首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The conversion of type I procollagen to type I collagen was studied by cleaving the protein with partically purified type I procollagen N-proteinase from chick embryos. Examination of the reaction products after incubation for varying times at 30 degrees C indicated that, during the initial stages of the reaction, pro alpha 1(I) and pro alpha 2(I) chains were cleaved at about the same rate. As a result, all the pro alpha 2(I) chains were converted to pC alpha 2(I) chains well before all the pro alpha 1 chains were cleaved. When the reaction products were examined by gel electrophoresis without reduction of interchain disulfide bonds, a distinct band of an intermediate was detected. The same intermediate was seen when the reaction was carried out at 35, 37, and 40 degrees C. The data established that over two-thirds of the type I procollagen was converted to the intermediate and that this intermediate was then slowly converted to the final product of pCcollagen. The kinetics for the reaction, however, did not fit a simple model for precursor-product relationship among substrate, intermediate, and product. Examination of the reaction products with a two-step gel procedure demonstrated that the intermediate consisted of three polypeptide chains in which the N propeptide was cleaved from one pro alpha 1 chain and one pro alpha 2(I) chain but the N propeptide was still present on one of the pro alpha 1(I) chains. In further experiments it was demonstrated that a similar intermediate was seen when a homotrimer of pro alpha 1(I) chains was partially cleaved by the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We have studied the folding, processing, and association with two endoplasmic reticulum (ER) resident proteins of the abnormal type I procollagen molecules produced by a strain of fibroblasts harboring a 4.5 kilobase deletion in an allele of COL1A2 (Willing, M. C., Cohn, D.H., Starman, B. Holbrook, K.A., Greenberg, C.R., and Byers, P.H. (1988) J. Biol. Chem. 263, 8398-8404). By sequencing cDNA, we found that the mutant allele encodes pro alpha 2(I) chains that are shortened by 180 amino acids but retain the Gly-X-Y repeat pattern crucial for collagen triple helix formation. The type I procollagen molecules that incorporated the shortened chain were retained intracellularly and were stable. The triple helical domain in these molecules did not attain a normal conformation and remained accessible to posttranslational modifying enzymes amino-terminal to the deletion site for a prolonged period. The abnormal molecules folded into a triple helical conformation more slowly than the normal molecules, and the amino-terminal ends of the pro alpha 1(I) chains failed to become protease-resistant. While the abnormal procollagen molecules were not bound by the ER-resident protein BiP, they stably associated with protein disulfide isomerase, the beta-subunit of prolyl-4-hydroxylase. These results indicate that some mutations in type I collagen genes both transiently delay folding and permanently disrupt the structure of the triple helix and suggest that binding to prolyl-4-hydroxylase helps to retain certain abnormal procollagen molecules within the ER.  相似文献   

3.
4.
Unlabeled collagenous proteins were quantified as inhibitors of binding of native, soluble, radioiodinated type I collagen to the fibroblast surface. Collagen types IV, V a minor cartilage isotype (1 alpha 2 alpha 3 alpha), and the collagenlike tail of acetylcholinesterase did not inhibit binding. Collagen types II and III behaved as competitive inhibitors of type I binding. Denaturation of native collagenous molecules exposed cryptic inhibitory determinants in the separated constituent alpha chains. Inhibition of binding by unlabeled type I collagen was not changed by enzymatic removal of the telopeptides. Inhibitory determinants were detected in cyanogen bromide-derived peptides from various regions of helical alpha 1 (I) and alpha 1(III) chains. The aminoterminal propeptide of chick pro alpha 1(I) was inhibitory for binding, whereas the carboxyterminal three-chain propeptide fragment of human type I procollagen was not. The data are discussed in terms of the proposal that binding to surface receptors initiates the assembly of periodic collagen fibrils in vivo.  相似文献   

