首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hepatitis C virus (HCV) is a major cause of liver disease in humans. The CD81 tetraspanin is necessary but not sufficient for HCV penetration into hepatocytes, and it was recently reported that the tight junction protein claudin-1 is a critical HCV entry cofactor. Here, we confirm the role of claudin-1 in HCV entry. In addition, we show that claudin-6 and claudin-9 expressed in CD81(+) cells also enable the entry of HCV pseudoparticles derived from six of the major genotypes. Whereas claudin-1, -6, and -9 function equally well as entry cofactors in endothelial cells, claudin-1 is more efficient in hepatoma cells. This suggests that additional cellular factors modulate the ability of claudins to function as HCV entry cofactors. Our work has generated novel and essential means to investigate the mechanism of HCV penetration into hepatocytes and the role of the claudin protein family in HCV dissemination, replication, and pathogenesis.  相似文献   

2.
Effect of cell polarization on hepatitis C virus entry   总被引:5,自引:4,他引:1       下载免费PDF全文
The primary reservoir for hepatitis C virus (HCV) replication in vivo is believed to be hepatocytes within the liver. Three host cell molecules have been reported to be important entry factors for receptors for HCV: the tetraspanin CD81, scavenger receptor BI (SR-BI), and the tight-junction (TJ) protein claudin 1 (CLDN1). The recent discovery of a TJ protein as a critical coreceptor highlighted the importance of studying the effect(s) of TJ formation and cell polarization on HCV entry. The colorectal adenocarcinoma Caco-2 cell line forms polarized monolayers containing functional TJs and was found to express the CD81, SR-BI, and CLDN1 proteins. Viral receptor expression levels increased upon polarization, and CLDN1 relocalized from the apical pole of the lateral cell membrane to the lateral cell-cell junction and basolateral domains. In contrast, expression and localization of the TJ proteins ZO-1 and occludin 1 were unchanged upon polarization. HCV infected polarized and nonpolarized Caco-2 cells to comparable levels, and entry was neutralized by anti-E2 monoclonal antibodies, demonstrating glycoprotein-dependent entry. HCV pseudoparticle infection and recombinant HCV E1E2 glycoprotein interaction with polarized Caco-2 cells occurred predominantly at the apical surface. Disruption of TJs significantly increased HCV entry. These data support a model where TJs provide a physical barrier for viral access to receptors expressed on lateral and basolateral cellular domains.  相似文献   

3.
Hepatitis C virus (HCV) entry occurs via a pH- and clathrin-dependent endocytic pathway and requires a number of cellular factors, including CD81, the tight-junction proteins claudin 1 (CLDN1) and occludin, and scavenger receptor class B member I (SR-BI). HCV tropism is restricted to the liver, where hepatocytes are tightly packed. Here, we demonstrate that SR-BI and CLDN1 expression is modulated in confluent human hepatoma cells, with both receptors being enriched at cell-cell junctions. Cellular contact increased HCV pseudoparticle (HCVpp) and HCV particle (HCVcc) infection and accelerated the internalization of cell-bound HCVcc, suggesting that the cell contact modulation of receptor levels may facilitate the assembly of receptor complexes required for virus internalization. CLDN1 overexpression in subconfluent cells was unable to recapitulate this effect, whereas increased SR-BI expression enhanced HCVpp entry and HCVcc internalization, demonstrating a rate-limiting role for SR-BI in HCV internalization.Hepatitis C virus (HCV) is an enveloped positive-strand RNA virus, classified in the genus Hepacivirus of the family Flaviviridae. Worldwide, approximately 170 million individuals are persistently infected with HCV, and the majority are at risk of developing chronic liver disease. Hepatocytes in the liver are thought to be the principal reservoir of HCV replication. HCV pseudoparticles (HCVpp) demonstrate a restricted tropism for hepatocyte-derived cells, suggesting that virus-encoded glycoprotein-receptor interactions play an important role in defining HCV tissue specificity.Recent evidence suggests that a number of host cell molecules are important for HCV entry: the tetraspanin CD81; scavenger receptor class B member I (SR-BI) (reviewed in reference 11); members of the tight-junction protein family claudin 1 (CLDN1), CLDN6, and CLDN9 (12, 34, 48, 52); and occludin (OCLN) (2, 33, 40). HCV enters cells via a pH- and clathrin-dependent endocytic pathway; however, the exact role(s) played by each of the host cell molecules in this process is unclear (4, 8, 21, 34, 45).CD81 and SR-BI interact with HCV-encoded E1E2 glycoproteins, suggesting a role in mediating virus attachment to the cell (reviewed in reference 44). In contrast, there is minimal evidence to support direct interaction of CLDN1 or OCLN with HCV particles (12). Evans and colleagues proposed that CLDN1 acts at a late stage in the entry process and facilitates fusion between the virus and host cell membranes (12). We (13, 19) and others (9, 48) have reported that CLDN1 associates with CD81, suggesting a role for CLDN1-CD81 complexes in viral entry. Cukierman et al. recently reported that CLDN1 enrichment at cell-cell contacts may generate specialized membrane domains that promote HCV internalization (9). In this study, we demonstrate that cellular contact modulates SR-BI and CLDN1 expression levels and promotes HCV internalization. CLDN1 overexpression in subconfluent cells was unable to recapitulate this effect, whereas increased SR-BI expression enhanced HCVpp entry and HCVcc internalization rates, demonstrating a critical and rate-limiting role for SR-BI in HCV internalization.  相似文献   

