首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aggregation of IgE anchored to high-affinity Fc epsilon receptors on rat basophilic leukemia (RBL) cells by multivalent antigens initiates transmembrane signaling and ultimately cellular degranulation. Previous studies have shown that the rate of dissociation of bivalent and multivalent DNP ligands from RBL cells sensitized with anti-DNP IgE decreases with increasing ligand incubation times. One mechanism proposed for this effect is that when IgE molecules are aggregated, a conformational change occurs that results in an increase in the intrinsic affinity of IgE for antigen. This possibility was tested by measuring the equilibrium constant for the binding of monovalent DNP-lysine to anti-DNP IgE under two conditions, where the cell-bound IgE is dispersed and where it has been aggregated into visible patches on the cell surface using anti-IgE and a secondary antibody. No difference in the equilibrium constant in these two cases was observed. We also measured the rate of dissociation of a monovalent ligand from cell surface IgE under these two conditions. Whereas the affinity for monovalent ligand is not altered by IgE aggregation, we observe that the rate of ligand dissociation from IgE in clusters is slower than the rate of ligand dissociation from unaggregated IgE. These results are discussed in terms of recent theoretical developments concerning effects of receptor density on ligand binding to cell surfaces.  相似文献   

2.
Immunoglobulin E-binding activity was expressed in Xenopus oocytes injected with mRNA from rat basophilic leukemia cells which possess abundant immunoglobulin E (IgE) receptor. Such activity was demonstrated with intact oocytes by their binding of 125I-labeled mouse monoclonal IgE. Binding activity was specific as shown by the total inhibition of 125I-IgE binding by unlabeled IgE but not by unlabeled IgG1. The relevance of the IgE-binding activity to the IgE receptor was also supported by the absence of this activity in oocytes injected with mRNA from cells lacking surface IgE receptors. mRNA coding for the IgE-binding activity was enriched in fractions sedimenting at 13.5 S in sucrose density gradients. From oocytes injected with rat basophilic leukemia mRNA, two major polypeptides were isolated by affinity purification on IgE immunoadsorbent. One (Mr = 31,000) is equivalent in size to the previously identified "receptor-associated protein;" the other (Mr = 40,000) is speculated to be a partially glycosylated or unglycosylated form of the alpha subunit of the IgE receptor. The binding of IgE-coated fluorescent microspheres by oocytes injected with rat basophilic leukemia mRNA demonstrated the surface expression of the IgE-binding proteins.  相似文献   

3.
A family of structured peptides that bind to FcepsilonRIalpha, the alpha-chain of the high-affinity receptor for IgE, has been identified. Binding selections using FcepsilonRIalpha and polyvalent peptide-phage libraries yielded a dominant 18-residue peptide-phage clone, as well as related sequences that did not resemble fragments of IgE. Synthetic peptides based on these sequences inhibited IgE binding to its receptor, and were found by NMR analysis to adopt a stable beta-hairpin structure in solution. Optimized peptides with micromolar receptor affinity exhibited high stability in biological fluids and inhibited cellular histamine release in an in vitro bioassay of IgE activity. The structure-activity relationships of these peptides, which are less than 1% of the size of IgE, suggest an overlap between their binding site and that of IgE on FcepsilonRI. Thus, the peptides demonstrate that blocking a small epitope on this receptor chain is sufficient to block IgE activity. Such structured peptides represent a possible starting point for the design of novel antagonists, and offer the potential for testing in vivo a new approach for treating allergic disease.  相似文献   

