首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of the complex [H2B(pz)2]2Cd has been determined: orthorhombic, Pbca, A = 16.052(3), B = 13.935(3), C = 14.974(4) Å, V = 3349.4(13) Å3, Z = 8, R(F) = 3.61%. It is the first structurally characterized non-porphyrin CdN4 complex. It is monomeric in the solid state with a pseudotetrahedral geometry about the cadmium atom. The N---Cd---N angles are distorted by the approximate 93° bite angle of the ligand; the interligand N---Cd---N angles also are distorted, ranging from 106.9 to 131.7°. These distortions are the result of intermolecular packing forces and are facilitated by the spherical set of valence orbitals for Cd2+.  相似文献   

2.
The use of the bond valence sum to assign correctly the oxidation state of a metal ion in a complex is discussed. Cerium complexes are used as examples since the oxidation state of Ce has been incorrectly assigned in a surprising number of publications. The recommended R0 values for Ce(III)-O of 2.118 Å, Ce(IV)-O of 2.070 Å, Ce(III)-N of 2.251 Å, and for Ce(IV)-N of 2.202 Å were derived from analyses of homoleptic Ce-O, Ce-N, and heteroleptic Ce-O and -N complexes. These R0 values can be used to assign correctly the oxidation state of Ce in complexes containing any combination of Ce-O or Ce-N bonds. An incorrect oxidation state assignment usually arises when the oxidation state of Ce or Pr in the product is assumed to be same as that of the starting Ce or Pr compound, but an oxidation or reduction has occurred. Problems with two related Sn complexes may have arisen because of a mix up in the starting materials.  相似文献   

3.
Gas phase photoelectron spectroscopy (PES) is used to investigate the bonding and electronic structure in (fv) [M(CO)2]2 (fv = fulvalene, η55-C10H82−; M = Co, Rh). The results for these bimetallic complexes are also compared to those for the analogous monometallic complexes CpM(CO)2 (Cp = η5−C5H5; M = Co, Rh) which have been reported previously. The low valence ionization patterns observed for CpCo(CO)2 and (fv)[Co(CO)2]2 are very similar, indicating that there is little electronic interaction between the two metals of the dicobalt complex. The spectrum of (fv)[Rh(CO)2]2 also is very similar to the spectrum of CpRh(CO)2, except that the first metal ionizations in the bimetallic rhodium compound show a significant splitting (0.45 eV). This splitting is due to electronic interaction between the two metal centers which occurs via communication through the fulvalene π system. The differences in electronic structure are compared to the differences in electrochemical behavior of the Co and Rh fulvalene complexes.  相似文献   

4.
A new CoII/CoIII hexanuclear complex, [Co4IICo2III(dea)2(Hdea)4)(piv)4](ClO4)2·H2O 1, has been obtained by reacting cobalt(II) perchlorate, diethanolamine, and pivalic acid (H2dea = diethanolamine and piv = pivalato anion). The cobalt ions are held together by four μ3 and four μ2 alkoxo bridges as well as by four syn-syn carboxylato groups. The hexanuclear motif contains four Co(II) and two Co(III) ions. The {CoII4CoIII22-O)43-O)4} core can be described as a four face-sharing monovacant and bivacant distorted heterocubane units. The cobalt(III) ions are hexacoordinated. Two of the cobalt(II) are hexacoordinated, while the two others are pentacoordinated with a bipyramidal stereochemistry. The magnetic properties of 1 have been investigated in the temperature range 1.9-300 K. Compound 1 exhibits an overall antiferromagnetic behaviour with a ground singlet spin state.  相似文献   

5.
The preparation and structural characterization of {Ru3(CO)11}2(1,4-bis(diphenylphosphino)benzene), a modified synthesis of 1,4-bis(diphenylphosphino)benzene, and the structural characterization of {Ru3(CO)11}2(bis(diphenylphosphino)ethane) are reported. In both compounds two metal cluster units are connected through ditertiary-phosphine ligands. Both molecules consist of centrosymmetric units in which the diphosphine ligands are largely covered by the triangular ruthenium clusters. No direct interaction between the two cluster units occurs within individual molecules. Molecular packing in the solid state is dominated by interactions between sets of carbon monoxide ligands in motifs that were previously identified in the solid state structure of the parent cluster, Ru3(CO)12.  相似文献   

