPA clearance rate after HFOV signifies an increase in pulmonary epithelial permeability, possibly through the mechanism of damage to the intercellular junctions during HFOV.  相似文献   

3.
Pulmonary clearance (PCl) of inhaled aerosolized 99mTc-diethylenetriamine pentaacetic acid (DTPA) across the alveolocapillary membrane is diffusion limited. Therefore, if the mixing of the 99mTc-DTPA in the aqueous hypophase underlying surfactant is slow or incomplete or if there were no hypophase, an increase in the alveolar surface area occupied by 99mTc-DTPA particles would increase the absorption rate. The aim of this study was to examine whether there is an effect on PCl of changing the number of inhaled particles. The change in particle number was accomplished by a setup of four parallel jet nebulizers feeding a central delivery chamber of 400 cm3. We performed two kinds of experiments in eight healthy nonsmokers between 28 and 52 yr of age. In the first experiment, 99mTc-DTPA in saline was nebulized in one nebulizer, while saline was nebulized in the other three. In the second experiment the number of inhaled particles containing 99mTc-DTPA was increased by a factor of four by nebulizing 99mTc-DTPA in saline in all four nebulizers simultaneously. Increasing the number of inhaled 99mTc-DTPA particles caused an increase in PCl of 24.2% (P less than 0.01). We conclude that there is a slight but significant effect of changing the number of DTPA particles on PCl and that this is probably due to an uneven mixing of the 99mTc-DTPA in the aqueous hypophase underlying the surfactant lining and the alveoli.  相似文献   

4.
The effects of intensive prolonged exercise on the pulmonary clearance rate of aerosolized 99mTc-labeled diethylenetriaminepentaacetate (99mTc-DTPA) and pulmonary mechanics were studied in seven healthy nonsmoking volunteers. 99mTc-DTPA clearance and pulmonary mechanics (lung volumes and compliance) were assessed before and after 75 min of constant-load exercise performed on a treadmill, corresponding to 75% of maximal O2 uptake. Because both clearance measurements were made in similar conditions of pulmonary blood flow, respiratory rate, and tidal volume, changes in clearance rate can be assumed to represent changes of alveolar epithelial permeability. After exercise, total, apical, and basal clearance were significantly increased (P less than 0.01, 0.05, and 0.05, respectively) and the increases in total clearance and tidal volume observed during exercise were significantly correlated (P less than 0.05). In contrast, no significant change was found in pulmonary mechanics. These results show that prolonged intensive exercise induces an increase in epithelial permeability, which appears to be related to the mechanical effects of sustained increased ventilation. Because no change was evidenced in pulmonary volumes or in lung elasticity, our results suggest that this increase may result from alteration of the intercellular tight junctions rather than from a surfactant deficiency.  相似文献   

5.
We investigated the dose-response effect of positive end-expiratory pressure (PEEP) and increased lung volume on the pulmonary clearance rate of aerosolized technetium-99m-labeled diethylenetriaminepentaacetic acid (99mTc-DTPA). Clearance of lung radioactivity was expressed as percent decrease per minute. Base-line clearance was measured while anesthetized sheep (n = 20) were ventilated with 0 cmH2O end-expiratory pressure. Clearance was remeasured during ventilation at 2.5, 5, 10, 15, or 20 cmH2O PEEP. Further studies showed stepwise increases in functional residual capacity (FRC) (P less than 0.05) measured at 0, 2.5, 5, 10, 15, and 20 cmH2O PEEP. At 2.5 cmH2O PEEP, the clearance rate was not different from that at base line (P less than 0.05), although FRC was increased from base line. Clearance rate increased progressively with increasing PEEP at 5, 10, and 15 cmH2O (P less than 0.05). Between 15 and 20 cmH2O PEEP, clearance rate was again unchanged, despite an increase in FRC. The pulmonary clearance of aerosolized 99mTc-DTPA shows a sigmoidal response to increasing FRC and PEEP, having both threshold and maximal effects. This relationship is most consistent with the hypothesis that alveolar epithelial permeability is increased by lung inflation.  相似文献   

