首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Main conclusion

Xylans in the cell walls of monocots are structurally diverse. Arabinofuranose-containing glucuronoxylans are characteristic of commelinids. However, other structural features are not correlated with the major transitions in monocot evolution. Most studies of xylan structure in monocot cell walls have emphasized members of the Poaceae (grasses). Thus, there is a paucity of information regarding xylan structure in other commelinid and in non-commelinid monocot walls. Here, we describe the major structural features of the xylans produced by plants selected from ten of the twelve monocot orders. Glucuronoxylans comparable to eudicot secondary wall glucuronoxylans are abundant in non-commelinid walls. However, the α-d-glucuronic acid/4-O-methyl-α-d-glucuronic acid is often substituted at O-2 by an α-l-arabinopyranose residue in Alismatales and Asparagales glucuronoxylans. Glucuronoarabinoxylans were the only xylans detected in the cell walls of five different members of the Poaceae family (grasses). By contrast, both glucuronoxylan and glucuronoarabinoxylan are formed by the Zingiberales and Commelinales (commelinids). At least one species of each monocot order, including the Poales, forms xylan with the reducing end sequence -4)-β-d-Xylp-(1,3)-α-l-Rhap-(1,2)-α-d-GalpA-(1,4)-d-Xyl first identified in eudicot and gymnosperm glucuronoxylans. This sequence was not discernible in the arabinopyranose-containing glucuronoxylans of the Alismatales and Asparagales or the glucuronoarabinoxylans of the Poaceae. Rather, our data provide additional evidence that in Poaceae glucuronoarabinoxylan, the reducing end xylose residue is often substituted at O-2 with 4-O-methyl glucuronic acid or at O-3 with arabinofuranose. The variations in xylan structure and their implications for the evolution and biosynthesis of monocot cell walls are discussed.
  相似文献   

2.
Hemicelluloses were solubilized from depectinated walls of maize coleoptiles and leaves with increasing concentrations of alkali to yield three major fractions of polymers. A highly-substituted glucuronoarabinoxylan released by dilute alkali from walls of coleoptiles was present only in very small amounts in the walls of the leaves. The stepwise extractions with increasing concentrations of alkali resolved a relatively unbranched xylan from a mixture of mixed-linked glucan, xyloglucan and additional xylan from walls of young leaves. Delignification in acidic sodium chlorite solubilized a small amount of substituted xylan from walls of both coleoptiles and leaves, and rendered about one-half of the unextracted hemicellulose soluble in only 0.02 M potassium hydroxide solution. Delignification prevented the detection of highly-substituted xylans released by dilute alkali.  相似文献   

3.
Cell wall development in maize coleoptiles   总被引:16,自引:10,他引:6       下载免费PDF全文
The physical bases for enhancement of growth rates induced by auxin involve changes in cell wall structure. Changes in the chemical composition of the primary walls during maize (Zea mays L. cv WF9 × Bear 38) coleoptile development were examined to provide a framework to study the nature of auxin action. This report documents that the primary walls of maize cells vary markedly depending on developmental state; polymers synthesized and deposited in the primary wall during cell division are substantially different from those formed during cell elongation.

The embryonal coleoptile wall is comprised of mostly glucuronoarabinoxylan (GAX), xyloglucan, and polymers enriched in 5-arabinosyl linkages. During development, both GAX and xyloglucan are synthesized, but the 5-arabinosyls are not. Rapid coleoptile elongation is accompanied by synthesis of a mixed-linked glucan that is nearly absent from the embryonal wall. A GAX highly substituted with mostly terminal arabinofuranosyl units is also synthesized during elongation and, based on pulse-chase studies, exhibits turnover possibly to xylans with less substitution via loss of the arabinosyl and glucuronosyl linkages.