4.
Kinetics of ligand binding to the type 1 Fc epsilon receptor on mast cells   总被引:2,自引:0,他引:2  
Rates of association and dissociation of several specific monovalent ligands to and from the type I Fc epsilon receptor (Fc epsilon RI) were measured on live mucosal type mast cells of the rat line RBL-2H3. The ligands employed were a monoclonal murine IgE and Fab fragments prepared from three different, Fc epsilon RI-specific monoclonal IgG class antibodies. These monoclonals (designated H10, J17, and F4) were shown previously to trigger mediator secretion by RBL-2H3 mast cells upon binding to and dimerization of the Fc epsilon RI. Analysis of the kinetics shows that the minimal mechanism to which all data can be fitted involves two consecutive steps: namely, ligand binding to a low-affinity state of the receptor, followed by a conformational transition into a second, higher affinity state h of the receptor-ligand complex. These results resolve the recently noted discrepancy between the affinity of IgE binding to the Fc epsilon RI as determined by means of binding equilibrium measurements [Ortega et al. (1988) EMBO J. 7, 4101] and the respective parameter derived from the ratio of the rate constant of rat IgE dissociation and the initial rate of rat IgE association [Wank et al. (1983) Biochemistry 22, 954]. The probability of undergoing the conformational transition differs for the four different Fc epsilon RI-ligand complexes: while binding of Fab-H10 and IgE favors the h state, binding of Fab-J17 and Fab-F4 preferentially maintains the low-affinity 1 state (at 25 degrees C). The temperature dependence of the ligand interaction kinetics with the Fc epsilon RI shows that the activation barrier for ligand association is determined by positive enthalpic and entropic contributions. The activation barrier of the 1----h transition, however, has negative enthalpic contributions counteracted by a decrease in activation entropy. The h----1 transition encounters a barrier that is predominantly entropic and similar for all ligands employed, thus suggesting that the Fc epsilon RI undergoes a similar conformational transition upon binding any of the ligands.  相似文献   

5.
The post-translational processing and maturation of the receptor for IgE (Fc epsilon R) on murine hybridoma B cells were studied to determine the carbohydrate content and the importance of processing events in cell surface expression and ligand (IgE) binding ability. Endo and exoglycosidase treatment demonstrated that the mature receptor is composed of two to three complex-type N-linked oligosaccharides and contains sialic acid. Pulse-chase experiments indicated that the receptor is synthesized as a 44,000 dalton precursor that begins to be processed by 1 hr to the mature 49,000 dalton form, and the latter is expressed at the cell surface by 2 hr. It was determined that the processing included the conversion of N-linked oligosaccharides to the complex type as well as an additional processing event, because in the presence of tunicamycin, the receptor is synthesized as a 36,000 dalton precursor that is processed to a 38,000 dalton species. Analysis of the effects of tunicamycin treatment and endo F digestion on soluble Fc epsilon R isolated from cell supernatants demonstrated the existence of several m.w. species of Fc epsilon R fragments, and indicated that only the higher m.w. fragments were N-glycosylated. The use of several inhibitors of the N-linked carbohydrate processing pathway demonstrated that the addition of core N-linked side-chains, but not their processing to the complex type, is required for cell surface expression of Fc epsilon R. Also, processing of N-linked carbohydrate is not required for ligand binding activity. Finally, IgE affinity chromatography indicated that the 49,000 and 38,000 dalton (tunicamycin) Fc epsilon R bind IgE more effectively than their precursor forms, 44,000 and 36,000 daltons, respectively, indicating that a processing event independent of N-linked glycosylation is necessary for optimal ligand binding activity.  相似文献   

6.
We study the dissociation of preformed bivalent ligand-bivalent receptor aggregates in solution, where the ligand is a symmetric bivalent hapten with two identical 2,4-dinitrophenyl (DNP) groups and the receptor is a fluorescein-labeled monoclonal anti-DNP IgE. We promote dissociation in two ways: by the addition of high concentrations of a monovalent hapten that competes for IgE binding sites with the bivalent hapten and by the addition of high concentrations of unlabeled IgE that binds almost all ligand binding sites that dissociate from labeled IgE. We investigate both theoretically and experimentally the two types of dissociation and find them to be quite different. Theory predicts that their kinetics will depend differently on the fundamental rate constants that characterize binding and aggregation. Using monovalent ligand to promote dissociation, we find that the fraction of labeled IgE sites bound to bivalent ligand decays with a slow and fast component. The fast decay corresponds to the dissociation of a singly bound DNP hapten. The interpretation of the slow decay depends on the detailed way in which ligand-receptor aggregates break up. We show that one possible explanation of these data is that small stable rings form before the addition of monovalent ligand. Other possible explanations are also presented.  相似文献   