4.
5.
Tong Y  Zhu Y  Xia X  Liu Y  Feng Y  Hua X  Chen Z  Ding H  Gao L  Wang Y  Feitelson MA  Zhao P  Qi ZT 《Journal of virology》2011,85(6):2793-2802
Hepatitis C virus (HCV)-related research has been hampered by the lack of appropriate small-animal models. It has been reported that tree shrews, or tupaias (Tupaia belangeri), can be infected with serum-derived HCV. However, these reports do not firmly establish the tupaia as a reliable model of HCV infection. Human CD81, scavenger receptor class B type I (SR-BI), claudin 1 (CLDN1), and occludin (OCLN) are considered essential receptors or coreceptors for HCV cell entry. In the present study, the roles of these tupaia orthologs in HCV infection were assessed. Both CD81 and SR-BI of tupaia were found to be able to bind with HCV envelope protein 2 (E2). In comparison with human CD81, tupaia CD81 exhibited stronger binding activity with E2 and increased HCV pseudoparticle (HCVpp) cell entry 2-fold. The 293T cells transfected with tupaia CLDN1 became susceptible to HCVpp infection. Moreover, simultaneous transfection of the four tupaia factors into mouse NIH 3T3 cells made the cells susceptible to HCVpp infection. HCVpp of diverse genotypes were able to infect primary tupaia hepatocytes (PTHs), and this infection could be blocked by either anti-CD81 or anti-SR-BI. PTHs could be infected by cell culture-produced HCV (HCVcc) and did produce infectious progeny virus in culture supernatant. These findings indicate that PTHs possess all of the essential factors required for HCV entry and support the complete HCV infection cycle. This highlights both the mechanisms of susceptibility of tupaia to HCV infection and the possibility of using tupaia as a promising small-animal model in HCV study.  相似文献   

6.
Claudins form a large family of tight junction proteins that have essential roles in the control of paracellular ion flux and the maintenance of cell polarity. Many studies have shown that several claudin family members are abnormally expressed in various cancers. In particular, CLDN4 (encoding claudin-4) is overexpressed in ovarian cancer. However, although CLDN4 overexpression is well established, the mechanisms responsible for this abnormal regulation remain unknown. In the present study, we delineate a small region of the CLDN4 promoter critical for its expression. This region contains two Sp1 sites, both of which are required for promoter activity. However, because of the ubiquitous expression of Sp1, these sites, although necessary, are not sufficient to explain the patterns of gene expression of CLDN4 in various ovarian tissues. We show that the CLDN4 promoter is further controlled by epigenetic modifications of the Sp1-containing critical promoter region. Cells that overexpress CLDN4 exhibit low DNA methylation and high histone H3 acetylation of the critical CLDN4 promoter region, and the reverse is observed in cells that do not express CLDN4. Moreover, the CLDN4-negative cells can be induced to express CLDN4 through treatment with demethylating and/or acetylating agents. Because CLDN4 is elevated in a large fraction of ovarian cancer, the mechanism leading to deregulation may represent a general pathway in ovarian tumorigenesis and may lead to novel strategies for therapy and an overall better understanding of the biology of this disease.  相似文献   

