首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main (M) group of human immunodeficiency virus type 1 (HIV-1) is responsible for the global AIDS epidemic while HIV-1 group O (outlier) and HIV type 2 are endemic only in west and central Africa. The failure of HIV-2 and especially HIV-1 group O to spread following the initial zoonotic jumps is not well understood. This study was designed to examine the relative replicative capacities between these human lentiviruses. A pairwise competition experiment was performed with peripheral blood mononuclear cells with eight HIV-2 isolates, 6 group O viruses, and 15 group M viruses of subtype A (2 viruses), B (5 viruses), C (4 viruses), D (2 viruses) and CRF01_AE (2 viruses). HIV-1 group M isolates of any subtype were typically 100-fold-more fit than group O or HIV-2 strains when competed in peripheral blood mononuclear cells from various humans. This order in replicative fitness was also observed when virus pairs were added to human dendritic cells and then cocultured with primary, quiescent T cells, which is the model for HIV-1 transmission. These results suggest that reduced replicative and transmission fitness may be contributing to the low prevalence and limited geographical spread of HIV-2 and group O HIV-1 in the human population.  相似文献   

2.
Coreceptor usage of primary human immunodeficiency virus type 1 (HIV-1) isolates varies according to biological phenotype. The chemokine receptors CCR5 and CXCR4 are the major coreceptors that, together with CD4, govern HIV-1 entry into cells. Since CXCR4 usage determines the biological phenotype for HIV-1 isolates and is more frequent in patients with immunodeficiency, it may serve as a marker for viral virulence. This possibility prompted us to study coreceptor usage by HIV-2, known to be less pathogenic than HIV-1. We tested 11 primary HIV-2 isolates for coreceptor usage in human cell lines: U87 glioma cells, stably expressing CD4 and the chemokine receptor CCR1, CCR2b, CCR3, CCR5, or CXCR4, and GHOST(3) osteosarcoma cells, coexpressing CD4 and CCR5, CXCR4, or the orphan receptor Bonzo or BOB. The indicator cells were infected by cocultivation with virus-producing peripheral blood mononuclear cells and by cell-free virus. Our results show that 10 of 11 HIV-2 isolates were able to efficiently use CCR5. In contrast, only two isolates, both from patients with advanced disease, used CXCR4 efficiently. These two isolates also promptly induced syncytia in MT-2 cells, a pattern described for HIV-1 isolates that use CXCR4. Unlike HIV-1, many of the HIV-2 isolates were promiscuous in their coreceptor usage in that they were able to use, apart from CCR5, one or more of the CCR1, CCR2b, CCR3, and BOB coreceptors. Another difference between HIV-1 and HIV-2 was that the ability to replicate in MT-2 cells appeared to be a general property of HIV-2 isolates. Based on BOB mRNA expression in MT-2 cells and the ability of our panel of HIV-2 isolates to use BOB, we suggest that HIV-2 can use BOB when entering MT-2 cells. The results indicate no obvious link between viral virulence and the ability to use a multitude of coreceptors.  相似文献   

3.
We examined the early effects of infection by CCR5-using (R5 human immunodeficiency virus [HIV]) and CXCR4-using (X4 HIV) strains of HIV type 1 (HIV-1) on chemokine production by primary human monocyte-derived macrophages (MDM). While R5 HIV, but not X4 HIV, replicated in MDM, we found that the production of the C-X-C chemokine growth-regulated oncogene alpha (GRO-alpha) was markedly stimulated by X4 HIV and, to a much lesser extent, by R5 HIV. HIV-1 gp120 engagement of CXCR4 initiated the stimulation of GRO-alpha production, an effect blocked by antibodies to CXCR4. GRO-alpha then fed back and stimulated HIV-1 replication in both MDM and lymphocytes, and antibodies that neutralize GRO-alpha or CXCR2 (the receptor for GRO-alpha) markedly reduced viral replication in MDM and peripheral blood mononuclear cells. Therefore, activation of MDM by HIV-1 gp120 engagement of CXCR4 initiates an autocrine-paracrine loop that may be important in disease progression after the emergence of X4 HIV.  相似文献   