7.
The insect molting hormone, 20-hydroxyecdysone (20E) and its analogs (ecdysteroids) specifically bind to the ecdysone receptor. Previously, we synthesized various ecdysteroids containing the side chain moiety of ponasterone A (PonA), and measured the binding activity against Drosophila Kc cells to study the structure–activity relationship. Here we quantitatively analyzed the structure–activity relationship for the ligand binding of ecdysteroids including 20E and PonA. Since the hydrogen bonding (HB) is one of the important physicochemical properties for ligand binding to the ecdysteroid receptor, the number of possible HBs between the ligand molecule and the receptor was manually counted in the modeled ligand–receptor complex for all compounds. The construction of the ligand–receptor model was executed by the full-automatic modeling system (FAMS) in which calculation was done by simulated annealing. The binding potency of 15 ecdysteroids to Kc-cells were linearly correlated (r2 = 0.63) with the number of HBs which are observed between ligand and receptor molecule. Contribution of steric and electrostatic effects on the ligand–receptor binding was also examined using a three-dimensional quantitative structure–activity relationship (3-D QSAR), comparative molecular field analysis (CoMFA).  相似文献   

8.
We present a joint theoretical and experimental study on the effects of competition for ligand between receptors in solution and receptors on cell surfaces. We focus on the following experiment. After ligand and cell surface receptors equilibrate, solution receptors are introduced, and the dissociation of surface bound ligand is monitored. We derive theoretical expressions for the dissociation rate and compare with experiment. In a standard dissociation experiment (no solution receptors present) dissociation may be slowed by rebinding, i.e., at high receptor densities a ligand that dissociates from one receptor may rebind to other receptors before separating from the cell. Our theory predicts that rebinding will be prevented when S much greater than N2Kon/(16 pi 2D a4), where S is the free receptor site concentration in solution, N the number of free surface receptor sites per cell, Kon the forward rate constant for ligand-receptor binding in solution, D the diffusion coefficient of the ligand, and a the cell radius. The predicted concentration of solution receptors needed to prevent rebinding is proportional to the square of the cell surface receptor density. The experimental system used in these studies consists of a monovalent ligand, 2,4-dinitrophenyl (DNP)-aminocaproyl-L-tyrosine (DCT), that reversibly binds to a monoclonal anti-DNP immunoglobulin E (IgE). This IgE is both a solution receptor and, when anchored to its high affinity Fc epsilon receptor on rat basophilic leukemia (RBL) cells, a surface receptor. For RBL cells with 6 x 10(5) binding sites per cell, our theory predicts that to prevent DCT rebinding to cell surface IgE during dissociation requires S much greater than 2,400 nM. We show that for S = 200-1,700 nM, the dissociation rate of DCT from surface IgE is substantially slower than from solution IgE where no rebinding occurs. Other predictions are also tested and shown to be consistent with experiment.  相似文献   

9.
A Sidhu  S Kassis  J Kebabian  P H Fishman 《Biochemistry》1986,25(21):6695-6701
An iodinated compound, [125I]-8-iodo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin -7-ol, has been recently reported [Sidhu, A., & Kebabian, J.W. (1985) Eur. J. Pharmacol. 113, 437-440] to be a specific ligand for the D-1 dopamine receptor. Due to its high affinity and specific activity, this ligand was chosen for the biochemical characterization of the D-1 receptor. Alkylation of particulate fractions of rat caudate nucleus by N-ethylmaleimide (NEM) caused an inactivation of the D-1 receptor, as measured by diminished binding of the radioligand to the receptor. The inactivation of the receptor sites by NEM was rapid and irreversible, resulting in a 70% net loss of binding sites. On the basis of Scatchard analysis of binding to NEM-treated tissue, the loss in binding sites was due to a net decrease in the receptor number with a 2-fold decrease in the affinity of the receptor for the radioligand. Receptor occupancy by either a D-1 specific agonist or antagonist protected the ligand binding sites from NEM-mediated inactivation. NEM treatment of the receptor in the absence or presence of protective compound abolished the agonist high-affinity state of the receptor as well as membrane adenylate cyclase activity. The above-treated striatal membranes were fused with HeLa membranes and assayed for dopamine-stimulated adenylate cyclase activity. When the sources of D-1 receptors were from agonist-protected membranes, the receptors retained their ability to functionally couple to the HeLa adenylate cyclase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The high affinity receptor for IgE, FcERI, is at the core of the allergic reaction. This receptor is expressed mainly on mast cells and basophils. Interaction of an allergen with its specific IgE bound to FcERI triggers cell activation, which induces the release of numerous mediators that are responsible for allergic manifestations. The recent increase in the prevalence of allergic diseases in developed countries has resulted in renewed efforts towards the development of new drugs. One of these is a humanised antibody directed against the IgE ligand. This antibody recognises specifically free but not FcERI-bound IgE thus preventing ligand binding and subsequent cell activation. This antibody has shown some efficacy in clinical trials involving patients with asthma and allergic rhinitis. The recent elucidation of the tridimensional structure of the complex between IgE and FcERI provides unexpected information regarding the mechanism of assembly of the complex, which now can be used to design small chemical compounds capable of specifically inhibiting this interaction.  相似文献   