5.
A complementary DNA (cDNA) clone was constructed for chick pro alpha 2(I) collagen mRNA. This and previously constructed cDNA clones for chick and human pro alpha 1(I) collagen mRNAs were used to measure levels of type I procollagen messenger RNAs in two experimental models: viscose cellulose sponge-induced experimental granulation tissue and silica-induced experimental lung fibrosis in rats. Both Northern RNA blot and RNA dot hybridizations were used to quantitate procollagen mRNAs during formation of granulation tissue. The period of rapid collagen synthesis was characterized by high levels of procollagen mRNAs, which were reduced when collagen production returned to a low basal level. The rate of collagen synthesis and the levels of procollagen mRNAs during the period of rapid reduction in collagen production did not, however, parallel with each other. This suggests that translational control mechanisms are important during this time in preventing overproduction of collagen. In silicotic lungs, the early stages of fibroblast activation follow a similar path but appear faster. At a later stage, however, the RNA levels increase again and permit collagen synthesis to continue at a high rate, resulting in massive collagen accumulation.  相似文献   

6.
7.
Cultured fibroblasts from a patient affected with a moderate form of osteogenesis imperfecta were defective for the synthesis of type I collagen molecules; about half of the alpha 1(I) chains contained a cysteine residue in the triple helical domain and a disulfide link formed when two mutant alpha 1(I) chains were incorporated into a type I collagen heterotrimer. The proband's parents were clinically and biochemically normal. The cysteine was localized within peptide alpha 1(I)CB8 between residues 170 and 200 of the triple helical domain using a chemical procedure with 2-nitro-5-thiocyanobenzoic acid (Tenni, R., Rossi, A., Valli, M., Mottes, M., Pignatti, P. F., and Cetta, G. (1990) Matrix 10, 20-26). Type I procollagen heterotrimers containing either one or two mutant chains showed (i) a slight abnormality in secretion from cells; (ii) a low degree of post-translational overmodifications; (iii) the same, but lower than normal, thermal stability. Total RNA was isolated from the proband's dermal fibroblast cultures, and cDNAs for pro-alpha 1(I) were prepared d using total RNA. A portion of cDNA, coding for the region encompassing residues 119-193 of alpha 1(I) triple helical domain, was amplified by polymerase chain reaction. A single base pair mismatch was identified by chemical cleavage of DNA.DNA heteroduplexes, indicating a possible substitution of a guanine in the triplet coding for glycine 178 or 181. The same unique mismatch was detected by chemical cleavage in about one-half of the molecules in heteroduplexes formed between patient's pro-alpha 1(I) mRNAs and a normal cDNA probe. The amplified products were cloned and sequenced, confirming the heterozygous nature of the patient and demonstrating the presence and the location of a missense mutation; a single T for G substitution was found in the first base of the triplet coding for residue 178 of alpha 1(I) triple helical domain, leading to a cysteine for glycine substitution. Allele-specific oligonucleotide hybridization to amplified DNA confirmed a de novo point mutation in the proband's genome. The findings in this patient are in accord with the phenotypic gradient model, which correlates the localization of the structural defect with the clinical outcome of osteogenesis imperfecta. The mutant protein has some properties that differ from the caused by the cysteine for glycine 175 substitution, suggesting a direct influence of the neighboring amino acids on the effects of the mutation.  相似文献   

8.
Previous observations with type I collagen from a proband with lethal osteogenesis imperfecta demonstrated that type I collagen containing a substitution of cysteine for glycine alpha 1-748 copolymerized with normal type I collagen (Kadler, K. E., Torre-Blanco, A., Adachi, E., Vogel, B. E., Hojima, Y., and Prockop, D. J. (1991) Biochemistry 30, 5081-5088). Here, three preparations containing normal type I procollagen and type I procollagen with a substitution of cysteine for glycine alpha 1-175, glycine alpha 1-691, or glycine alpha 1-988 were purified from cultured skin fibroblasts from probands with osteogenesis imperfecta. The procollagens were then used as substrates in a system for assaying the self-assembly of type I collagen into fibrils. The cysteine-substituted collagens in all three preparations were incorporated into fibrils. The cysteine alpha 1-175 and cysteine alpha 1-691 collagens were shown to increase the lag time and decrease the propagation rate constant for fibril assembly. All three preparations containing cysteine-substituted collagens formed fibrils with diameters that were two to four times the diameter of fibrils formed under the same conditions by normal type I collagen. Also, the three preparations containing cysteine substituted collagens had higher solubilities than normal type I collagen. The results, therefore, demonstrated that the three cysteine-substituted collagens copolymerized with normal type I collagen. The effects of the mutated collagens on fibril assembly can be understood in terms of a recently proposed model of fibril growth from symmetrical tips by assuming that the mutated monomers partially inhibit tip growth but not lateral growth of the fibrils. Of special interest was the observation that the Cys alpha 1-175 collagen from a proband with a non-lethal variant of osteogenesis imperfecta had quantitatively less effect on several parameters of fibril assembly at 37 degrees C than cysteine-substituted collagens from three probands with lethal variants of the disease.  相似文献   