4.
Since the brain is separated from the blood immune system by a tight barrier, the brain-resident complement system may represent a central player in the immune defense of this compartment against human immunodeficiency virus (HIV). Chronic complement activation, however, may participate in HIV-associated neurodegeneration. Since the level of complement factors in the cerebrospinal fluid is known to be elevated in AIDS-associated neurological disorders, we evaluated the effect of HIV type 1 (HIV-1) on the complement synthesis of brain astrocytes. Incubation of different astrocytic cell lines and primary astrocytes with HIV-1 induced a marked upregulation of the expression of the complement factors C2 and C3. The synthesis of other secreted or membrane-bound complement proteins was not found to be altered. The enhancement of C3 production was measured both on the mRNA level and as secreted protein in the culture supernatants. HIV-1 laboratory strains as well as primary isolates were capable of inducing C3 production with varied effectiveness. The usage of viral coreceptors by HIV-1 was proved to be a prerequisite for the upregulation of C3 synthesis, which was modulated by the simultaneous addition of cytokines. The C3 protein which is secreted after incubation of the cells with HIV was shown to be biologically active as it can participate in the complement cascade.  相似文献   

5.
The biological phenotype of primary human immunodeficiency virus type 1 (HIV-1) isolates varies according to the severity of the HIV infection. Here we show that the two previously described groups of rapid/high, syncytium-inducing (SI) and slow/low, non-syncytium-inducing (NSI) isolates are distinguished by their ability to utilize different chemokine receptors for entry into target cells. Recent studies have identified the C-X-C chemokine receptor CXCR4 (also named fusin or Lestr) and the C-C chemokine receptor CCR5 as the principal entry cofactors for T-cell-line-tropic and non-T-cell-line-tropic HIV-1, respectively. Using U87.CD4 glioma cell lines, stably expressing the chemokine receptor CCR1, CCR2b, CCR3, CCR5, or CXCR4, we have tested chemokine receptor specificity for a panel of genetically diverse envelope glycoprotein genes cloned from primary HIV-1 isolates and have found that receptor usage was closely associated with the biological phenotype of the virus isolate but not the genetic subtype. We have also analyzed a panel of 36 well-characterized primary HIV-1 isolates for syncytium induction and replication in the same series of cell lines. Infection by slow/low viruses was restricted to cells expressing CCR5, whereas rapid/high viruses could use a variety of chemokine receptors. In addition to the regular use of CXCR4, many rapid/high viruses used CCR5 and some also used CCR3 and CCR2b. Progressive HIV-1 infection is characterized by the emergence of viruses resistant to inhibition by beta-chemokines, which corresponded to changes in coreceptor usage. The broadening of the host range may even enable the use of uncharacterized coreceptors, in that two isolates from immunodeficient patients infected the parental U87.CD4 cell line lacking any engineered coreceptor. Two primary isolates with multiple coreceptor usage were shown to consist of mixed populations, one with a narrow host range using CCR5 only and the other with a broad host range using CCR3, CCR5, or CXCR4, similar to the original population. The results show that all 36 primary HIV-1 isolates induce syncytia, provided that target cells carry the particular coreceptor required by the virus.  相似文献   

6.
In order to protect against organisms that exhibit significant genetic variation, polyvalent vaccines are needed. Given the extreme variability of human immunodeficiency virus type 1 (HIV-1), it is probable that a polyvalent vaccine will also be needed for protection from this virus. However, to understand how to construct a polyvalent vaccine, serotypes or immunotypes of HIV must be identified. In the present study, we have examined the immunologic relatedness of intact, native HIV-1 primary isolates of group M, clades A to H, with human monoclonal antibodies (MAbs) directed at epitopes in the V3, C5, and gp41 cluster I regions of the envelope glycoproteins, since these regions are well exposed on the virion surface. Multivariate analysis of the binding data revealed three immunotypes of HIV-1 and five MAb groups useful for immunotyping of the viruses. The analysis revealed that there are fewer immunotypes than genotypes of HIV and that clustering of the isolates did not correlate with either genotypes, coreceptor usage (CCR5 and CXCR4), or geographic origin of the isolates. Further analysis revealed distinct MAb groups that bound preferentially to HIV-1 isolates belonging to particular immunotypes or that bound to all three immunotypes; this demonstrates that viral immunotypes identified by mathematical analysis are indeed defined by their immunologic characteristics. In summary, these results indicate (i) that HIV-1 immunotypes can be defined, (ii) that constellations of epitopes that are conserved among isolates belonging to each individual HIV-1 immunotype exist and that these distinguish each of the immunotypes, and (iii) that there are also epitopes that are routinely shared by all immunotypes.  相似文献   