6.
Depletion of alveolar macrophages (AM) leads to an increase in endogenous surfactant that lasts several days beyond the repletion of AM. Furthermore, impairment to the endogenous pulmonary surfactant system contributes to ventilation-induced lung injury. The objective of the current study was to determine whether increased endogenous surfactant pools induced via AM depletion was protective against ventilation-induced lung injury. Adult rats were intratracheally instilled with either control or dichloromethylene diphosphonic acid (DMDP) containing liposomes to deplete AMs and thereby increase endogenous surfactant pools. Either 3 or 7 days following instillation, rats were exposed to 2 h of injurious ventilation using either an ex vivo or in vivo ventilation protocol and were compared with nonventilated controls. The measured outcomes were oxygenation, lung compliance, lavage protein, and inflammatory cytokine concentrations. Compared with controls, the DMDP-treated animals had significantly reduced AM numbers and increased surfactant pools 3 days after instillation. Seven days after instillation, AM numbers had returned to normal, but surfactant pools were still elevated. DMDP-treated animals at both time points exhibited protection against ventilation-induced lung injury, which included superior physiological parameters, lower protein leakage, and lower inflammatory mediator release into the air space, compared with animals not receiving DMDP. It is concluded that DMDP-liposome administration protects against ventilation-induced lung injury. This effect appears to be due to the presence of elevated endogenous surfactant pools.  相似文献   

7.
Cardiopulmonary bypass (CPB) causes lung injury that occasionally progresses to the adult respiratory distress syndrome (ARDS). We measured the effect of 10 cmH2O of positive end-expiratory pressure (PEEP) on small solute and protein flux in dogs 1 wk before and 2 h after the completion of CPB. As an index of alveolar epithelial permeability, the clearance from lung to blood of inhaled technetium-99m-labeled diethylenetriaminepentaacetic acid (99mTc-DTPA) was measured. To assess microvascular endothelial integrity, the rate of accumulation in the lung interstitium of intravascular 113mIn-transferrin was measured. The clearance half time (t 1/2) for 99mTc-DTPA in the study dogs declined from 18.8 +/- 1.9 min (mean +/- SE) at base line to 9.4 +/- 2.0 min during PEEP (P less than 0.05). Two hours after CPB, the t 1/2 was 8.1 +/- 1.6 min at base line and unchanged during PEEP. The 113mIn-transferrin rate of accumulation was unchanged by PEEP before CPB. After CPB, the index was 3.25 +/- 0.95 slope/min X 10(-3) (P less than 0.05). Of the five dogs with a significant slope, four showed a decrease in microvascular flux during PEEP, although for the group the mean change in slope was not significant (P = 0.10). We conclude that the application of PEEP does not increase 99mTc-DTPA clearance in lungs already injured by CPB, and may actually decrease the apparent microvascular protein flux in some cases.  相似文献   

8.
Experiments were performed to determine the effects of conventional mechanical ventilation (CMV) and high-frequency oscillation (HFO) on the clearance of technetium-99m-labeled diethylenetriamine pentaacetate (99mTc-DTPA) from lungs with altered surface tension properties. A submicronic aerosol of 99mTc-DTPA was insufflated into the lungs of anesthetized, tracheotomized rabbits before and 1 h after the administration of the aerosolized detergent dioctyl sodium sulfosuccinate (OT). Rabbits were ventilated by one of four methods: 1) spontaneous breathing; 2) CMV at 12 cmH2O mean airway pressure (MAP); 3) HFO at 12 cmH2O MAP; 4) HFO at 16 cmH2O MAP. Administration of OT resulted in decreased arterial PO2 (PaO2), increased lung wet-to-dry weight ratios, and abnormal lung pressure-volume relationships, compatible with increased surface tension. 99mTc-DTPA clearance was accelerated after OT in all groups. The post-OT rate of clearance (k) was significantly faster (P less than 0.05) in the CMV at 12 cmH2O MAP [k = 7.57 +/- 0.71%/min (SE)] and HFO at 16 cmH2O MAP (k = 6.92 +/- 0.61%/min) groups than in the spontaneously breathing (k = 4.32 +/- 0.55%/min) and HFO at 12 cmH2O MAP (4.68 +/- 0.63%/min) groups. The clearance curves were biexponential in the former two groups. We conclude that pulmonary clearance of 99mTc-DTPA is accelerated in high surface tension pulmonary edema, and this effect is enhanced by both conventional ventilation and HFO at high mean airway pressure.  相似文献   

9.
Variable or noisy ventilation, which includes random breath-to-breath variations in tidal volume (Vt) and frequency, has been shown to consistently improve blood oxygenation during mechanical ventilation in various models of acute lung injury. To further understand the effects of variable ventilation on lung physiology and biology, we mechanically ventilated 11 normal guinea pigs for 3 h using constant-Vt ventilation (n = 6) or variable ventilation (n = 5). After 3 h of ventilation, each animal underwent whole lung lavage for determination of alveolar surfactant content and composition, while protein content was assayed as a possible marker of injury. Another group of animals underwent whole lung lavage in the absence of mechanical ventilation to serve as an unventilated control group (n = 5). Although lung mechanics did not vary significantly between groups, we found that variable ventilation improved oxygenation, increased surfactant levels nearly twofold, and attenuated alveolar protein content compared with animals ventilated with constant Vt. These data demonstrate that random variations in Vt promote endogenous release of biochemically intact surfactant, which improves alveolar stability, apparently reducing lung injury.  相似文献   