9.
《The Journal of cell biology》1993,121(5):1165-1172
Mov13 fibroblasts, which do not express endogenous alpha 1(I) collagen chains due to a retroviral insertion, were used to study the role of type I collagen in the process of fibronectin fibrillogenesis. While Mov13 cells produced a sparse matrix containing short fibronectin fibrils, transfection with a wild type pro alpha 1(I) collagen gene resulted in the production of an extensive matrix containing fibronectin fibrils of normal length. To study the amino acids involved in the fibronectin-collagen interaction, mutations were introduced into the known fibronectin binding region of the pro alpha 1(I) collagen gene. Substitution of Gln and Ala at positions 774 and 777 of the alpha 1(I) chain for Pro resulted in the formation of short fibronectin fibrils similar to what was observed in untransfected Mov13 cells. Type I collagen carrying these substitutions bound weakly to fibronectin- sepharose and could be eluted off with 1 M urea. The effect of this mutation on fibronectin fibrillogenesis could be rescued by adding either type I collagen or a peptide fragment (CB.7) which contained the wild type fibronectin binding region of the alpha 1(I) chain to the cell culture. These results suggest that fibronectin fibrillogenesis in tissue culture is dependent on type I collagen synthesis, and define an important role for the fibronectin binding site in this process.  相似文献   

10.
11.
Synthesis of procollagen was examined in skin fibroblasts from a patient with a moderately severe autosomal dominant form of osteogenesis imperfecta. Proteolytic removal of the propeptide regions of newly synthesized procollagen, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions, revealed the presence of type I collagen in which two alpha 1(I) chains were linked through interchain disulfide bonds. Fragmentation of the disulfide-bonded alpha 1(I) dimers with vertebrate collagenase and cyanogen bromide demonstrated the presence of a cysteine residue in alpha 1(I)CB8, a fragment containing amino acid residues 124-402 of the alpha 1(I) collagen chain. Cysteine residues are not normally found in the triple-helical domain of type I collagen chains. The heterozygous nature of the molecular defect resulted in the formation of three kinds of type I trimers: a normal type with normal pro-alpha(I) chains, a type I trimer with one mutant pro-alpha 1(I) chain and two normal chains, and a type I trimer containing two mutant pro-alpha 1(I) chains and one normal pro-alpha 2(I) chain. The presence of one or two mutant pro-alpha 1(I) chains in trimers of type I procollagen was found to reduce the thermal stability of the protein by 2.5 and 1 degree C, respectively. In addition to post-translational overmodification, procollagen containing one mutant pro-alpha 1(I) chain was also cleared more slowly from cultured fibroblasts. The most likely explanation for these disruptive changes in the physical stability and secretion of the mutant procollagen is that a cysteine residue is substituted for a glycine in half of the pro-alpha 1(I) chains synthesized by the patient's fibroblasts.  相似文献   