7.
8.
9.
In the course of human immunodeficiency virus (HIV) disease, CCR5-utilizing HIV type 1 (HIV-1) variants (R5), which typically transmit infection and dominate its early stages, persist in approximately half of the infected individuals (nonswitch virus patients), while in the other half (switch virus patients), viruses using CXCR4 (X4 or R5X4) emerge, leading to rapid disease progression. Here, we used a system of ex vivo tonsillar tissue to compare the pathogeneses of sequential primary R5 HIV-1 isolates from patients in these two categories. The absolute replicative capacities of HIV-1 isolates seemed to be controlled by tissue factors. In contrast, the replication level hierarchy among sequential isolates and the levels of CCR5(+) CD4(+) T-cell depletion caused by the R5 isolates seemed to be controlled by viral factors. R5 viruses isolated from nonswitch virus patients depleted more target cells than R5 viruses isolated from switch virus patients. The high depletion of CCR5(+) cells by HIV-1 isolates from nonswitch virus patients may explain the steady decline of CD4(+) T cells in patients with continuous dominance of R5 HIV-1. The level of R5 pathogenicity, as measured in ex vivo lymphoid tissue, may have a predictive value reflecting whether, in an infected individual, X4 HIV-1 will eventually dominate.  相似文献   

10.
Although cells of monocytic lineage are the primary source of human immunodeficiency virus type 1 (HIV-1) in the brain, other cell types in the central nervous system, including astrocytes, can harbor a latent or persistent HIV-1 infection. In the present study, we examined whether immature, multipotential human brain-derived progenitor cells (nestin positive) are also permissive for infection. When exposed to IIIB and NL4-3 strains of HIV-1, progenitor cells and progenitor-derived astrocytes became infected, with peak p24 levels of 100 to 500 pg/ml at 3 to 6 days postinfection. After 10 days, virus production was undetectable but could be stimulated by the addition of tumor necrosis factor alpha (TNF-alpha). To bypass limitations to receptor entry, we compared the fate of infection in these cell populations by transfection with the infectious HIV-1 clone, pNL4-3. Again, transfected progenitors and astrocytes produced virus for 7 days but diminished to low levels beyond 8 days posttransfection. During the nonproductive phase, TNF-alpha stimulated virus production from progenitors as late as 5 weeks posttransfection. Astrocytes produced 5- to 20-fold more infectious virus (27 ng of p24/10(6) cells) than progenitors at the peak of 3 days posttransfection. Differentiation of infected progenitors toward an astrocyte phenotype increased virus production to levels consistent with infected astrocytes, suggesting a phenotypic difference in viral replication. Using this cell culture system of multipotential human brain-derived progenitor cells, we provide evidence that progenitor cells may be a reservoir for HIV-1 in the brains of AIDS patients.  相似文献   

11.
Viruses often exploit autophagy, a common cellular process of degradation of damaged proteins, organelles, and pathogens, to avoid destruction. HIV-1 dysregulates this process in several cell types by means of Nef protein. Nef is a small HIV-1 protein which is expressed abundantly in astrocytes of HIV-1-infected brains and has been suggested to have a role in the pathogenesis of HIV-Associated Neurocognitive Disorders (HAND). In order to explore its effect in the CNS with respect to autophagy, HIV-1 Nef was expressed in primary human fetal astrocytes (PHFA) using an adenovirus vector (Ad-Nef). We observed that Nef expression triggered the accumulation of autophagy markers, ATG8/LC3 and p62 (SQSMT1). Similar results were obtained with Bafilomycin A1, an autophagy inhibitor which blocks the fusion of autophagosome to lysosome. Furthermore co-expression of tandem LC3 vector (mRFP-EGFP-LC3) and Ad-Nef in these cells produced mainly yellow puncta (mRFP+, EGFP+) strongly suggesting that autophagosome fusion to lysosome is blocked in PHFA cells in the presence of Nef. Together these data indicate that HIV-1 Nef mimics Bafilomycin A1 and blocks the last step of autophagy thereby helping HIV-1 virus to avoid autophagic degradation in human astrocytes.  相似文献   

