首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 512 毫秒
1.
ATR-FTIR spectroscopy in combination with electrochemistry has been applied to the redox centers of Yarrowia lipolytica complex I. The redox spectra show broad similarities with previously published data on Escherichia coli complex I and with new data here on bovine complex I. The spectra are dominated by amide I/II protein backbone changes. Comparisons with redox IR spectra of small model ferredoxins demonstrate that these amide I/II changes arise primarily from characteristic structural changes local to the iron-sulfur centers, rather than from global structural alterations as has been suggested previously. Bands arising from the substrate ubiquinone were evident, as was a characteristic 1405 cm(-)(1) band of the reduced form of the FMN cofactor. Other signals are likely to arise from perturbations or protonation changes of a carboxylic amino acid, histidine, and possibly several other specific amino acids. Redox difference spectra of center N2, together with substrate ubiquinone, were isolated from those of the other iron-sulfur centers by selective redox potentiometry. Its redox-linked amide I/II changes were typical of those in other 4Fe-4S iron sulfur proteins. Contrary to published data on bacterial complex I, no center N2 redox-linked protonation changes of carboxylic amino acids or tyrosine were evident, and other residues that could provide its redox-linked protonation site are discussed. Features of the substrate ubiquinone associated with the center N2 spectrum were particularly clear, with firm assignments possible for bands from both oxidized and reduced forms. This is the first report of IR properties of ubiquinone in complex I, and the data could be used to estimate a stoichiometry of 0.2-0.4 per complex I.  相似文献   

2.
T Noguchi  Y Inoue  X S Tang 《Biochemistry》1999,38(31):10187-10195
Fourier transform infrared (FTIR) signals of a histidine side chain were identified in flash-induced S(2)/S(1) difference spectra of the oxygen-evolving complex (OEC) of photosystem II (PS II) using PS II membranes from globally (15)N-labeled spinach and PS II core complexes from Synechocystis cells in which both the imidazole nitrogens of histidine were selectively labeled with (15)N. A negative band at 1113-1114 cm(-1) was downshifted by 7 cm(-1) upon both global (15)N-labeling and selective [(15)N]His labeling, and assigned to the C-N stretching mode of the imidazole ring. This band was unaffected by H-D exchange in the PS II preparations. In addition, several peaks observed at 2500-2850 cm(-1) all downshifted upon global and selective (15)N-labeling. These were ascribed to Fermi resonance peaks on a hydrogen-bonding N-H stretching band of the histidine side chain. FTIR measurements of model compounds of the histidine side chain showed that the C-N stretching band around 1100 cm(-)(1) can be a useful IR marker of the protonation form of the imidazole ring. The band appeared with frequencies in the following order: Npi-protonated (>1100 cm(-1)) > imidazolate > imidazolium > Ntau-protonated (<1095 cm(-1)). The frequency shift upon N-deuteration was occurred in the following order: imidazolium (15-20 cm(-1)) > Ntau-protonated (5-10 cm(-1)) > Npi-protonated approximately imidazolate ( approximately 0 cm(-1)). On the basis of these findings together with the Fermi resonance peaks at >2500 cm(-1) as a marker of N-H hydrogen-bonding, we concluded that the histidine residue in the S(2)/S(1) spectrum is protonated at the Npi site and that this Npi-H is hydrogen bonded. This histidine side chain probably ligated the redox-active Mn ion at the Ntau site, and thus, oxidation of the Mn cluster upon S(2) formation perturbed the histidine vibrations, causing this histidine to appear in the S(2)/S(1) difference spectrum.  相似文献   

3.
Cytochrome bc(1) is a major component of biological energy conversion that exploits an energetically favourable redox reaction to generate a transmembrane proton gradient. Since the mechanistic details of the coupling of redox and protonation reactions in the active sites are largely unresolved, we have identified residues that undergo redox-linked protonation state changes. Structure-based Poisson-Boltzmann/Monte Carlo titration calculations have been performed for completely reduced and completely oxidised cytochrome bc(1). Different crystallographically observed conformations of Glu272 and surrounding residues of the cytochrome b subunit in cytochrome bc(1) from Saccharomyces cerevisiae have been considered in the calculations. Coenzyme Q (CoQ) has been modelled into the CoQ oxidation site (Q(o)-site). Our results indicate that both conformational and protonation state changes of Glu272 of cytochrome b may contribute to the postulated gating of CoQ oxidation. The Rieske iron-sulphur cluster could be shown to undergo redox-linked protonation state changes of its histidine ligands in the structural context of the CoQ-bound Q(o)-site. The proton acceptor role of the CoQ ligands in the CoQ reduction site (Q(i)-site) is supported by our results. A modified path for proton uptake towards the Q(i)-site features a cluster of conserved lysine residues in the cytochrome b (Lys228) and cytochrome c(1) subunits (Lys288, Lys289, Lys296). The cardiolipin molecule bound close to the Q(i)-site stabilises protons in this cluster of lysine residues.  相似文献   