11.
Harwood NE  Price NC  McDonnell JM 《FEBS letters》2006,580(8):2129-2134
The interaction of immunoglobulin E (IgE) with its cellular receptor FcepsilonRIalpha is a central regulator of allergy. Structural studies have identified the third domain (Cepsilon3) of the constant region of epsilon heavy chain as the receptor binding region. The isolated Cepsilon3 domain is a "molten globule" that becomes structured upon binding of the FcepsilonRIalpha ligand. In this study, fluorescence and nuclear magnetic resonance spectroscopies are used to characterise the role of soluble FcepsilonRIalpha in the folding of the monomeric Cepsilon3 domain of IgE. Soluble FcepsilonRIalpha is shown to display characteristic properties of a catalyst for the folding of Cepsilon3, with the rate of Cepsilon3 folding being dependent on the concentration of the receptor.  相似文献   

12.
Mast cells are the central mediating cells of allergic reactions. Binding of allergen specific IgE to high affinity IgE receptor (Fcepsilon RI) and subsequent binding of allergen by the IgE causes receptor cross-linking and activation. In a study examining the differential gene expression in human cord blood-derived mast cells (CBMCs) mediated by activation of Fcepsilon RI both with IgE and IgE followed by cross-linking with alpha-IgE, the chemokine I-309 was found to be upregulated. I-309 is the ligand for the CCR8 receptor and is responsible for chemoattraction of TH2 type T-cells. Interestingly, I-309 RNA and protein levels were elevated not only in response to IgE/alpha-IgE activation but also by IgE alone. In addition, the I-309 levels were augmented by growth of the CBMCs in the presence of the proinflammatory cytokine IL-4. GM-CSF and MIP-1alpha secretion was also induced by IgE. These results suggest that IgE, through the production and release of cytokines such as I-309, GM-CSF and MIP-1alpha could promote an inflammatory reaction in the absence of antigen stimulation of mast cells.  相似文献   

13.
We have solved the structure of the human high affinity IgE receptor, Fc epsilon RI alpha, in six different crystal forms, showing the structure in 15 different chemical environments. This database of structures shows no change in the overall shape of the molecule, as the angle between domains 1 and 2 (D1 and D2) varies little across the ensemble. However, the receptor has local conformational variability in the C' strand of D2 and in the BC loop of D1. In every crystal form, a residue inserts between tryptophan residues 87 and 110, mimicking the position of a proline from the IgE ligand. The different crystal forms reveal a distribution of carbohydrates lining the front and back surfaces of the structure. An analysis of crystal contacts in the different forms indicates regions where the molecule interacts with other proteins, and reveals a potential new binding site distal to the IgE binding site. The results of this study point to new directions for the design of molecules to inhibit the interaction of Fc epsilon RI alpha with its natural ligand and thus to prevent a primary step in the allergic response.  相似文献   

