共查询到11条相似文献,搜索用时 6 毫秒
1.
Dimitrakopoulou A Dendrinou-Samara C Pantazaki AA Alexiou M Nordlander E Kessissoglou DP 《Journal of inorganic biochemistry》2008,102(4):618-628
Reaction of Mn(II) with phenoxyalkanoic acids and di-2-pyridyl ketone oxime (Hpko) leads to neutral tetranuclear complexes of the general formula Mn(4)(O)(pko)(4)(phenoxyalkanoato)(4) (phenoxyalkanoic acids: H-mcpa=2-methyl-4-chloro-phenoxy-acetic acid, H-2,4,5-T=2,4,5-trichloro-phenoxy-acetic acid or H3,4-D=3,4-dichloro-phenoxy-acetic acid). The compounds were synthesized by adding di-2-pyridyl ketone oxime to MnCl(2) in the presence of the sodium salts of the alkanoic acids in methanol. The crystal structure of Mn(4)(II/II/II/IV)(O)(pko)(4)(2,4,5-T)(4).2.5CH(3)OH.0.25H(2)O 1 shows that the complex consists of a [Mn(4)(mu(4)-O)](8+) core with a Mn(IV) and 3 Mn(II) ions in octahedral environment and a mu(4)-O atom bridging the four manganese ions. Spectroscopic studies of the interaction of these tetranuclear clusters with DNA showed that these compounds bind to dsDNA. The binding strength of the Mn(4)(II/II/II/IV)(O)(pko)(4)(2,4,5-T)(4) complex for calf thymus DNA is equal to 1.1x10(4)M(-1). Among the deoxyribonucleotides they bind preferentially to deoxyguanylic acid (dGMP). Competitive studies with ethidium bromide (EthBr) showed that the Mn(4)(II/II/II/IV)(O)(pko)(4)(2,4,5-T)(4) complex exhibited the ability to displace the DNA-bound EthBr indicating that the complex binds to DNA via intercalation in strong competition with EthBr for the intercalative binding site. Additionally, DNA electrophoretic mobility experiments showed that all three complexes, at low cluster concentration, are obviously capable of binding to pDNA causing its cleavage (relaxation) at physiological pH and temperature. At higher cluster concentration, catenated dimer forms of pDNA was formed. 相似文献
2.
Melina B. Rossi 《Inorganica chimica acta》2011,374(1):334-340
We report here the synthesis and properties of a family of mixed-valence cyanide-bridged dinuclear complex ions trans-[(L′L4RuII(μ-NC)FeIII(CN)5]− (with L = pyridine or 4-dimethylaminopyridine (dmap) and L′ = pyridine, 4-methoxypyridine (meopy) or 4-dimethylaminopyridine)) whose properties could be adjusted smoothly by changing the acceptor properties of the solvent and the σ donor properties of the L′ pyridine ligand. In solution these complexes exhibit an intense solvent-dependent MM′CT (RuII → FeIII) absorption in the near infrared region. Analysis of this band in different complexes and solvents suggests an enhanced interaction as the energies of the metal centers come closer. From this trend the anion trans-[(dmap)5Ru(μ-NC)Fe(CN)5]− (dmap = 4-dimethylaminopyridine) in water is expected to belong to the class II-III, but its spectral properties indicates a ground state with Ru(III)-Fe(II) character. The stabilization of this electronic isomer is probably related to the better donor properties of the hexacyanoferrate(II) moiety and its stronger interaction with water. 相似文献
3.
A new CoII/CoIII hexanuclear complex, [Co4IICo2III(dea)2(Hdea)4)(piv)4](ClO4)2·H2O 1, has been obtained by reacting cobalt(II) perchlorate, diethanolamine, and pivalic acid (H2dea = diethanolamine and piv = pivalato anion). The cobalt ions are held together by four μ3 and four μ2 alkoxo bridges as well as by four syn-syn carboxylato groups. The hexanuclear motif contains four Co(II) and two Co(III) ions. The {CoII4CoIII2(μ2-O)4(μ3-O)4} core can be described as a four face-sharing monovacant and bivacant distorted heterocubane units. The cobalt(III) ions are hexacoordinated. Two of the cobalt(II) are hexacoordinated, while the two others are pentacoordinated with a bipyramidal stereochemistry. The magnetic properties of 1 have been investigated in the temperature range 1.9-300 K. Compound 1 exhibits an overall antiferromagnetic behaviour with a ground singlet spin state. 相似文献
4.