10.
We studied the effects of oleic acid (OA) on pulmonary clearance of three aerosolized radioactive solutes: 99mTc-diethylenetriamine pentaacetate (99mTc-DTPA), 67Ga-desferoxamine (67Ga-DFOM), and 111In-transferrin (111In-TF). Either 0.09 ml/kg OA or an equivalent volume of 0.9% NaCl (controls) was administered intravenously to 48 anesthetized, paralyzed dogs. Each animal received one aerosolized solute either 60 min after (protocol A) or 30 min before (protocol B) the infusion of OA or NaCl. In protocol A clearances of all three solutes were similar in OA and control animals. In contrast, in protocol B clearances of all three solutes increased significantly during OA infusion; during the next 60 min clearances of 99mTc-DTPA and 67Ga-DFOM returned to control values but 111In-TF remained increased. We conclude that 1) in OA-induced permeability edema pulmonary clearance of aerosolized solutes is increased when the aerosol is delivered 30 min before but not 60 min after injury, and 2) increased clearance persists only for large molecules, presumably because smaller molecules cross injured epithelium quickly and completely. These phenomena are best explained by a nonhomogeneous distribution of OA-induced injury.  相似文献   

11.
Lung epithelial permeability to aerosolized solutes: relation to position   总被引:3,自引:0,他引:3  
The lung epithelial permeability to inhaled solutes is primarily attributed to the degree of distension of the interepithelial junctions and thus of the alveolar volume. To assess this hypothesis, a submicronic aerosol of technetium-99m-labeled diethylenetriamine pentaacetate (99mTc-DTPA) was inhaled by eight normal subjects in left lateral decubitus (LLD). The regional lung clearance of 99mTc-DTPA was measured in LLD, then in right lateral decubitus (RLD) to reverse the relative distension of the alveoli. Although in LLD the deposition of the aerosol is the greatest in the gravity-dependent regions of the left lung, their 99mTc-DTPA clearances are significantly lower than those of the nondependent regions of the right lung (0.7 +/- 0.3 vs. 2 +/- 0.8%/min, P less than 0.001). In RLD, these regions placed in opposite positions significantly reversed their clearances (1.6 +/- 0.8 vs. 0.6 +/- 0.2%/min, P less than 0.001). Results indicate in lateral decubitus a gravity gradient of 99mTc-DTPA clearances independent of the aerosol deposition. This gradient of epithelial permeability to solutes appears to be influenced by the gradient of alveolar volume.  相似文献   

12.
Aging and lung disease are recognized factors that increase mortality risk in subjects exposed to ambient particulate matter (PM). In an effort to understand the mechanisms of enhanced susceptibility, the present study examined an inbred mouse model of senescence to 1) determine changes in lung permeability as animals approach the end-of-life and 2) characterize age-dependent changes in lung mechanics in presenescent and terminally senescent mice. The clearance of technetium-99m (99mTc)-diethylenetriamine pentaacetic acid (DTPA) was used to test the hypothesis that lung permeability increases with age and enhances uptake of soluble components of PM principally during the period several weeks before death in AKR/J mice. Quasistatic pressure-volume curves were conducted on robust and on terminally senescent AKR/J mice several weeks before death to assess the relative importance of lung mechanics. Abrupt body weight loss was used to signal imminent death because it accompanies indexes of physiological aging and terminal senescence. 99mTc-DTPA clearance from the lung 30 min after tracheal instillation was significantly (P < 0.05) enhanced in senescent mice. Age-dependent changes in lung mechanics were indicative of significant (P < 0.05) decrements in lung volume and compliance several weeks before death. Thus, during a period of homeostatic instability leading toward natural death, AKR/J mice showed enhanced permeability of soluble particles despite a decrease in lung volume and concomitant alveolar surface area. These results suggest that pulmonary epithelial-endothelial barrier dysfunction occurs in terminally senescent mice just before death. Furthermore, this senescent-dependent increase in lung permeability may be a contributing factor for increased PM susceptibility in the elderly and patients with lung disease.  相似文献   