7.
The clinical course of Hepatitis C Virus (HCV) infection is highly variable between infected individual hosts: up to 80% of acutely HCV infected patients develop a chronic infection while 20% clear infection spontaneously. Spontaneous clearance of HCV infection can be predicted by several factors, including symptomatic acute infection, favorable IFNL3 polymorphisms and gender. In our study, we explored the possibility that variants in HCV cell entry factors might be involved in resistance to HCV infection. In a same case patient highly exposed but not infected by HCV, we previously identified one mutation in claudin-6 (CLDN6) and a rare variant in occludin (OCLN), two tight junction proteins involved in HCV entry into hepatocytes. Here, we conducted an extensive functional study to characterize the ability of these two natural variants to prevent HCV entry. We used lentiviral vectors to express Wildtype or mutated CLDN6 and OCLN in different cell lines and primary human hepatocytes. HCV infection was then investigated using cell culture produced HCV particles (HCVcc) as well as HCV pseudoparticles (HCVpp) expressing envelope proteins from different genotypes. Our results show that variants of CLDN6 and OCLN expressed separately or in combination did not affect HCV infection nor cell-to-cell transmission. Hence, our study highlights the complexity of HCV resistance mechanisms supporting the fact that this process probably not primarily involves HCV entry factors and that other unknown host factors may be implicated.  相似文献   

8.
Claudin-1 (CLDN1), a tight junction (TJ) protein, has recently been identified as an entry co-receptor for hepatitis C virus (HCV). Ectopic expression of CLDN1 rendered several non-hepatic cell lines permissive to HCV infection. However, little is known about the mechanism by which CLDN1 mediates HCV entry. It is believed that an additional entry receptor(s) is required because ectopic expression of CLDN1 in both HeLa and NIH3T3 cells failed to confer susceptibility to viral infection. Here we found that CLDN1 was co-immunoprecipitated with both HCV envelope proteins when expressed in 293T cells. Results from biomolecular fluorescence complementation assay showed that overexpressed CLDN1 also formed complexes with CD81 and low density lipoprotein receptor. Subsequent imaging analysis revealed that CLDN1 was highly enriched at sites of cell-cell contact in permissive cell lines, co-localizing with the TJ marker, ZO-1. However, in both HeLa and NIH3T3 cells the ectopically expressed CLDN1 appeared to reside predominantly in intracellular vesicles. The CLDN1-CD81 complex formed in HeLa cells was also exclusively distributed intracellularly, co-localizing with EEA1, an early endosomal marker. Correspondingly, transepithelial electric resistance, obtained from the naturally susceptible human liver cell line, Huh7, was much higher than that of the HeLa-CLDN1 cell line, suggesting that Huh7 is likely to form functional tight junctions. Finally, the disruption of TJ-enriched CLDN1 by tumor necrosis factor-alpha treatment markedly reduced the susceptibility of Huh7.5.1 cells to HCV infection. Our results suggest that the specific localization pattern of CLDN1 may be crucial in the regulation of HCV cellular tropism.  相似文献   

9.
The tight junction protein claudin-1 (CLDN1) is necessary for hepatitis C virus (HCV) entry into target cells. Recent studies have made disparate observations of the modulation of the expression of CLDN1 on cells following infection by HCV. In one study, the mean CLDN1 expression on cells exposed to HCV declined, whereas in another study HCV infected cells showed increased CLDN1 expression compared to uninfected cells. Consequently, the role of HCV in modulating CLDN1 expression, and hence the frequency of cellular superinfection, remains unclear. Here, we present a possible reconciliation of these disparate observations. We hypothesized that viral kinetics and not necessarily HCV-induced receptor modulation underlies these disparate observations. To test this hypothesis, we constructed a mathematical model of viral kinetics in vitro that mimicked the above experiments. Model predictions provided good fits to the observed evolution of the distribution of CLDN1 expression on cells following exposure to HCV. Cells with higher CLDN1 expression were preferentially infected and outgrown by cells with lower CLDN1 expression, resulting in a decline of the mean CLDN1 expression with time. At the same time, because the susceptibility of cells to infection increased with CLDN1 expression, infected cells tended to have higher CLDN1 expression on average than uninfected cells. Our study thus presents an explanation of the disparate observations of CLDN1 expression following HCV infection and points to the importance of considering viral kinetics in future studies of receptor expression on cells exposed to HCV.  相似文献   