12.
13.
14.
Human immunodeficiency virus (HIV) infection-induced apoptosis of infected CD4 T cells as well as uninfected (bystander) CD4 T cells and other types of cells is a major factor in the pathogenesis of AIDS. Clinically, HIV-2 patients have a higher CD4 cell count at the time of an AIDS diagnosis, and generally have longer survival after development of symptoms. The mortality after an AIDS diagnosis has been reported to be more influenced by CD4 cell count than HIV type. Previous studies have shown significant variations in cytopathic effects following in vitro infection with primary isolates of HIV-1 or HIV-2 subtypes; however, the relative contributions of HIV-1 and HIV-2 infection leading to cell death remain unclear. Using a human cell line, Jurkat, we examined differences in key molecules involved in apoptotic signaling pathways during infection with either HIV-1 or HIV-2. HIV-1 infection generated more reactive oxygen species (ROS), increased the expression of a larger number of molecules involved in cell signaling such as p47, p38α, JNK, c-Yes, total PKC, and decreased the expression of molecules such as p38β, ERK1/2, and XIAP relative to HIV-2 infection. HIV-1 induced a higher degree of cell death through stronger activation of both apoptotic pathways. HIV-1 infection downregulated both Bcl-XL and FLIP expressions at later time points postinfection, while HIV-2 infection dramatically upregulated both Bcl-XL and FLIP expression. We also found that the expression of Bcl-XL or FLIP resulted in significant inhibition of HIV replication in Jurkat cells. These findings suggest that HIV-1 infection with high levels of cytotoxicity results in a higher level of cell death through apoptosis during a short time postinfection. The longer period of infection observed with HIV-2 with a lower degree of cytotoxicity was accompanied by increased Bcl-XL and FLIP expression. High protein levels of Bcl-XL or FLIP inhibit HIV replication and may be one explanation for the clinical observation that HIV-2 infected patients generally tend to be long-term nonprogressors with high CD4 lymphocyte counts compared with HIV-1 infected persons.  相似文献   

15.
A technique is described for detecting the activity of neutralizing polyclonal or monoclonal antibodies against HIV-1 primary isolates. Most commonly, neutralizing antibody activity for HIV-1 is assessed by quantifying the ability of antibodies to inhibit virus infection in mitogen-activated peripheral blood mononuclear cells or transformed lymphocytes. Because the target of HIV infectionin vivois neither a mitogen-activated nor a transformed cell, an assay using unstimulated peripheral blood mononuclear cells as a more physiologic target cell was developed. This “resting cell assay” mainly utilizes primary HIV-1 isolates that have been carried for only a few passagesin vitro.The result is an assay that is more efficient to perform and that detects neutralizing activity with comparable or greater sensitivity than that previously described for assays of primary HIV-1 isolates.  相似文献   

16.
Understanding the viral–host cell interface during HIV-1 infection is a prerequisite for the development of innovative antiviral therapies. Here we show that the suppressor of G2 allele of skp1 (SUGT1) is a permissive factor for human immunodeficiency virus (HIV)-1 infection. Expression of SUGT1 increases in infected cells on human brain sections and in permissive host cells. We found that SUGT1 determines the permissiveness to infection of lymphocytes and macrophages by modulating the nuclear import of the viral genome. More importantly, SUGT1 stabilizes the microtubule plus-ends (+MTs) of host cells (through the modulation of microtubule acetylation and the formation of end-binding protein 1 (EB1) comets). This effect on microtubules favors HIV-1 retrograde trafficking and replication. SUGT1 depletion impairs the replication of HIV-1 patient primary isolates and mutant virus that is resistant to raltegravir antiretroviral agent. Altogether our results identify SUGT1 as a cellular factor involved in the post-entry steps of HIV-1 infection that may be targeted for new therapeutic approaches.Subject terms: Infectious diseases, Immunopathogenesis  相似文献   