  相似文献   

4.
The partial purification and characterization of cell wall polysaccharides isolated from suspension-cultured Douglas fir (Pseudotsuga menziesii) cells are described. Extraction of isolated cell walls with 1.0 m LiCl solubilized pectic polysaccharides with glycosyl-linkage compositions similar to those of rhamnogalacturonans I and II, pectic polysaccharides isolated from walls of suspension-cultured sycamore cells. Treatment of LiCl-extracted Douglas fir walls with an endo-α-1,4-polygalacturonase released only small, additional amounts of pectic polysaccharide, which had a glycosyl-linkage composition similar to that of rhamnogalacturonan I. Xyloglucan oligosaccharides were released from the endo-α-1,4-polygalacturonase-treated walls by treatment with an endo-β-1,4-glucanase. These oligosaccharides included hepta- and nonasaccharides similar or identical to those released from sycamore cell walls by the same enzyme, and structurally related octa- and decasaccharides similar to those isolated from various angiosperms. Finally, additional xyloglucan and small amounts of xylan were extracted from the endo-β-1,4-glucanase-treated walls by 0.5 n NaOH. The xylan resembled that extracted by NaOH from dicot cell walls in that it contained 2,4- but not 3,4-linked xylosyl residues. In this study, a total of 15% of the cell wall was isolated as pectic material, 10% as xyloglucan, and less than 1% as xylan. The noncellulosic polysaccharides accounted for 26% of the cell walls, cellulose for 23%, protein for 34%, and ash for 5%, for a total of 88% of the cell wall. The cell walls of Douglas fir were more similar to dicot (sycamore) cell walls than to those of graminaceous monocots, because they had a predominance of xyloglucan over xylan as the principle hemicellulose and because they possessed relatively large amounts of rhamnogalacturonan-like pectic polysaccharides.  相似文献   

5.
Xylan-debranching enzymes facilitate the complete hydrolysis of xylan and can be used to alter xylan chemistry. Here, the family GH62 α-l-arabinofuranosidase from Streptomyces thermoviolaceus (SthAbf62A) was shown to have a half-life of 60 min at 60°C and the ability to cleave α-1,3 l-arabinofuranose (l-Araf) from singly substituted xylopyranosyl (Xylp) backbone residues in wheat arabinoxylan; low levels of activity on arabinan as well as 4-nitrophenyl α-l-arabinofuranoside were also detected. After selective removal of α-1,3 l-Araf substituents from disubstituted Xylp residues present in wheat arabinoxylan, SthAbf62A could also cleave the remaining α-1,2 l-Araf substituents, confirming the ability of SthAbf62A to remove α-l-Araf residues that are (1→2) and (1→3) linked to monosubstituted β-d-Xylp sugars. Three-dimensional structures of SthAbf62A and its complex with xylotetraose and l-arabinose confirmed a five-bladed β-propeller fold and revealed a molecular Velcro in blade V between the β1 and β21 strands, a disulfide bond between Cys27 and Cys297, and a calcium ion coordinated in the central channel of the fold. The enzyme-arabinose complex structure further revealed a narrow and seemingly rigid l-arabinose binding pocket situated at the center of one side of the β propeller, which stabilized the arabinofuranosyl substituent through several hydrogen-bonding and hydrophobic interactions. The predicted catalytic amino acids were oriented toward this binding pocket, and the catalytic essentiality of Asp53 and Glu213 was confirmed by site-specific mutagenesis. Complex structures with xylotetraose revealed a shallow cleft for xylan backbone binding that is open at both ends and comprises multiple binding subsites above and flanking the l-arabinose binding pocket.  相似文献   

6.
Hoson T  Nevins DJ 《Plant physiology》1989,90(4):1353-1358
Antiserum was raised against the Avena sativa L. caryopsis β-d-glucan fraction with an average molecular weight of 1.5 × 104. Polyclonal antibodies recovered from the serum after Protein A-Sepharose column chromatography precipitated when cross-reacted with high molecular weight (1→3), (1→4)-β-d-glucans. These antibodies were effective in suppression of cell wall autohydrolytic reactions and auxin-induced decreases in noncellulosic glucose content of the cell wall of maize (Zea mays L.) coleoptiles. The results indicate antibody-mediated interference with in situ β-d-glucan degradation. The antibodies at a concentration of 200 micrograms per milliliter also suppress auxin-induced elongation by about 40% and cell wall loosening (measured by the minimum stress-relaxation time of the segments) of Zea coleoptiles. The suppression of elongation by antibodies was imposed without a lag period. Auxin-induced elongation, cell wall loosening, and chemical changes in the cell walls were near the levels of control tissues when segments were subjected to antibody preparation precipitated by a pretreatment with Avena caryopsis β-d-glucans. These results support the idea that the degradation of (1→3), (1→4)-β-d-glucans by cell wall enzymes is associated with the cell wall loosening responsible for auxin-induced elongation.  相似文献   