The reaction of Mo2(μ-O2CCH3)4 with 2-pyridyl(diisopropylphosphino)methane (NP) affords the dimolybdenum(V) complex Mo2(μ-O)2O2Cl2(η2-NP)2 (1). Complexes of the related 2-pyridylbis(diisopropylphosphino)methane ligand (NP2) have been isolated, namely, a mixed bromo/chloro complex of composition PdBr1.09Cl0.91(η2-NP2) (2) and the dicopper(I) complex [Cu2(μ-η3-NP2)2](BF4)2 (3). The structures of 1, 2 and 3 have been established by X-ray crystallography. 相似文献
5.
In order to systematically perform an experimental and theoretical study on DNA binding and photocleavage properties of transition
metal complexes of the type [M(L)2(L1)](PF6)n · xH2O (where M = Co(III) or Ni(II), L = 1,10-phenanthroline or 2.2′ bipryidine, L1 = Thiophene [2,3-b] quinoline (qt), n = 3 or 2 and x = 5 or 2) have been synthesized and characterized by elemental analysis, IR, 1H NMR, UV and magnetic susceptibility data. The DNA-binding properties of these complexes have been investigated with UV-Vis,
viscosity measurements, thermal denaturation and cyclic voltametric studies. It is experimentally found that all the complexes
are bound to DNA via intercalation in the order [Co(bpy)2(qt)](PF6)3 > [Co(phen)2(qt)](PF6)3 > [Ni(phen)2(qt)](PF6)2 > [Ni(bpy)2(qt)](PF6)2. The photocleavage studies with pUC19 DNA shows that all these complexes promoted the conversion of SC form to NC form in
absence of ‘inhibitors’. 相似文献
6.
The binuclear mixed valence copper(I/II) compound [CuI(CN)3CuII(tn)2] (1) (tn = propane-1,3-diamine) and its acetonitrile adduct [CuI(CN)3CuII(tn)2] · 2MeCN (2) have been synthesized. Complex 1 crystallizes triclinic, space group , a = 8.117(2) Å, b = 8.389(2) Å, c = 11.920(2) Å, α = 108.728(3)°, β = 100.024(3)°, γ = 104.888(4)°, Z = 2, and compound 2 monoclinic, space group P21/m, a = 8.752(2) Å, b = 13.243(3) Å, c = 9.549(2) Å, β = 114.678(4)°, Z = 2. In both crystal structures, the binuclear [CuI(CN)3CuII(tn)2] complex with slightly different bonding geometries is formed. One of the three nitrogen atoms of a CuI(CN)3 moiety is coordinated to Cu(II) at the apex of a square-pyramid with two chelating ligands tn on its base. The shortest intramolecular CuII?CuII distance in 1 is 5.640(7) Å. The EPR behaviour of 1 has been investigated at room temperature and at 77 K. The magnetic properties were measured in the temperature range 1.8-300 K. 相似文献
7.
8.
S. -J. Yin T. -C. Cheng C. -P. Chang Y. -J. Chen Y. -C. Chao H. -S. Tang T. -M. Chang C. -W. Wu 《Biochemical genetics》1988,26(5-6):343-360
Isozyme phenotypes of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) from human gastroendoscopic as well as
surgical gastric biopsies were determined by starch gel electrophoresis and agarose isoelectric focusing. γγ ADH isozymes
were expressed predominantly in the mucosal layer of the stomach, whereas ββ isozymes were in the muscular layer. In the 56
gastroendoscopic mucosal biopsies examined, the homozygous ADH3 1-1 phenotype was found in 75% of the samples, and the heterozygous ADH3 2-1 phenotype in 25%. Accordingly, the gene frequencies of the allelesADH
3
1
andADH
3
2
were calculated to be 0.88 and 0.12, respectively. Using a modified agarose isoelectric focusing procedure, gastric ALDH
I, ALDH II, and up to five ALDH III forms could be clearly resolved. The ALDH III isozymes accounted for more than 80% of
the total ALDH activities in gastric mucosa and exhibitedK
m values in the millimolar range for propionaldehyde atpH 9.0. Forty-five percent of the 55 gastroendoscopic biopsies studied lacked ALDH I isozyme. The complex gastric ALDH III
isozyme phenotypes seen in these biopsies fall into three patterns. They can be interpreted by a genetic hypothesis, based
on a dimeric molecule, in which there are two separate genes,ALDH
3a andALDH
3b, with theALDH
3b locus exhibiting polymorphism. The homozygous phenotypes ALDH3b 1-1 and ALDH3b 2-2 were found to be 4 and 76%, respectively, and the heterozygous ALDH3b 2-1 phenotype 20%, of the total. Therefore, the allele frequencies forALDH
3b
1
andALDH
3b
2
were calculated to be 0.14 and 0.86, respectively. Several lines of biochemical evidence consistent with this genetic model
are discussed.