6.
The reactions of monophosphate (Mp) and triphosphate (Tp) with the protonated hexaaza macrocyclic ligand 3,6,9,16,19,22-hexaaza-27,28-dioxatricyclo[22.2.1.111,14]octacosa-1 (26),11,13,24-tetraene (BFBD) and its mono- and dinuclear copper(II) complexes, have been investigated. Potentiometric studies show that Tp is bound to protonated BFBD and Cu(II) complexes of this ligand more strongly than is MP. The crystal structures of two new binary complexes of Mp and Tp with this ligand are reported. Both of them crystallize in the triclinic system with space group P1. The binary complex 1 has lattice parameters a = 12.630, b = 13.152, c = 12.561 Å, = 96.359(1), β = 98.02(2), γ = 117.85(1)° and Z = 2. It contains the BFBD-Mp binary cation. The binary complex 2 has lattice parameters a = 12.717(4), b = 14.331(7), c = 19.687(7) Å, = 96.66(3), β = 107.68(2), γ = 93.11(3)° and Z = 2. It consists of the BFBD-Tp cation and the BFBD-2Tp anion. Electrostatic attractive forces and hydrogen bonds play major roles in the formation of these binary complexes.  相似文献   

7.
Electrospray mass spectrometry (ESMS) has been used to investigate the relative ligand properties of the triphenylpnictogen ligands EPh3 (E=P, As, Sb and Bi) towards silver(I) and copper(I) ions. It is found that the preferred species formed increase in coordination number from two for PPh3 in [Ag(PPh3)2]+ to four for SbPh3 in [Ag(SbPh3)4]+, consistent with the decreasing donor ligand ability and increasing metal –E bond length in the series PPh3–AsPh3–SbPh3. With BiPh3, the spectra were complex, suggesting considerable decomposition. These studies also suggest that silver(I) and copper(I) ions will have widespread utility in the characterisation of tertiary stibine ligands, as has been described previously for phosphines and arsines. These studies demonstrate the power of the ESMS technique in determining the donor properties of a related series of ligands, and this information is of significance in coordination chemistry.  相似文献   

8.
Me3Si-X reagents react to completion at 25°C in a short time to convert Ir(H)2FL2 (L=PtBu2Ph) to Ir(H)2XL2. This involves formation of Ir-O, Ir-N, Ir-I, Ir-S and Ir-C(sp) bonds. Products include some η2-X ligands such as carboxylate and acetamide, NHC(O)CH3. The acetamide is shown to be η2 in the solid state and in solution, but readily rearranges, by a transition state with Ir-O bond cleavage, to effect site exchange of the two inequivalent hydrides. The same synthetic approach succeeds for the more crowded metallated species and these reactions arc shown to fail when F is replaced by Cl in the iridium reagent. Unsaturation at Ir is suggested to be central to the mechanism of these F/X transposition reactions.  相似文献   

9.
The emission spectral band shapes of several polypyridine-ligand (PP) bridged bis-ruthenium(II) complexes imply that Ru(II)/Ru(III) electronic coupling is weaker in their lowest energy metal to ligand charge transfer (MLCT) excited states than in their corresponding mixed valence ground states. In general, the amplitudes of the vibronic contributions to emission band shapes decrease markedly with the excited state-ground state energy differences, and it is expected that complexes with degenerate, or mixed valence excited states will have very weak vibronic side bands if configurational mixing of the degenerate MLCT excited states is substantial. However, the bimetallic PP-bridged ruthenium complexes emit at significantly lower energy than their monometallic analogs, but the vibronic contributions to their 77 K emission spectra are very similar to those of their monometallic complexes analogs. This indicates that the mixed valence excited states of the bimetallic complexes are electronically localized.  相似文献   