7.
The growth of corn (Zea mays) roots and barley (Hordeum vulgare) coleoptiles is sensitive to the presence of external d-glucosamine and d-galactose. In order to investigate this effect, tissues were fed the radioactive monosaccharides at concentrations that ranged from those that were strongly inhibitory to those that had little influence on growth. At low concentrations, d-glucosamine is converted to uridine diphosphate-N-acetyl-d-glucosamine, phosphate esters of N-acetylglucosamine, and free N-acetylglucosamine. As the external concentrations were increased, the pool levels of each of these metabolites rose several fold; and, in corn roots, two unidentified compounds, which had not been detected previously, began to accumulate in the tissues. The major products of d-galactose metabolism were uridine diphosphate-d-galactose and d-galactose 1-phosphate at all the concentrations tested. Both these compounds showed a marked increase as the external galactose concentrations were raised to inhibitory levels. The experiments indicate that efficient pathways exist in plants for the metabolism of d-glucosamine and d-galactose. These pathways, however, do not appear to be under strict control, so that metabolites accumulate in unusually high amounts and presumably interfere competitively with normal carbohydrate metabolism.  相似文献   

8.
Isolation of active mitochondria from tomato fruit   总被引:2,自引:2,他引:0       下载免费PDF全文
An improved method for isolating mitochondria from tomato fruit (Lycopersicon esculentum Mill.) is described. The fruit is chilled, and the tissue of the fruit wall cut by hand into very thin slices with a razor blade while immersed in a buffer containing 0.4 m sucrose, 2 mm MgCl2, 8 mm EDTA, 4 mm cysteine, 10 mm KCl, 0.5 mg per ml bovine serum albumin 50 mm tris-HCl, pH 7.6. The pH is monitored and kept within the range of 7.0 to 7.2 by dropwise addition of 1 n KOH during cutting. The tissue is strained through 8 layers of cheesecloth and centrifuged at 2000 × g for 15 minutes. The supernatant is then centrifuged at 11,000 × g for 20 minutes, and the sediment is washed once with a medium containing 0.4 m sucrose, 10 mm KCl, 1 mm MgCl2, 10 mm tris-HCl, 10 mm KH2PO4 and bovine serum albumin (0.5 mg per ml), pH 7.2. Electron microscope studies show that this method gives homogeneous, relatively intact mitochondria; they have a higher respiratory control ratio than those reported by other workers. The method was also tested successfully on fruits of cantaloupe and `Honey Dew' melon.  相似文献   

9.
10.
Seven differently linked glycosyl residues have been found to be glycosidically linked to O-4 of the branched 2,4-linked l-rhamnosyl residues contained in the rhamnosyl and galacturonosyl backbone of the cell wall pectic polysaccharide rhamnogalacturonan I. These seven glycosyl residues are, therefore, the first residues of at least seven different side chains attached to the rhamnogalacturonan backbone. These first side chain glycosyl residues are 5-linked l-arabinofuranosyl and terminal 3-, 4-, 6-, 2,6-, and 3,6-linked d-galactopyranosyl residues. The existence of at least seven different side chains in rhamnogalacturonan I indicates that rhamnogalacturonan I is either an exceedingly complex polysaccharide or that rhamnogalacturonan I is a family of polysaccharides with similar or identical rhamnogalacturonan backbones substituted with different side chains.  相似文献   

11.
Hemicelluloses of cell walls of a proso millet cell suspension culture   总被引:1,自引:1,他引:0  
Cell wall composition of a stable suspension of proso millet (Panicum miliaceum L. cv Abarr) cells is similar to those of tissues and cell suspensions of other graminaceous species. Extraction of hemicelluloses with step-wise increasing concentrations of alkali yields materials that, like those of embryonal cells of maize coleoptiles, comprise mostly glucuronoarabinoxylan, xyloglucan, and small amounts of (1-3),(1-4)-β-d-glucan. As in the walls of embryonal cells of the maize coleoptile, 5-arabinosyl and 3-arabinosyl comprise much higher proportions of the total hemicellulosic sugars than in walls of developed or elongated cells. Unlike cells of many dicotyledonous species, millet cells do not elongate or undergo observable differentiation during the stationary phase of culture, and consequently, their wall composition is remarkably consistent throughout the culture cycle. The proso millet cell suspension culture constitutes a reasonable model for study of cell wall biogenesis in embryonal cells of a graminaceous species, but because of marked changes in the composition of hemicelluloses in these species during cell enlargement, additional model systems should be sought.  相似文献   