This work was supported by grants from the National Science Council, Republic of China, and the Institute of Biomedical Sciences,
Academia Sinica. 相似文献
9.
Four new mononuclear iron(III) complexes with the substituted-salicylaldimine ligands, [Fe(L1)(TCC)] (1), [Fe(L2)(TBC)] (2), [Fe(L3)(TBC)] (3) and [Fe(L4)(TCC)](CH3CN) (4) (HL1 = N′-(5-OH-salicylaldimine)-diethylenetriamine, HL2 = (N′-(5-Cl-salicylaldimine)-diethylenetriamine, HL3 N′-(5-Br-salicyl-aldimine)-dipropylenetriamine, HL4 = (N′-3,5-Br-salicylaldimine)-dipropylenetriamine, H2TCC = tetrachlorocatechol, and H2TBC = tetrabromocatechol), were prepared and characterized by XRD, EPR, and Mössbauer spectroscopy. The coordination sphere of the Fe(III) in complexes 1-4 is a distorted octahedral with N3O3 donors set which constructed by the Schiff-base ligands and the catecholate substrates of TBC or TCC. The in situ prepared Fe(III) complexes [Fe(L1)Cl2], [Fe(L2)Cl2], [Fe(L3)(Cl2)], and [Fe(L4)Cl2] in absence of TBC or TCC show a high catecholase-like activity for the oxidation of 3,5-DTBC to the corresponding quinone 3,5-DTBQ. 相似文献
10.
A method is presented to predict overall conformations of protein-DNA complexes on the basis of the known three-dimensional structures of the proteins. The method is restricted to proteins with a common twofold symmetry axis, which show only minor conformational changes upon binding to DNA. The method uses a numerical finite difference solution of the linearized Poisson-Boltzmann equation and subsequent energy minimization cycles. Structural parameters—the rotation angle of the DNA relative to the protein around the common symmetry axis, the protein-DNA distance, and intermolecular hydrogen-bonding contacts—are presented for two test cases, DNA bound to CAP (catabolite gene activator protein) and to the Cro-repressor of bacteriophage 434. The DNA curvature in the starting model of the docking procedure was chosen as a smoothed approximation of the conformation found in the X-ray structures of these complexes. The method is further used to predict the unknown structure of the complex between the factor for inversion stimulation (FIS) and DNA, which is bent upon binding to FIS. In contrast to the test cases, the unknown curvature of the starting model is derived from a calibration of electrostatic precalculations for different proteins according to crystallographically observed DNA bending. The results of the modeling are in good accordance with the experimentally observed overall structure of protein-DNA complexes for the two test cases; for FIS, they correspond to several of the experimentally proposed protein-DNA contacts. © 1996 Wiley-Liss, Inc. 相似文献
11.
Vibrational spectroscopic data were collected on the salt [C5H6N]2[Cl3FeOFeCl3] . C5H5N, which has previously been structurally characterized by X-ray crystallography. The modes associated with the oxo bridge were identified by experiments on the 18O-containing species. Spectra for the mu-16O complex contain Raman bands at 870, 458, and 203 cm-1 that shift to 826, 440, and 198 cm-1 in the mu-18O complex. These are respectively assigned to the asymmetric, symmetric, and angle deformations of the bent Fe-O-Fe moiety. A normal mode vibration analysis based on a simple valence force field for the Fe-O-Fe portion of the molecule provides surprisingly good agreement with these experimental frequencies and their assignments. The vibrational data for this simple inorganic complex confirm the assignment of a resonance Raman band around 500 cm-1 in the oxygen-carrying protein hemerythrin and enzyme ribonucleotide reductase as the symmetric stretch of an oxo bridge between two iron(III) centers. 相似文献