12.
We have shown that a child with Ehlers Danlos syndrome (EDS) type VII has a G to A transition at the first nucleotide of intron 6 in one of her COL1A2 alleles. Half of the cDNA clones prepared from the proband's pro alpha 2(I) mRNA lacked exon 6. The type I procollagen secreted by the proband's dermal fibroblasts in culture was purified, and collagen fibrils were generated in vitro by cleavage of the procollagen with the procollagen N- and C-proteinases. Incubation of the procollagen with N-proteinase resulted in a 1:1 mixture of pCcollagen and uncleaved procollagen. Incubation of this mixture with C-proteinase generated collagen and abnormal pNcollagen (pNcollagen-ex6) that readily copolymerized into fibrils. By electron microscopy these fibrils resembled the hieroglyphic fibrils seen in the N-proteinase-deficient skin of dermatosparactic animals and humans and were distinct from the near circular cross-section fibrils seen in the tissues of individuals with EDS type VII. Further incubation of the hieroglyphic fibrils with N-proteinase resulted in partial cleavage of the pNcollagen-ex6 in which the abnormal pN alpha 2(I) chains remained intact. These fibrils were not hieroglyphic but were near circular in cross-section. Fibrils formed from collagen and pNcollagen-ex6 that had been partially cleaved with elevated amounts of N-proteinase prior to fibril formation were also near circular in cross-section. The results are consistent with a model of collagen fibril formation in which the intact N-propeptides are located exclusively at the surface of the hieroglyphic fibrils. Partial cleavage of the pNcollagen-ex6 by N-proteinase allows the N-propeptides to be incorporated within the body of the fibrils. The model provides an explanation for the morphology and molecular composition of collagen fibrils in the tissues of patients with EDS type VII.  相似文献   

13.
Partial covalent structure of the human alpha 2 type V collagen chain   总被引:5,自引:0,他引:5  
Human cDNA libraries were screened with a cDNA fragment presumably encoding the 3' terminus of a procollagen carboxyl propeptide not identifiable as types I, II, III, or IV by protein sequence or Northern blot hybridization. One clone contained a 1350-base pair insert coding in part for 55 uninterrupted Gly-X-Y triplets. Comparison with the amino acid composition of the COOH-terminal cyanogen bromide (CB) peptides of the alpha 1 and alpha 2 type V collagen chains showed similarity only to the alpha 2(V)CB fragment. To identify the NH2 terminus of the peptide designated by methionine, an additional isolate was sequenced and found to contain a Gly-Met-Pro triplet. Thirty-one amino acids from the NH2 terminus of the alpha 2(V)CB9 fragment were then determined by Edman degradation and found to be identical to those derived from the cDNA clone. The DNA sequence encoding part of the triple helical region establishes for the first time the partial structure of a type V collagen chain. Although comparison of residues 796-1020 of the alpha 2(V) collagenous region with alpha 1 (III), alpha 1(I), and alpha 2(I) shows strong conservation of charged positions, the latter three chains appear considerably more similar to each other than to alpha 2(V). A striking feature of the alpha 2(V) sequence between 918-944 is the absence of proline residues. In the analogous region of alpha 1(I) where this amino acid is also lacking, a flexible site in the rigid triple helical structure of type I collagen has been observed (Hofmann, H., Voss, T., Kuhn, K. and Engel, J. (1984) J. Mol. Biol. 172, 325-343).  相似文献   

14.
We have characterized a mutation that produces mild, dominantly inherited osteogenesis imperfecta. Half of the alpha 1 (I) chains of type I collagen synthesized by cells from an affected individual contain a cysteine residue in the 196-residue carboxyl-terminal cyanogen bromide peptide of the triple-helical domain (Steinmann, B., Nicholls, A., and Pope, F. M. (1986) J. Biol. Chem. 261, 8958-8964). Unexpectedly, sequence determined from a proteolytic fragment of the alpha 1 (I) chain derived from procollagen molecules synthesized in the presence of both [3H]proline and [35S]cysteine indicated that the cysteine is located at the third residue carboxyl-terminal to the triple-helical domain, normally a glycine. The nucleotide sequence of a fragment amplified from genomic DNA confirmed the location of the cysteine residue and showed that the mutation was a single nucleotide change in one COL1A1 allele. This represents a new class of mutations, point mutations outside the triple-helical domain of the chains of type I collagen, that produce the osteogenesis imperfecta phenotype.  相似文献   