13.
Following lung instillation in adult male rats of 3.4 mumol hexavalent chromium (K2Cr2O7) dissolved in 0.5 ml of 0.9% NaCl, increased levels of lung surfactant could be detected after 48 h. The blood serum concentration of corticosterone was elevated in these animals. Blood serum thyroxine and triiodothyronine showed an initial increase after lung instillation of hexavalent chromium followed by a decline. Metabolism of testosterone by the alveolar macrophages to 17 beta-hydroxy-5 alpha-androstane-3-one and 5 alpha-androstane-3 alpha, 17 beta-diol was reduced 6 and 12 h after the K2Cr2O7 instillation, which was also associated with damage of lung cell function and decreased uptake by the alveolar macrophages of Candida albicans particles. As early as 12 h after s.c. administration of 400 micrograms dexamethasone/100 g body wt, increased levels of lung surfactant could be measured. At this time the lungs showed no signs of cellular damage, and metabolism of testosterone as well as uptake of Candida albicans particles by the alveolar macrophages were normal. Lower s.c. doses of dexamethasone did not result in raising the levels of lung surfactant in 12 h. Within 12 h after s.c. administration of large doses of testosterone, dihydrotestosterone or dehydroepiandrosterone no measurable effects on the levels of lung surfactant could be measured. Since animals treated with dexamethasone (200 micrograms/100 g body wt) or long-acting synthetic ACTH (100 micrograms i.m. Synacthen Depot/100 g body wt) for 5 days after lung instillation of K2Cr2O7 had extremely high levels of lung surfactant, it is concluded that the corticosteroids in adult rats may help to create augmented surfactant levels following lung intoxication. This could proceed via stimulation of surfactant production and reduction of surfactant removal. Different aspects of lung surfactant metabolism are discussed.  相似文献   

14.
In anesthetized rabbits we measured clearance from lung to blood of eight aerosolized technetium-99m-labeled compounds: diethylenetriaminepentaacetate (99mTc-DTPA); cytochrome c; myoglobin; a myoglobin polymer; albumin; and anionic, cationic, and neutral dextrans of equivalent molecular size. We investigated the effect of applying positive end-expiratory pressure (PEEP) and, on a subsequent occasion, of injecting oleic acid intravenously to produce acute lung injury on the pulmonary clearance rate. Base-line clearance rates were monoexponential and varied with the molecular weights of the radiotracers. For each tracer the rate of clearance was increased a similar degree by either PEEP or oleic acid. However, with PEEP, clearance remained monoexponential, whereas after oleic acid, smaller molecular-weight radiotracers had multiexponential clearance curves. This suggests that after oleic acid the alveolar epithelium breaks down in a nonuniform fashion. We conclude that differentiation of the effect of PEEP from that of severe lung injury caused by oleic acid is not readily accomplished by either increasing the size of the tracer molecule or by varying the molecular charge.  相似文献   

15.
To investigate the effect of intravenous infusions of bradykinin (BK) on the permeability of the hypoxic pulmonary epithelium to small solutes, experiments (n = 7) were performed in yearling sheep with chronic vascular catheters. Sheep were anesthetized, intubated, paralyzed, and ventilated. After establishing stable and normal base-line pulmonary hemodynamics and blood gas tensions, the lungs were insufflated with a submicronic aerosol of technetium-99m-labeled diethylenetriaminepentaacetate (99mTc-DTPA, mol wt = 492). Radioactivity arising from the right hemithorax was measured by an NaI probe with a parallel-holed collimator. The base-line pulmonary clearance rate (k) for 99mTc-DTPA was 0.51 +/- 0.09% (SE)/min, while the sheep were ventilated with a fractional concentration of inspired O2 (FIO2) of 0.5 [arterial partial pressure of O2 (PaO2) = 196 +/- 11.4 (SE) Torr]. Clearance of 99mTc-DTPA was unaffected by hypoxia alone or BK infusions in nonhypoxic lungs. The combination of an intravenous infusion of BK at either 1.2 (n = 3) or 2.4 micrograms . kg-1 . min-1 (n = 4) and alveolar hypoxia [FIO2 = 0.11, PaO2 = 28 +/- 1.6 (SE) Torr] did not affect pulmonary clearance of 99mTc-DTPA [k = 0.43 +/- 0.08% (SE)/min]. In contrast, a 0.05-ml/kg intravenous infusion of oleic acid increased clearance 10-fold in one sheep. During combined hypoxia and BK infusion the pulmonary arterial BK concentration (radioimmunoassay) increased from 0.82 +/- 0.16 (SE) to 7.05 +/- 1.86 ng/ml (P less than 0.001), but the systemic arterial concentrations were unchanged [0.67 +/- 0.19 (SE) to 0.66 +/- 0.09 ng/ml].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
We increased surfactant pool size by surfactant treatment in mice to test if the catabolism of the major component of surfactant, saturated phosphatidylcholine (Sat PC), was rate limited. By intratracheal instillation, we gave mice trace doses, doses of 45 or 110 micromol/kg, or three doses of 110 micromol/kg of Sat PC in surfactant that contained radiolabeled dipalmitoylphosphatidylcholine (DPPC) and a radiolabeled phospholipase A-resistant ether analog of DPPC. Two strains of mice with 2-fold differences in alveolar and total Sat PC pool sizes were used; the mice with the higher pool sizes had a 2.3-fold higher steady-state catabolic rate. Acute increases in alveolar surfactant given by intratracheal instillation increased catabolic rates approximately 2-fold over the steady-state rates in both strains. There was minimal loss of the ether analog of DPPC from the lungs, and the alveolar macrophages did not accumulate more than 10% of the ether analog. In these two strains of mice, the catabolism of Sat PC was not rate limited because catabolic rate increased when alveolar pool sizes were increased.  相似文献   