14.
Rodent B cells respond to culture with IgE by increasing their IgE-specific Fc receptors (Fc epsilon R). The mechanism of this upregulation was characterized on Fc epsilon R+ murine B cell hybridoma lines. Measurements of [35S]methionine incorporated into the Fc epsilon R over time indicated that IgE did not appreciably increase the rate of Fc epsilon R synthesis. In contrast analysis of Fc epsilon R decay from surface radioiodinated B hybridoma cells demonstrated that IgE acted to slow the rate of Fc epsilon R degradation. Very little endocytosis of monomeric IgE was seen; this, combined with the observation that lysomotropic agents failed to inhibit Fc epsilon R degradation suggested that decay occurs at the cell surface. A soluble receptor immunoassay was developed, using monoclonal anti-Fc epsilon R, and this assay demonstrated that cell-bound IgE inhibited the release into the culture media of soluble immunoreactive Fc epsilon R. Examination of the soluble Fc epsilon R by SDS-PAGE after isolation with monoclonal anti-Fc epsilon R demonstrated that it was 10,000 m.w. smaller than the cell-associated Fc epsilon R. IgE affinity columns failed to bind the Fc epsilon R fragment, indicating that the ligand binding activity was largely lost. Thus this study demonstrated that IgE-dependent Fc epsilon R induction on B cells occurs because IgE upon binding to the B cell surface, inhibits the proteolytic cleavage and release of the Fc epsilon R into the surrounding medium, and it is this inhibition of degradation that causes the higher Fc epsilon R levels.  相似文献   

15.
FC Sferdean  RM Weis  LK Thompson 《Biochemistry》2012,51(35):6920-6931
Binding of attractant to bacterial chemotaxis receptors initiates a transmembrane signal that inhibits the kinase CheA bound ~300 ? distant at the other end of the receptor. Chemoreceptors form large clusters in many bacterial species, and the extent of clustering has been reported to vary with signaling state. To test whether ligand binding regulates kinase activity by modulating a clustering equilibrium, we measured the effects of two-dimensional receptor concentration on kinase activity in proteoliposomes containing the purified Escherichia coli serine receptor reconstituted into vesicles over a range of lipid:protein molar ratios. The IC(50) of kinase inhibition was unchanged despite a 10-fold change in receptor concentration. Such a change in concentration would have produced a measurable shift in the IC(50) if receptor clustering were involved in kinase regulation, based on a simple model in which the receptor oligomerization and ligand binding equilibria are coupled. These results indicate that the primary signal, ligand control of kinase activity, does not involve a change in receptor oligomerization state. In combination with previous work on cytoplasmic fragments assembled on vesicle surfaces [Besschetnova, T. Y., et al. (2008) Proc. Natl. Acad. Sci. U.S.A.105, 12289-12294], this suggests that binding of ligand to chemotaxis receptors inhibits the kinase by inducing a conformational change that expands the membrane area occupied by the receptor cytoplasmic domain, without changing the number of associated receptors in the signaling complex.  相似文献   

16.
Abstract: A serotonin 5-HT3 receptor was functionally expressed to high levels and on a large scale in mammalian cells with the Semliki Forest virus system. Conditions were optimized to maximize detergent solubilization of the receptor, while preserving ligand binding activity. An efficient one-step purification yielding ∼50% of the histidine-tagged 5-HT3 receptor was achieved with immobilized metal ion chromatography. The expressed receptor, in both membranes and purified preparations, exhibited wild-type ligand binding properties, characterized by one class of binding sites. The purity of the receptor was shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, yielding a single band at 65 kDa, and was confirmed by the specific ligand binding activity of ∼5 nmol/mg of protein. Deglycosylation of the receptor reduced the estimated relative molecular mass to 49 kDa. The apparent molecular mass of the functional receptor complex was determined by size exclusion chromatography to be 280 kDa, suggesting that the 5-HT3 receptor is a pentameric homooligomer. The secondary structure of the 5-HT3 receptor as determined by circular dichroism appeared to consist of mainly α-helices (50%) and β-strands (24%), with minor contributions from nonregular structure (9%). The binding of either agonist or antagonist did not alter the secondary structure of the receptor.  相似文献   