12.
We cloned a Paenibacillus sp. strain E18 5.3-kb xylanolytic gene cluster that contains three open reading frames encoding two family 43 α-l-arabinofuranosidases (Abf43A and Abf43B) and one family 10 xylanase (XynBE18). The deduced amino acid sequences of Abf43A and Abf43B were at most 68% and 63% identical to those of two putative family 43 proteins from Clostridium sp. strain DL-VIII (EHI98634.1 and EHI98635.1), respectively, but were only 11% identical to each other. Recombinant Abf43A and Abf43B had similar activities at 45°C and pH 6.0 but varied in thermostabilities and substrate specificities. Abf43B was active against only 4-nitrophenyl α-l-arabinofuranoside, whereas Abf43A acted on 4-nitrophenyl α-l-arabinofuranoside, wheat arabinoxylan, 4-nitrophenyl α-d-xylopyranoside, and sugar beet arabinan. The sequential and combined effects on xylan degradation by XynBE18, Abf43A, and Abf43B were characterized. For beechwood, birchwood, and oat spelt xylans as the substrates, synergistic effects were found when XynBE18 and Abf43A or Abf43B were incubated together and when the substrates were first incubated with Abf43A or Abf43B and then with XynBE18. Further high-performance liquid chromatography (HPLC) analysis showed that the amounts of xylobiose and xylose increased sharply in the aforementioned reactions. For water-soluble wheat arabinoxylan as the substrate, Abf43A not only released arabinose but also had a synergistic effect with XynBE18. Synergy may arise as the result of removal of arabinose residues from xylans by α-l-arabinofuranosidases, which eliminates steric hindrance caused by the arabinose side chains and which allows xylanases to then degrade the xylan backbone, producing short xylooligosaccharides.  相似文献   

13.
Biological Properties of d-Amino Acid Conjugates of 2,4-D   总被引:1,自引:1,他引:0  
Some d-amino acid (glutamic acid, valine, or leucine) conjugates of 2,4-dichlorophenoxyacetic acid (2,4-D) at 10−5 molar, stimulated elongation of Avena sativa L. var Mariner coleoptile sections and growth of soybean (Glycine max. L. var Amsoy) tissue as much as did the l-amino acid conjugates at 10−6 molar. The d-methionine conjugate did not stimulate growth of soybean root callus tissue but did stimulate Avena elongation. The d-aspartic acid conjugate did not stimulate elongation of Avena coleoptiles but did stimulate growth of root callus tissue.  相似文献   

14.
The metabolism of myo-inositol-2-14C, d-glucuronate-1-14C, d-glucuronate-6-14C, and l-methionine-methyl-14C to cell wall polysaccharides was investigated in excised root-tips of 3 day old Zea mays seedlings. From myo-inositol, about one-half of incorporated label was recovered in ethanol insoluble residues. Of this label, about 90% was solubilized by treatment, first with a preparation of pectinase-EDTA, then with dilute hydrochloric acid. The only labeled constituents in these hydrolyzates were d-galacturonic acid, d-glucuronic acid, 4-O-methyl-d-glucuronic acid, d-xylose, and l-arabinose, or larger oligosaccharide fragments containing these units. Medium external to excised root-tips grown under sterile conditions in myo-inositol-2-14C contained labeled polysaccharide.  相似文献   