18.
Naturally prepared radiolabelled pulmonary surfactant can be rapidly cleared from the alveolar surface to the lung tissue after intratracheal instillation into experimental rats. This clearance is both time- and dose-dependent, a large dose (10 mg/animal) becoming associated with lung tissue more rapidly than a smaller more physiological dose (0.75 mg/animal). The data indicate that extracellular dipalmitoyl-phosphatidylcholine, the major component of pulmonary surfactant, is not catabolized at the alveolar surface. Alveolar free cells (mainly macrophages) appear to play a minor role in surfactant clearance. Quartz-induced phospholipidosis does not lead to an alteration in the rate of bulk surfactant clearance from the alveolar surface, although the initial distribution of the removed phospholipid complex may change in relation to the enlarged heterogenous free cell population.  相似文献   

19.
Ethane in alveolar expirate may have its source in organs other than the lung and be transported to the lung for elimination. We determined ethane production rates in rats (group I) ventilated with hydrocarbon-free air (HFA) before and after exsanguination. To determine whether the lung is the source of increased ethane production during exposure to 100% O2, we measured ethane in the expirate of nine exsanguinated, Sprague-Dawley rats (group II) mechanically ventilated with HFA and then with 100% O2. In all nine animals, ethane elimination rates on 100% O2 increased compared with HFA values. In five of the nine rats, HFA ventilation was reinstated after O2 (group III). In all five, ethane elimination fell with HFA ventilation compared with the value on 100%. Six rats with circulation intact were ventilated with HFA and then 100% O2 (group IV). Ethane production rate for group IV animals breathing HFA was not significantly different from the exsanguinated animals in group II while ventilated with HFA. The mean increase in ethane production for the group II animals was not significantly different from the group IV animals. Lung slices from four other rats (group V) were incubated in saline at 37 degrees C with FeCl2 (10 mg) added to enhance free radical formation. Paired lung samples from the same rat were incubated with either HFA or 100% O2. Headspace gas was analyzed chromatographically for ethane at 120 min. Mean ethane in the O2 samples was higher than for HFA. Rat lung tissue is the main source of increased ethane production during 100% O2 exposure.  相似文献   

20.
We compared the ability of three aerosolized tracers to discriminate among control, lung inflation with a positive end expired pressure of 10 cmH2O, lung vascular hypertension and edema without lung injury, and lung edema with lung injury due to intravenous oleic acid. The tracers were 99mTc-diethylenetriaminepentaacetate (99mTc-DTPA, mol wt 492), 99mTc-human serum albumin (99mTc-ALB, mol wt 69,000), and 99mTc-aggregated albumin (99mTc-AGG ALB, mol wt 383,000). 99mTc-DTPA clearance measurements were not able to discriminate lung injury from lung inflation. The 99mTc-AGG ALB clearance rate was unchanged by lung inflation and increased slightly with lung injury. The 99mTc-ALB clearance rate (0.06 +/- 0.02%/min) was unchanged by lung inflation (0.09 +/- 0.02%/min, P greater than 0.05) or 4 h of hypertension without injury (0.09 +/- 0.04%/min, P greater than 0.05). Deposition of 99mTc-ALB within 15 min of the administration of the oleic acid increased the clearance rate to 0.19 +/- 0.06%/min, which correlated well with the postmortem lung water volume (r = 0.92, P less than 0.01). This did not occur when there was a 60-min delay in the deposition of 99mTc-ALB. We conclude that 99mTc-ALB is the best indicator for studying the effects of lung epithelial injury on protein and fluid transport into and out of the air spaces of the lungs in a minimally invasive manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号