17.
The high affinity receptor for IgE, FcepsilonRI, binds IgE through the second Ig-like domain of the alpha subunit. The role of the first Ig-like domain is not well understood, but it is required for optimal binding of IgE to FcepsilonRI, either through a minor contact interaction or in a supporting structural capacity. The results reported here demonstrate that domain one of FcepsilonRI plays a major structural role supporting the presentation of the ligand-binding site, by interactions generated within the interdomain interface. Analysis of a series of chimeric receptors and point mutants indicated that specific residues within the A' strand of domain one are crucial to the maintenance of the interdomain interface, and IgE binding. Mutation of the Arg(15) and Phe(17) residues caused loss in ligand binding, and utilizing a homology model of FcepsilonRI-alpha based on the solved structure of FcgammaRIIa, it appears likely that this decrease is brought about by collapse of the interface and consequently the IgE-binding site. In addition discrepancies in results of previous studies using chimeric IgE receptors comprising FcepsilonRIalpha with either FcgammaRIIa or FcgammaRIIIA can be explained by the presence or absence of Arg(15) and its influence on the IgE-binding site. The data presented here suggest that the second domain of FcepsilonRI-alpha is the only domain involved in direct contact with the IgE ligand and that domain one has a structural function of great importance in maintaining the integrity of the interdomain interface and, through it, the ligand-binding site.  相似文献   

18.
19.
An ancestor of avian IgY was the evolutionary precursor of mammalian IgG and IgE, and present day chicken IgY performs the function of human IgG despite having the domain structure of human IgE. The kinetics of IgY binding to its receptor on a chicken monocyte cell line, MQ-NCSU, were measured, the first time that the binding of a non-mammalian antibody to a non-mammalian cell has been investigated (k(+1) = 1.14 +/- 0.46 x 10(5) mol(-1)sec(-1), k(-1) = 2.30 +/- 0.14 x 10(-3) s(-1), and K(a) = 4.95 x 10(7) m(-1)). This is a lower affinity than that recorded for mammalian IgE-high affinity receptor interactions (Ka approximately 10(10) m(-1)) but is within the range of mammalian IgG-high affinity receptor interactions (human: Ka approximately 10(8)-10(9) m(-1) mouse: Ka approximately 10(7)-10(8) m(-1). IgE has an extra pair of immunoglobulin domains when compared with IgG. Their presence reduces the dissociation rate of IgE from its receptor 20-fold, thus contributing to the high affinity of IgE. To assess the effect of the equivalent domains on the kinetics of IgY binding, IgY-Fc fragments with and without this domain were cloned and expressed in mammalian cells. In contrast to IgE, their presence in IgY has little effect on the association rate and no effect on dissociation. Whatever the function of this extra domain pair in avian IgY, it has persisted for at least 310 million years and has been co-opted in mammalian IgE to generate a uniquely slow dissociation rate and high affinity.  相似文献   

20.
Tunicamycin, a specific inhibitor of N-glycosylation, was used to study the function of asparagine-linked oligosaccharides of the low density lipoprotein (LDL) receptor in cultured human skin fibroblasts. When cells were preincubated in the presence of 0.5 micrograms/ml of the drug the incorporation of [3H]mannose into the receptor was completely prevented and that of [3H]glucosamine was reduced to approximately 41% of the control value. The [35S]methionine radioactivity detected in receptor core protein of tunicamycin-treated cells was about 52% of that measured in the receptor of control cells. The decrease in the radioactivity was similar in both the mature receptor as well as in its precursor form, and it was significantly greater than that found in total protein. The rates of receptor degradation in control- and tunicamycin-treated cells were comparable. Neither cell surface appearance of the newly synthesized LDL receptor nor its recycling were affected by tunicamycin. However, the LDL receptor produced in tunicamycin-treated cells was smaller in molecular size, and it exhibited an about 50% lower binding capacity when compared with its counterpart synthesized in control cells. This indicates that there is a relationship between N-glycosylation and the ligand binding activity of the LDL receptor. The possible role of asparagine-linked oligosaccharides in optimizing the biological activity of the LDL receptor is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号