15.
Xyloglucans, characteristic hemicellulosic polysaccharides of plant primary walls, have been isolated from Rosa glauca suspension-cultured cells. The cell wall material was fractionated by two sequences of extraction based on solubilization of the hemicelluloses in alkaline and organic solvent systems, respectively. In both cases, only a part (about 50%) of the total xyloglucan could be extracted, the rest remaining tightly associated with cellulose and necessitating the use of acid to be solubilized. Purification of xyloglucans was effected by formation of a gel in appropriate mixtures of dimethyl sulfoxide and water. Further fractionation could be achieved on a cellulose column eluted with chaotropic solvents. This demonstrated the heterogeneity of xyloglucans in the primary cell walls. Analytical data show that all fractions are constituted with the same sugars: l-arabinose, l-fucose, d-galactose, d-xylose, and d-glucose, but their relative proportions differ, particularly the ratio of glucose to xylose which varies from 1.2 to 2 within the different xyloglucans. The structure of these hemicelluloses was established by methylation analysis and shown to consist of a (1 → 4)-linked glucan backbone which carries substituents on the O-6 of glucose. Here again, the multiple forms of xyloglucans was suggested by the various patterns of substitutions found on the different fractions. The configuration of the linkages were established by 13C nuclear magnetic resonance spectroscopy and shown to be β for the glucan backbone, α for the xylosyl and fucosyl substituents, and β for the galactosyl substituents. These configurations agree with the specific rotation of the xyloglucan.  相似文献   

16.
Fry SC  Northcote DH 《Plant physiology》1983,73(4):1055-1061
Cultured spinach (Spinacia oleracea L. cv Monstrous Viroflay) cells incorporated exogenous l-[3H]arabinose sequentially into β-l-arabinopyranose-1-phosphate, uridine diphospho-β-l-arabinopyranose, uridine diphospho-α-d-xylopyranose and (in some experiments) α-d-xylopyranose-1-phosphate. The amount of 3H in each of these compounds reached a plateau after a few minutes, and could be rapidly chased with nonradioactive l-arabinose, demonstrating rapid turnover. After a few minutes' lag, incorporation of 3H into the arabinofuranosyl, arabinopyranosyl, and xylopyranosyl residues of polysaccharides was linear with respect to time. The kinetics of labeling were compatible with UDP-β-l-arabinopyranose and UDP-α-d-xylopyranose being the immediate precursors of arabians (both the pyranose and the furanose residues) and xylans, respectively. No other radioactive nucleotides were formed; in particular, UDP-arabinofuranose was absent. There was no evidence for conversion of arabinopyranose to arabinofuranose within the polysaccharides, suggesting that this conversion occurs during polymer synthesis. The glycolipids detected showed too slow a turnover to be intermediates of pentosan synthesis.  相似文献   

17.
1. The cell walls of Bacillus stearothermophilus B65 contain glucosamine, muramic acid, alanine, α-diaminopimelic acid (Dap), glutamic acid, aspartic acid, glycine, and serine in the molecular proportions 0.60:0.64:2.30:0.85:1.00:0.11:0.13:0.31. 2. Both d- and l-alanine are present, but glutamic acid and diaminopimelic acid are present only as the d- and meso-isomers respectively. 3. The peptide fragments Ala-Dap, Dap-Ala, and Dap-Ala-Dap have been isolated from a partial acid hydrolysate of the cell walls. 4. The major products of autolysis of the cell wall were d-alanine, a peptide mixture, peptidoglycan material and a peptidoglycan–teichoic acid complex. 5. Separation of the peptide mixture into ten major peptides was achieved by DEAE-Sephadex and paper chromatography, and paper electrophoresis. 6. The structures of these peptides have been determined and they fall into four groups, the individual members of each group differing only in number or position of carboxamide substituents. 7. The structures are I, a tripeptide l-Ala–d-Glu-meso-Dap; II, a pentapeptide made up by the tripeptide (I) linked through the -amino group of its diaminopimelic acid residue to the carboxyterminal of the dipeptide meso-Dap-d-Ala; III, a heptapeptide made up by a similar linkage between the tripeptide (I) and the tetrapeptide l-Ala-d-Glu-meso-Dap-d-Ala; IV, a possible undecapeptide made up by a further tetrapeptide similarly linked to the heptapeptide (III) structure. 8. The structure of the peptidoglycan and the actions of the autolytic enzymes are discussed in terms of these peptide structures.  相似文献   