10.
Complexes of the type [M(bssdh)]Cl and [M(dspdh)]Cl, where M = Co(II), Ni(II), Cu(II), Zn(II) and Cd(II); Hbssdh = benzil salicylaldehyde succinic acid dihydrazone, Hdspdh = diacetyl salicylaldehyde phthalic acid dihydrazone have been synthesized and characterized with the help of elemental analyses, electrical conductance, magnetic susceptibility measurements, electronic, ESR and IR spectra and X–ray diffraction studies. Magnetic moment values and electronic spectral transitions indicate a spin free octahedral structure for Co(II), Ni(II) and Cu(II) complexes. IR spectral studies suggest that both the ligands behave as monobasic hexadentate ligands coordinating through three > C = O, two > C = N– and a phenolate group to the metal. ESR spectra of Cu(II) complexes are axial type and suggest as the ground state. X–ray powder diffraction parameters for [Co(bssdh)]Cl and [Co(dspdh)]Cl complexes correspond to an orthorhombic crystal lattice. The ligands as well as their metal complexes show a significant antifungal and antibacterial activity against various fungi and bacteria. The metal complexes are more active than the parent ligands.  相似文献   

11.
 Metal clusters are ubiquitously used as electron-transfer (ET) agents in biology. Their presence raises the question of how the polynuclear nature of these systems influences ET. In an earlier study, a theoretical model was formulated to describe ET from a mixed-valence dimer to a diamagnetic acceptor. In the present work, this approach is generalized to analyze the effect of valence delocalization on the rate of ET in a larger class of donor–acceptor systems. Our results indicate that the effect of valence delocalization on ET rate depends on whether the mixed-valence (MV) state occurs in the initial or final state of the reaction and on the reaction regime (normal vs inverted) as defined by Marcus. The analysis provides a possible correlation between the rate constant for ET from CuA to heme a and the difference in the valence delocalization of the CuA centers in wild-type and mutant species of cytochrome c oxidase. We have analyzed the dependence of the electron flow through extended circuits containing MV clusters on valence delocalization. A significant effect was found in the fast ET regime where the capacity of the circuit to conduct electrons is optimally used. The possibility of controlling electron conduction by tuning valence delocalization is briefly addressed. Received: 16 July 1997 / Accepted: 26 November 1997  相似文献   

12.
The syntheses and structures of [Ni(H2O)6]2+[MF6]2− (M = Ti,Zr,Hf) and Ni3(py)12F6·7H2O are reported. The former three compounds are isostructural, crystallizing in the trigonal space group (No. 148) with Z = 3. The lattice parameters are a = 9.489(4), C = 9.764(7) Å, with V = 761(1) Å3 for Ti; a = 9.727(2), C = 10.051(3) Å, with V = 823.6(6) Å3 for Zr; and a = 9.724(3), C = 10.028(4)Å, with V = 821.2(8)Å3 for Hf. The structures consist of discrete [Ni(H2O)6]2+ and [MF6]2− octahedra joined by O---HF hydrogen bond Large single crystals were grown in an aqueous hydrofluoric acid solution. Ni3(py)12F6·7H2O crystallizes in the monoclinic space group I2/a (No. 15) with Z = 4. The lattice parameters are a = 16.117(4), B = 8.529(3), C = 46.220(7) Å, β = 92.46(2)°, and V = 6348(5) Å3. The structure consists of discrete Ni(py)4F2 octahedra linked through H---O---HF and H---O---HO hydrogen bonding interactions. Single c were grown from a (HF)x·pyridine/pyridine/water solution.  相似文献   

13.
Ghatak  H.  Mukhopadhyay  S.K.  Jana  T.K.  Sen  B.K.  Sen  S. 《Wetlands Ecology and Management》2004,12(3):145-155
Humic (HA) and fulvic (FA) acids isolated from mangrove sediments of Sundarban, the largest delta on earth in the estuarine phase of the river Ganges, were studied and attempts were made to characterize their binding sites by quenching of Synchronous fluorescence (SyF) bands with Fe (III) and Cu (II). A modified Stern-Volmer relationship applicable for static quenching was applied for the determination of conditional stability constants and the data were compared with those determined by potentiometric titration. In the excited state HA and FA showed different acidity constant compared to the ground state. Values of the conditional stability constant (log Kc) for Fe (III) and Cu (II) indicated that binding sites were bidentate in nature. FA were better chelators than the HA fractions. High energy binding sites of both FA & HA were occupied by Fe(III) and the low energy binding sites, mainly responsible for mobilization and immobilization of metal, were occupied by Cu(II).  相似文献   