10.
Hepatitis C virus (HCV) entry is dependent on host cell molecules tetraspanin CD81, scavenger receptor BI and tight junction proteins claudin‐1 and occludin. We previously reported a role for CD81/claudin‐1 receptor complexes in HCV entry; however, the molecular mechanism(s) driving association between the receptors is unknown. We explored the molecular interface between CD81 and claudin‐1 using a combination of bioinformatic sequence‐based modelling, site‐directed mutagenesis and Fluorescent Resonance Energy Transfer (FRET) imaging methodologies. Structural modelling predicts the first extracellular loop of claudin‐1 to have a flexible beta conformation and identifies a motif between amino acids 62–66 that interacts with CD81 residues T149, E152 and T153. FRET studies confirm a role for these CD81 residues in claudin‐1 association and HCV infection. Importantly, mutation of these CD81 residues has minimal impact on protein conformation or HCVglycoprotein binding, highlighting a new functional domain of CD81 that is essential for virus entry.  相似文献   

11.
Hepatitis C virus(HCV)is a leading cause of liver disease worldwide.Although several HCV protease/polymerase inhibitors were recently approved by U.S.FDA,the combination of antivirals targeting multiple processes of HCV lifecycle would optimize anti-HCV therapy and against potential drug-resistanee.Viral entry is an essential target step for antiviral development,but FDA-approved HCV entry inhibitor remains exclusive.Here we identify serotonin 2A receptor(5-HT2aR)is a HCV entry factor amendable to therapeutic intervention by a chemical biology strategy.The silencing of 5-HT2aR and clinically available 5-HT2aR antagonist suppress cell culture-derived HCV(HCVcc)in different liver cells and primary human hepatocytes at late endocytosis process.The mechanism is related to regulate the correct plasma membrane localization of claudin 1(CLDN1).Moreover,phenoxybenzamine(PBZ),an FDAapproved 5-HT2aR antagonist,inhibits all major HCV genotypes in vitro and displays synergy in combination with clinical used anti-HCV drugs.The impact of PBZ on HCV genotype 2a is documented in immune-competent humanized transgenic mice.Our results not only expand the understanding of HCV entry,but also present a promising target for the invention of HCV entry inhibitor.  相似文献   

12.
Human claudin-3 (CLDN3) is a tetraspanin transmembrane protein of tight junction structures and is known to be over-expressed in some malignant tumors. Although a specific monoclonal antibody (MAb) against the extracellular domains of CLDN3 would be a valuable tool, generation of such MAbs has been regarded as difficult using traditional hybridoma techniques, because of the conserved sequence homology of CLDN3s among various species. In addition, high sequence similarity is shared among claudin family members, and potential cross-reactivity of MAb should be evaluated carefully. To overcome these difficulties, we generated CLDN3-expressing Chinese hamster ovary and Sf9 cells to use an immunogens and performed cell-based screening to eliminate cross-reactive antibodies. As a result, we generated MAbs that recognized the extracellular loops of CLDN3 but not those of CLDN4, 5, 6, or 9. Further in vitro studies suggested that the isolated MAbs possessed the desired binding properties for the detection or targeting of CLDN3.  相似文献   