18.
A basic β-galactosidase (β-Galase) has been purified 281-fold from imbibed radish (Raphanus sativus L.) seeds by conventional purification procedures. The purified enzyme is an electrophoretically homogeneous protein consisting of a single polypeptide with an apparent molecular mass of 45 kilodaltons and pl values of 8.6 to 8.8. The enzyme was maximally active at pH 4.0 on p-nitrophenyl β-d-galactoside and β-1,3-linked galactobiose. The enzyme activity was inhibited strongly by Hg2+ and 4-chloromercuribenzoate. d-Galactono-(1→4)-lactone and d-galactal acted as potent competitive inhibitors. Using galactooligosaccharides differing in the types of linkage as the substrates, it was demonstrated that radish seed β-Galase specifically split off β-1,3- and β-1,6-linked d-galactosyl residues from the nonreducing ends, and their rates of hydrolysis increased with increasing chain lengths. Radish seed and leaf arabino-3,6-galactan-proteins were resistant to the β-galase alone but could be partially degraded by the enzyme after the treatment with a fungal α-l-arabinofuranosidase leaving some oligosaccharides consisting of d-galactose, uronic acid, l-arabinose, and other minor sugar components besides d-galactose as the main product.  相似文献   

19.
The composition of the cell wall of Fusicoccum amygdali   总被引:1,自引:1,他引:0       下载免费PDF全文
1. The cell wall of Fusicoccum amygdali consisted of polysaccharides (85%), protein (4–6%), lipid (5%) and phosphorus (0.1%). 2. The main carbohydrate constituent was d-glucose; smaller amounts of d-glucosamine, d-galactose, d-mannose, l-rhamnose, xylose and arabinose were also identified, and 16 common amino acids were detected. 3. Chitin, which accounted for most of the cell-wall glucosamine, was isolated in an undegraded form by an enzymic method. Chitosan was not detected, but traces of glucosamine were found in alkali-soluble and water-soluble fractions. 4. Cell walls were stained dark blue by iodine and were attacked by α-amylase, with liberation of glucose, maltose and maltotriose, indicating the existence of chains of α-(1→4)-linked glucopyranose residues. 5. Glucose and gentiobiose were liberated from cell walls by the action of an exo-β-(1→3)-glucanase, giving evidence for both β-(1→3)- and β-(1→6)-glucopyranose linkages. 6. Incubation of cell walls with Helix pomatia digestive enzymes released glucose, N-acetyl-d-glucosamine and a non-diffusible fraction, containing most of the cell-wall galactose, mannose and rhamnose. Part of this fraction was released by incubating cell walls with Pronase; acid hydrolysis yielded galactose 6-phosphate and small amounts of mannose 6-phosphate and glucose 6-phosphate as well as other materials. Extracellular polysaccharides of a similar nature were isolated and may be formed by the action of lytic enzymes on the cell wall. 7. About 30% of the cell wall was resistant to the action of the H. pomatia digestive enzymes; the resistant fraction was shown to be a predominantly α-(1→3)-glucan. 8. Fractionation of the cell-wall complex with 1m-sodium hydroxide gave three principal glucan fractions: fraction BB had [α]D +236° (in 1m-sodium hydroxide) and showed two components on sedimentation analysis; fraction AA2 had [α]D −71° (in 1m-sodium hydroxide) and contained predominantly β-linkages; fraction AA1 had [α]D +40° (in 1m-sodium hydroxide) and may contain both α- and β-linkages.  相似文献   