14.
The reactions of [(H5C6)3P]2ReH6 with (CH3CN)3Cr(CO)3, (diglyme)Mo(CO)3 or (C3H7CN)3W(CO)3 led to the formation of [(H5C6)3P]2ReH6M(CO)3 (M = Cr, Mo, W) complexes. These have been characterized by IR and NMR spectroscopies, as well as elemental analyses. A single crystal X-ray diffraction study has also been carried out for the M = Cr complex as a K(18-crown-6)+ salt. The complex crystallizes as a THF monosolvate in the monoclinic space group P21/n with a = 22.323(6), B = 9.523(2), C = 27.502(5) Å, β = 104.98(2)0 and V = 5648 Å3 for Z = 4. The Re---Cr separation is 2.5745(12) Å, and the two phosphine ligands are oriented unsymmetrically. Although the hydride ligands were not found, the presence of three bridging hydrides and a dodecahedral coordination geometry about rhenium could be inferred. Low temperature 1H and 31P NMR spectroscopic studies did not reveal the low symmetry of the solid state structure.  相似文献   

15.
The synthesis in high yields and the dissociative behaviour in the solid state and in solution of the mononuclear complexes [cis-M(CO)2Cl(pyz)] (M=Rh, Ir; PYZ=pyrazine) and [fac-M(CO)3Cl2(pyz)] (M=Ru, Os) are reported. The mononuclear complexes of Rh and Ir are relatively labile with respect to pyrazine release. Particularly in the case of rhodium they generate even in the solid state the corresponding dinuclear complexes [cis-Cl(CO)2M(pyz)cis-M(CO)2Cl] (M=Rh, Ir). The 1H NMR spectra of these mononuclear Rh and Ir complexes in CHCl3 solution show, at 25 and 60 °C, respectively, a fast and reversible dissociation of metal coordinated pyrazine, which is hindered by lowering the temperature. Crystallographic aspects of [cis-Ir(CO)2Cl(pyz)] have been investigated via single crystal X-ray diffraction. The mononuclear complexes of Ru and Os are more stable. In the solid state they do not rearrange, with release of pyrazine, to generate the related dimeric complexes with pyrazine as bridge. In solution, at room temperature, they do not dissociate quickly, although a mixture of monomeric and dimeric pyrazine complexes (ratio monomer to dimer 9:1 and 15:1 for Ru and Os, respectively) is slowly formed by a process which is reverted by addition of excess pyrazine, as expected for a dissociative equilibrium.  相似文献   

16.
17.
The reaction of thiamine with K2PtIICl4 and with PtIVCl4 in the presence of excess NaSCN in aqueous solution gave thiamine salts, (H-thiamine)[Pt(SCN)4] · 3H2O (1) and (H-thiamine)[Pt(SCN)6] · H2O (2), respectively, structures of which have been determined by X-ray diffraction. The thiamine molecule adopts the usual F conformation in each salt. In 1, [Pt(SCN)4]2− ions act as large planar spacers in the crystal lattice and interact scarcely with thiamine, except for a hydrogen bonding with the terminal hydroxy O(5γ). Instead, water molecules form two types of host–guest-like interactions with the pyrimidine and the thiazolium moieties of a thiamine molecule, one being a C(2)–Hwaterpyrimidine bridge and the other being an N(4′)–Hwaterthiazolium bridge. In 2, despite the much larger ion size, octahedral [Pt(SCN)6]2− ions form a C(2)–Hanionpyrimidine bridge and an N(4′)–Hanionthiazolium bridge. An additional hydrogen bonding between the anion and the terminal O(5γ) of thiamine creates a hydrogen-bonded macrocyclic ring {thiaminium–[Pt(SCN)6]2−}2, a supramolecule.  相似文献   