13.
Hepatitis C virus (HCV) is an enveloped positive-stranded RNA hepatotropic virus. HCV pseudoparticles infect liver-derived cells, supporting a model in which liver-specific molecules define HCV internalization. Three host cell molecules have been reported to be important entry factors or receptors for HCV internalization: scavenger receptor BI, the tetraspanin CD81, and the tight junction protein claudin-1 (CLDN1). None of the receptors are uniquely expressed within the liver, leading us to hypothesize that their organization within hepatocytes may explain receptor activity. Since CD81 and CLDN1 act as coreceptors during late stages in the entry process, we investigated their association in a variety of cell lines and human liver tissue. Imaging techniques that take advantage of fluorescence resonance energy transfer (FRET) to study protein-protein interactions have been developed. Aequorea coerulescens green fluorescent protein- and Discosoma sp. red-monomer fluorescent protein-tagged forms of CD81 and CLDN1 colocalized, and FRET occurred between the tagged coreceptors at comparable frequencies in permissive and nonpermissive cells, consistent with the formation of coreceptor complexes. FRET occurred between antibodies specific for CD81 and CLDN1 bound to human liver tissue, suggesting the presence of coreceptor complexes in liver tissue. HCV infection and treatment of Huh-7.5 cells with recombinant HCV E1-E2 glycoproteins and anti-CD81 monoclonal antibody modulated homotypic (CD81-CD81) and heterotypic (CD81-CLDN1) coreceptor protein association(s) at specific cellular locations, suggesting distinct roles in the viral entry process.  相似文献   

14.
15.
Hepatitis C virus (HCV) is a hepatotropic virus with a host-range restricted to humans and chimpanzees. Although HCV RNA replication has been observed in human non-hepatic and murine cell lines, the efficiency was very low and required long-term selection procedures using HCV replicon constructs expressing dominant antibiotic-selectable markers1-5. HCV in vitro research is therefore limited to human hepatoma cell lines permissive for virus entry and completion of the viral life cycle. Due to HCVs narrow species tropism, there is no immunocompetent small animal model available that sustains the complete HCV replication cycle 6-8. Inefficient replication of HCV in non-human cells e.g. of mouse origin is likely due to lack of genetic incompatibility of essential host dependency factors and/or expression of restriction factors.We investigated whether HCV propagation is suppressed by dominant restriction factors in either human cell lines derived from non-hepatic tissues or in mouse liver cell lines. To this end, we developed two independent conditional trans-complementation methods relying on somatic cell fusion. In both cases, completion of the viral replication cycle is only possible in the heterokaryons. Consequently, successful trans-complementation, which is determined by measuring de novo production of infectious viral progeny, indicates absence of dominant restrictions.Specifically, subgenomic HCV replicons carrying a luciferase transgene were transfected into highly permissive human hepatoma cells (Huh-7.5 cells). Subsequently, these cells were co-cultured and fused to various human and murine cells expressing HCV structural proteins core, envelope 1 and 2 (E1, E2) and accessory proteins p7 and NS2. Provided that cell fusion was initiated by treatment with polyethylene-glycol (PEG), the culture released infectious viral particles which infected naïve cells in a receptor-dependent fashion.To assess the influence of dominant restrictions on the complete viral life cycle including cell entry, RNA translation, replication and virus assembly, we took advantage of a human liver cell line (Huh-7 Lunet N cells 9) which lacks endogenous expression of CD81, an essential entry factor of HCV. In the absence of ectopically expressed CD81, these cells are essentially refractory to HCV infection 10 . Importantly, when co-cultured and fused with cells that express human CD81 but lack at least another crucial cell entry factor (i.e. SR-BI, CLDN1, OCLN), only the resulting heterokaryons display the complete set of HCV entry factors requisite for infection. Therefore, to analyze if dominant restriction factors suppress completion of the HCV replication cycle, we fused Lunet N cells with various cells from human and mouse origin which fulfill the above mentioned criteria. When co-cultured cells were transfected with a highly fusogenic viral envelope protein mutant of the prototype foamy virus (PFV11) and subsequently challenged with infectious HCV particles (HCVcc), de novo production of infectious virus was observed. This indicates that HCV successfully completed its replication cycle in heterokaryons thus ruling out expression of dominant restriction factors in these cell lines. These novel conditional trans-complementation methods will be useful to screen a large panel of cell lines and primary cells for expression of HCV-specific dominant restriction factors.  相似文献   