20.
We present the results of surveys of diversity in sets of >40 X-linked and autosomal loci in samples from natural populations of Drosophila miranda and D. pseudoobscura, together with their sequence divergence from D. affinis. Mean silent site diversity in D. miranda is approximately one-quarter of that in D. pseudoobscura; mean X-linked silent diversity is about three-quarters of that for the autosomes in both species. Estimates of the distribution of selection coefficients against heterozygous, deleterious nonsynonymous mutations from two different methods suggest a wide distribution, with coefficients of variation greater than one, and with the average segregating amino acid mutation being subject to only very weak selection. Only a small fraction of new amino acid mutations behave as effectively neutral, however. A large fraction of amino acid differences between D. pseudoobscura and D. affinis appear to have been fixed by positive natural selection, using three different methods of estimation; estimates between D. miranda and D. affinis are more equivocal. Sources of bias in the estimates, especially those arising from selection on synonymous mutations and from the choice of genes, are discussed and corrections for these applied. Overall, the results show that both purifying selection and positive selection on nonsynonymous mutations are pervasive.SURVEYS of DNA sequence diversity and divergence are shedding light on a number of questions in evolutionary genetics (for recent reviews, see Akey 2009; Sella et al. 2009). Two of the most important questions of this kind concern the distribution of selection coefficients against deleterious mutations affecting protein sequences and the proportion of amino acid sequence differences between related species that have been fixed by positive selection. Several different methods have been proposed for studying each of these questions, using different features of data on polymorphism and divergence at nonsynonymous and silent sites.For example, the parameters of the distribution of selection coefficients against deleterious amino acid mutations have been estimated by contrasting the numbers of nonsynonymous and silent within-species polymorphisms and fixed differences between species (Sawyer and Hartl 1992; Bustamante et al. 2002; Piganeau and Eyre-Walker 2003; Sawyer et al. 2007); by fitting the frequency spectra of nonsynonymous and silent variants to models of selection, mutation, and drift (Akashi 1999; Eyre-Walker et al. 2006; Keightley and Eyre-Walker 2007; Kryukov et al. 2007; Boyko et al. 2008; Eyre-Walker and Keightley 2009); or by comparing levels of nonsynonymous and silent diversities between species with different population sizes (Loewe and Charlesworth 2006; Loewe et al. 2006). The results of these different approaches generally agree in suggesting that there is a wide distribution of selection coefficients against nonsynonymous mutations and that the mean selection coefficient against heterozygous carriers of such mutations is very small. The results imply that a typical individual from a human population carries several hundred weakly deleterious mutations (Eyre-Walker et al. 2006; Kryukov et al. 2007; Boyko et al. 2008); for a typical Drosophila population, with its much higher level of variability, the number is probably an order of magnitude greater (Loewe et al. 2006; Keightley and Eyre-Walker 2007).The presence of this large load of slightly deleterious mutations in human and natural populations, most of which are held at low frequencies by natural selection, has many implications. From the point of view of understanding human genetic disease, it means that we have to face the likelihood that susceptibility to a disease can be influenced by variants at many loci, each with small effects (Kryukov et al. 2007). The pervasive presence of deleterious mutations throughout the genome contributes to inbreeding depression (Charlesworth and Willis 2009) and may mean that the effective population size is reduced by background selection effects, even in regions of the genome with normal levels of genetic recombination (Loewe and Charlesworth 2007). Their presence may contribute so strongly to Hill–Robertson effects (Hill and Robertson 1966; Felsenstein 1974) that they cause severely reduced levels of diversity and adaptation in low-recombination regions of the genome (Charlesworth et al. 2010) and create a selective advantage to maintaining nonzero levels of recombination (Keightley and Otto 2006; Charlesworth et al. 2010). In addition, having an estimate of the distribution of selection coefficients against deleterious nonsynonymous mutations allows their contribution to between-species divergence to be predicted, providing a way of estimating the fraction of fixed nonsynonymous differences caused by positive selection (Loewe et al. 2006; Boyko et al. 2008; Eyre-Walker and Keightley 2009).It is thus important to collect data that shed light on the properties of selection against nonsynonymous mutations in a wide range of systems and also to compare the results from different methods of estimation, since they are subject to different sources of difficulty and biases. In a previous study, we proposed the use of a comparison between two related species with different effective population sizes for this purpose (Loewe and Charlesworth 2006; Loewe et al. 2006), using Drosophila miranda and D. pseudoobscura as material. These are well suited for this type of study, as they are closely related, live together in similar habitats, and yet have very different levels of silent nucleotide diversity, indicating different effective population sizes (Ne). This study was hampered by our inability to compare the same set of loci across the two species and by the small number of loci that could be used. We here present the results of a much larger study of DNA variation at X-linked and autosomal loci for these two species, using D. affinis as a basis for estimating divergence. We compare the results, applying the method of Loewe et al. (2006) with that of Eyre-Walker and Keightley (2009) for estimating the distribution of deleterious selection coefficients and with McDonald–Kreitman test-based methods for estimating the proportion of nonsynonymous differences fixed by positive selection. While broadly confirming the conclusions from earlier studies, we note some possible sources of bias and describe methods for minimizing their effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号