18.
Two new complexes, [Cu(mamba)2] and [Mn(mamba)2] (mamba, N-(2-methylpyridine)-2-aminomethyl benzoate) were synthesized and characterized by X-ray crystallography. Whereas the [Cu(mamba)2] complex crystallizes in a monoclinic P21/c space group, the [Mn(mamba)2] complex crystallizes in a triclinic space group. The nature of the metal ion greatly influences the lattices and the molecular structures of the compounds. In the crystal lattice of the copper complex are four cocrystallized methanol solvent, which are all involved in building six strong H-bonds with the complex. However, the lattice for the manganese complex contain only one cocrystallized methanol, along with one NaClO4, that is also involved in making one H-bond with the [Mn(mamba)2] unit. Nevertheless, the sodium ion is coordinated to the ClO4, the methanol and two [Mn(mamba)2] to form a stable extended chain metal complex. Electrochemical studies indicated that both complexes undergo quasi reversible one electron reduction in acetonitrile.  相似文献   

19.
Unsymmetrical di(phosphine) ligands (dpp)2Rop (1a, b = bis(diphenylphosphino)-2-alkyl-3-oxapropane (alkyl = methyl and ethyl)) and (dpp)2oCy (1c = trans-2-diphenylphosphinocyclohexyl diphenylphosphinite) and their Pt(II) dichloride complexes, PtCl2((dpp)2mop) (2a), PtCl2((dpp)2eop) (2b) and PtCl2((dpp)2oCy) (2c), have been synthesized and characterized by NMR spectroscopy. The crystal structures of 2b and 2c show that the geometry about the platinum centers is square planar. In 2b, the metal and di(phosphine) ligand chelate ring are in a chair conformation, whereas in 2c, the chelate ring conformation is a skewed boat. Initial reaction of sodium borohydride with 2a, b, c yields the monohydride monochloride complexes PtHCl((dpp)2mop) (5a), PtHCl((dpp)2eop) (5b) and PtHCl((dpp)2oCy) (5c). At longer reaction times, fluxional dimeric species are obtained, [PtH((dpp)2mop)]2 (4a), [PtH((dpp)2eop)]2 (4b) and [PtH((dpp)2oCy)]2 (4c),and in the case of 4c two different isomers exist. The dihydride complexes PtH2((dpp)2mop) (3a), PtH2((dpp)2eop) (3b) and PtH2((dpp)2oCy) (3c), are prepared by further reaction of NaBH4 and 2. Hydrogen cycling is facile in the dihydride complexes 3a, b, c, and oxidative addition of H2 proceeds in a pairwise manner as determined by the observation of parahydrogen induced polarization (PHIP) in the 1H NMR spectra. The reductive elimination of H2 is also shown to be concerted by reaction of dihydride complexes with D2. Crystal data: 2b (C30H32Cl6OP2Pt), monoclinic, space group P21/c (No. 14), a = 13.7040(1), b = 11.3430(7), c = 21.3880(9) Å, β = 97.923(9)°, V = 3292.9(2) Å3 and Z = 4; 2c (C30H30Cl2OP2Pt), monoclinic, space group P21 (No. 4), a = 11.7360(2), b = 8.4311(2), c = 14.2789(2) Å, β = 101.290(1)°, V = 1385.52(4) Å3 and Z = 2.  相似文献   

20.
Two novel tetracopper(I) and tetrasilver(I) complexes [Cu4(atdz)6](ClO4)4·2CH3OH (1) and [Ag4(atdz)6](ClO4)4 (2), have been prepared using 2-amino-1,3,4-thiadiazole (atdz), and their crystal structures and properties have been determined. On each tetranuclear complex, two Cu or Ag atoms (M) are bridged by two atdz ligands to form a six-membered N2M2N2 framework. The two N2M2N2 frameworks are in parallel linked by another atdz ligand to provide the tetranuclear structure with a rectangular M4 core. The four Cu or Ag atoms possess a trigonal-square geometry. The two adjacent MM separations are (3.096(1) and 3.412(1) Å) and (3.316(2) and 3.658(2) Å) for 1 and 2, respectively. On both tetranuclear complexes there are two species of hydrogen bonds between the ClO4 − anions and the NH2 group of atdz ligands. It is proposed that the hydrogen bonds are related to the stabilization of the tetranuclear structure during the crystallization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号