17.
The chemokine receptors CCR5 and CXCR4 are the major coreceptors for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). At least 12 other chemokine receptors or close relatives support infection by particular HIV and SIV strains on CD4(+) transformed indicator cell lines in vitro. However, the role of these alternative coreceptors in vivo is presently thought to be insignificant. Infection of cell lines expressing high levels of recombinant CD4 and coreceptors thus does not provide a true indication of coreceptor use in vivo. We therefore tested primary untransformed cell cultures that lack CCR5 and CXCR4, including astrocytes and brain microvascular endothelial cells (BMVECs), for naturally expressed alternative coreceptors functional for HIV and SIV infection. An adenovirus vector (Ad-CD4) was used to express CD4 in CD4(-) astrocytes and thus confer efficient infection if a functional coreceptor is present. Using a large panel of viruses with well-defined coreceptor usage, we identified a subset of HIV and SIV strains able to infect two astrocyte cultures derived from adult brain tissue. Astrocyte infection was partially inhibited by several chemokines, indicating a role for the chemokine receptor family in the observed infection. BMVECs were weakly positive for CD4 but negative for CCR5 and CXCR4 and were susceptible to infection by the same subset of isolates that infected astrocytes. BMVEC infection was efficiently inhibited by the chemokine vMIP-I, implicating one of its receptors as an alternative coreceptor for HIV and SIV infection. Furthermore, we tested whether the HIV type 1 and type 2 strains identified were able to infect peripheral blood mononuclear cells (PBMCs) via an alternative coreceptor. Several strains replicated in Delta32/Delta32 CCR5 PBMCs with CXCR4 blocked by AMD3100. This AMD3100-resistant replication was also sensitive to vMIP-I inhibition. The nature and potential role of this alternative coreceptor(s) in HIV infection in vivo is discussed.  相似文献   

18.

Background

Human immunodeficiency virus (HIV) enters target cells by a membrane fusion process that involves a series of sequential interactions between its envelope glycoproteins, the CD4 receptor and CXCR4/CCR5 coreceptors. CD4 molecules are expressed at the cell surface of lymphocytes and monocytes mainly as monomers, but basal levels of CD4 dimers are also present at the cell surface of these cells. Previous evidence indicates that the membrane distal and proximal extracellular domains of CD4, respectively D1 and D4, are involved in receptor dimerization.

Results

Here, we have used A201 cell lines expressing two CD4 mutants, CD4-E91K, E92K (D1 mutant) and CD4-Q344E (D4 mutant), harboring dimerization defects to analyze the role of CD4 dimerization in HIV-1 entry. Using entry assays based on β-lactamase-Vpr or luciferase reporter activities, as well as virus encoding envelope glycoproteins derived from primary or laboratory-adapted strains, we obtained evidence suggesting an association between disruption of CD4 dimerization and increased viral entry efficiency.

Conclusion

Taken together, our results suggest that monomeric forms of CD4 are preferentially used by HIV-1 to gain entry into target cells, thus implying that the dimer/monomer ratio at the cell surface of HIV-1 target cells may modulate the efficiency of HIV-1 entry.  相似文献   

19.
This study was designed to examine the impact of human immunodeficiency virus type 1 (HIV-1) fitness on disease progression through the use of a dual competition/heteroduplex tracking assay (HTA). Despite numerous studies on the impact of HIV-1 diversity and HIV-specific immune response on disease progression, we still do not have a firm understanding of the long-term pathogenesis of this virus. Strong and early CD8-positive cytotoxic T-cell and CD4-positive T-helper cell responses directed toward HIV-infected cells appear to curb HIV pathogenesis. However, the rate at which the virus infects the CD4(+) T-cell population and possibly destroys the HIV-specific immune response may also alter the rate of disease progression. For HIV-1 fitness studies, we established conditions for dual HIV-1 infections of peripheral blood mononuclear cells (PBMC) and a sensitive HTA to measure relative virus production. A pairwise comparison was then performed to estimate the relative fitness of various non-syncytium-inducing/CCR5-tropic (NSI/R5) and syncytium-inducing/CXCR4-tropic (SI/X4) HIV-1 isolates. Four HIV-1 strains (two NSI/R5 and two SI/X4) with moderate ex vivo fitness were then selected as controls and competed against primary HIV-1 isolates from an HIV-infected Belgian cohort. HIV-1 isolates from long-term survivors (LTS) were outcompeted by control strains and were significantly less fit than HIV-1 isolates from patients with accelerated progression to AIDS (PRO). In addition, NSI/R5 HIV-1 isolates from PRO overgrew control SI/X4 strains, suggesting that not all SI/X4 HIV-1 isolates replicate more efficiently than all NSI/R5 isolates. Finally, there were strong, independent correlations between viral load and the total relative fitness values of HIV-1 isolates from PRO (r = 0.84, P = 0.033) and LTS (r = 0.86, P = 0.028). Separation of the PRO and LTS plots suggest that HIV-1 fitness together with viral load may be a strong predictor for the rate of disease progression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号