16.
17.
Viruses exploit signaling pathways to their advantage during multiple stages of their life cycle. We demonstrate a role for protein kinase A (PKA) in the hepatitis C virus (HCV) life cycle. The inhibition of PKA with H89, cyclic AMP (cAMP) antagonists, or the protein kinase inhibitor peptide reduced HCV entry into Huh-7.5 hepatoma cells. Bioluminescence resonance energy transfer methodology allowed us to investigate the PKA isoform specificity of the cAMP antagonists in Huh-7.5 cells, suggesting a role for PKA type II in HCV internalization. Since viral entry is dependent on the host cell expression of CD81, scavenger receptor BI, and claudin-1 (CLDN1), we studied the role of PKA in regulating viral receptor localization by confocal imaging and fluorescence resonance energy transfer (FRET) analysis. Inhibiting PKA activity in Huh-7.5 cells induced a reorganization of CLDN1 from the plasma membrane to an intracellular vesicular location(s) and disrupted FRET between CLDN1 and CD81, demonstrating the importance of CLDN1 expression at the plasma membrane for viral receptor activity. Inhibiting PKA activity in Huh-7.5 cells reduced the infectivity of extracellular virus without modulating the level of cell-free HCV RNA, suggesting that particle secretion was not affected but that specific infectivity was reduced. Viral particles released from H89-treated cells displayed the same range of buoyant densities as did those from control cells, suggesting that viral protein association with lipoproteins is not regulated by PKA. HCV infection of Huh-7.5 cells increased cAMP levels and phosphorylated PKA substrates, supporting a model where infection activates PKA in a cAMP-dependent manner to promote virus release and transmission.  相似文献   

18.
A tight junction (TJ) protein, claudin-1 (CLDN1), was identified recently as a key factor for hepatitis C virus (HCV) entry. Here, we show that another TJ protein, occludin, is also required for HCV entry. Mutational study of CLDN1 revealed that its tight junctional distribution plays an important role in mediating viral entry. Together, these data support the model in which HCV enters liver cells from the TJ. Interestingly, HCV infection of Huh-7 hepatoma cells downregulated the expression of CLDN1 and occludin, preventing superinfection. The altered TJ protein expression may contribute to the morphological and functional changes observed in HCV-infected hepatocytes.  相似文献   

19.
Claudins play an important role in tumor metastasis and in invasiveness of colorectal cancer (CRC). We have evaluated the relationship between CRC and expression of the claudin genes in Chinese patients with CRC. We measured CLDN1 and CLDN7 mRNA using quantitative PCR, and protein levels with immunohistochemistry in cancer tissues and adjacent normal tissue. Cancer tissues had significantly higher levels of CLDN1, and significantly lower levels of CLDN3, CLDN4, and CLDN7 than did normal tissue. CLDN3, CLDN4, and CLDN7 expression levels were higher in CRC of the protruded type than in CRC of the infiltrative type. Expression of CLDN7 correlated with lymph node metastasis. Stage N0 cancer tissues had higher levels of CLDN7 than did stages N1 and N2, suggesting that CLDN7 expression was closely related to the extent of lymph node metastasis. CLDN1 protein was upregulated, but CLDN7 protein was downregulated in cancer tissues when compared with expression in adjacent normal tissues. In conclusion, CLDN3, CLDN4, and CLDN7 were significantly downregulated, whereas CLDN1 was significantly upregulated in CRC. The altered expression of claudin genes may play a role in the initiation and development of CRC.  相似文献   

20.
Host tropism of hepatitis C virus (HCV) is limited to human and chimpanzee. HCV infection has never been fully understood because there are few conventional models for HCV infection. Human induced pluripotent stem cell-derived hepatocyte-like (iPS-Hep) cells have been expected to use for drug discovery to predict therapeutic activities and side effects of compounds during the drug discovery process. However, the suitability of iPS-Hep cells as an experimental model for HCV research is not known. Here, we investigated the entry and genomic replication of HCV in iPS-Hep cells by using HCV pseudotype virus (HCVpv) and HCV subgenomic replicons, respectively. We showed that iPS-Hep cells, but not iPS cells, were susceptible to infection with HCVpv. The iPS-Hep cells expressed HCV receptors, including CD81, scavenger receptor class B type I (SR-BI), claudin-1, and occludin; in contrast, the iPS cells showed no expression of SR-BI or claudin-1. HCV RNA genome replication occurred in the iPS-Hep cells. Anti-CD81 antibody, an inhibitor of HCV entry, and interferon, an inhibitor of HCV genomic replication, dose-dependently attenuated HCVpv entry and HCV subgenomic replication in iPS-Hep cells, respectively. These findings suggest that iPS-Hep cells are an appropriate model for HCV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号