15.
Activation of type I collagen genes in cultured scleroderma fibroblasts   总被引:2,自引:0,他引:2  
Fibroblasts cultured from affected skin areas of five patients with cutaneous scleroderma were found to produce increased amounts of collagen when compared with nonaffected control cells. Total RNA was isolated from the cultures and analyzed for its level of pro alpha 1 (I)collagen mRNA by hybridization of RNA blots with a cloned cDNA probe. The levels of pro alpha 1 (I)collagen mRNAs relative to total RNA were two- to sixfold higher in the samples from affected cells, accounting for the increased synthesis of type I collagen. Cytoplasmic dot hybridizations were performed to measure the cellular content of pro alpha 1 (I)collagen mRNA: up to ninefold increases in the level of this mRNA per cell were found. Upon subculturing, scleroderma fibroblasts were found to reduce gradually the increased synthesis of collagen to the level of nonaffected controls by the tenth passage. The levels of type I collagen mRNAs were also reduced, but more slowly. The results suggest that in scleroderma fibroblasts the genes for type I collagen are activated at procollagen mRNA level or that they are more stable and that the activating factors are lost during prolonged cell culture because cells from affected areas lose their activated state.  相似文献   

16.
17.
18.
Overlapping cDNA clones were isolated for human type II procollagen. Nucleotide sequencing of the clones provided over 2.5 kb of new coding sequences for the human pro alpha 1(II) gene and the first complete amino acid sequence of type II procollagen from any species. Comparison with published data for cDNA clones covering the entire lengths of the human type I and type III procollagens made it possible to compare in detail the coding sequences and primary structures of the three most abundant human fibrillar collagens. The results indicated that the marked preference in the third base codons for glycine, proline and alanine previously seen in other fibrillar collagens was maintained in type II procollagen. The domains of the pro alpha 1(II) chain are about the same size as the same domains of the pro alpha chains of type I and type III procollagens. However, the major triple-helical domain is 15 amino acid residues less than the triple-helical domain of type III procollagen. Comparison of hydropathy profiles indicated that the alpha chain domain of type II procollagen is more similar to the alpha chain domain of the pro alpha 1(I) chain than to the pro alpha 2(I) chain or the pro alpha 1(III) chain. The results therefore suggest that selective pressure in the evolution of the pro alpha 1(II) and pro alpha 1(I) genes is more similar than the selective pressure in the evolution of the pro alpha 2(I) and pro alpha 1(III) genes.  相似文献   

19.
Hsp47 is a heat stress protein that interacts with procollagen in the lumen of the endoplasmic reticulum, which is vital for collagen elaboration and embryonic viability. The precise actions of Hsp47 remain unclear, however. To evaluate the effects of Hsp47 on collagen production we infected human vascular smooth muscle cells (SMCs) with a retrovirus containing Hsp47 cDNA. SMCs overexpressing Hsp47 secreted type I procollagen faster than SMCs transduced with empty vector, yielding a greater accumulation of pro alpha1(I) collagen in the extracellular milieu. Interestingly, the amount of intracellular pro alpha1(I) collagen was also increased. This was associated with an unexpected increase in the rate of pro alpha1(I) collagen chain synthesis and 2.5-fold increase in pro alpha1(I) collagen mRNA expression, without a change in fibronectin expression. This amplification of procollagen expression, synthesis, and secretion by Hsp47 imparted SMCs with an enhanced capacity to elaborate a fibrillar collagen network. The effects of Hsp47 were qualitatively distinct from, and independent of, those of ascorbate and the combination of both factors yielded an even more intricate fibril network. Given the in vitro impact of altered Hsp47 expression on procollagen production, we sought evidence for interindividual variability in Hsp47 expression and identified a common, single nucleotide polymorphism in the Hsp47 gene promoter among African Americans that significantly reduced promoter activity. Together, these findings indicate a novel means by which type I collagen production is regulated by the endoplasmic reticulum constituent, Hsp47, and suggest a potential basis for inherent differences in collagen production within the population.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号