4.
Ritter M  Anderka O  Ludwig B  Mäntele W  Hellwig P 《Biochemistry》2003,42(42):12391-12399
The cytochrome bc(1) complex from Paracoccus denitrificans and soluble fragments of its cytochrome c(1) and Rieske ISP subunits are characterized by a combined approach of protein electrochemistry and FTIR difference spectroscopy. The FTIR difference spectra provide information about alterations in the protein upon redox reactions: signals from the polypeptide backbone, from the cofactors, and from amino acid side chains. We describe typical modes for conformational changes in the polypeptide and contributions of different secondary structure elements. Signals attributed to the different cofactors can be presented on the basis of selected potential steps. Modes associated with bound quinone are identified by comparison with spectra of quinone in solution at 1656, 1642, and 1610 cm(-1) and between 1494 and 1388 cm(-1), as well as at 1288 and 1262 cm(-1). Signals originating from the quinone bound at the Q(o) site can be distinguished. On the basis of the infrared data, the total quinone concentration is determined to be 2.6-3.3 quinones per monomer, depending on preparation conditions. The balance of evidence supports the double-occupancy model. Interestingly, the amplitude of the band at 1746 cm(-1) increases with quinone content, reflecting a protonation reaction of acidic groups. In this context, the involvement of glutamates and/or aspartates in the vicinity of the Q(o) site is discussed on the basis of recently determined crystal structures.  相似文献   

5.
FTIR difference spectroscopy is used to reveal changes in the internal structure and amino acid protonation states of bovine cytochrome c oxidase (CcO) that occur upon photolysis of the CO adduct of the two-electron reduced (mixed valence, MV) and four-electron reduced (fully reduced, FR) forms of the enzyme. FTIR difference spectra were obtained in D(2)O (pH 6-9.3) between the MV-CO adduct (heme a(3) and Cu(B) reduced; heme a and Cu(A) oxidized) and a photostationary state in which the MV-CO enzyme is photodissociated under constant illumination. In the photostationary state, part of the enzyme population has heme a(3) oxidized and heme a reduced. In MV-CO, the frequency of the stretch mode of CO bound to ferrous heme a(3) decreases from 1965.3 cm(-1) at pH* 相似文献   

6.
Suzuki H  Nagasaka MA  Sugiura M  Noguchi T 《Biochemistry》2005,44(34):11323-11328
Fourier transform infrared difference spectra upon single reduction of the secondary quinone electron acceptor Q(B) in photosystem II (PSII), without a contribution from the electron donor-side signals, were obtained for the first time using Mn-depleted PSII core complexes of the thermophilic cyanobacterium Thermosynechococcus elongatus. The Q(B)(-)/Q(B) difference spectrum exhibited a strong C...O stretching band of the semiquinone anion at 1480 cm(-)(1), the frequency higher by 2 cm(-)(1) than that of the corresponding band of Q(A)(-), in agreement with the previous S(2)Q(B)(-)/S(1)Q(B) spectrum of the PSII membranes of spinach [Zhang, H., Fischer, G., and Wydrzynski, T. (1998) Biochemistry 37, 5511-5517]. Also, several peaks originating from the Fermi resonance of coupled His modes with its strongly H-bonded NH vibration were observed in the 2900-2600 cm(-)(1) region, where the peak frequencies were higher by 7-24 cm(-)(1) compared with those of the Q(A)(-)/Q(A) spectrum. These frequency differences suggest that H-bond interactions of the CO groups, especially with a His side chain, are different between Q(B)(-) and Q(A)(-). Furthermore, a prominent positive peak was observed at 1745 cm(-)(1) in the C=O stretching region of COOH or ester groups in the Q(B)(-)/Q(B) spectrum. The peak frequency was unaffected by D(2)O substitution, indicating that this peak does not arise from a COOH group but probably from the 10a-ester C=O group of the pheophytin molecule adjacent to Q(B). The absence of protonation of carboxylic amino acids upon Q(B)(-) formation in contrast to the previous observation in the purple bacterium Rhodobacter sphaeroides suggests that the protonation mechanism of Q(B) in PSII is different from that of bacterial reaction centers.  相似文献   

7.
Lou BS  Snyder JK  Marshall P  Wang JS  Wu G  Kulmacz RJ  Tsai AL  Wang J 《Biochemistry》2000,39(40):12424-12434
Prostaglandin H synthase isoforms 1 and 2 (PGHS-1 and -2) catalyze the first two steps in the biosynthesis of prostaglandins. Resonance Raman spectroscopy was used to characterize the PGHS heme active site and its immediate environment. Ferric PGHS-1 has a predominant six-coordinate high-spin heme at room temperature, with water as the sixth ligand. The proximal histidine ligand (or the distal water ligand) of this hexacoordinate high-spin heme species was reversibly photolabile, leading to a pentacoordinate high-spin ferric heme iron. Ferrous PGHS-1 has a single species of five-coordinate high-spin heme, as evident from nu(2) at 1558 cm(-1) and nu(3) at 1471 cm(-1). nu(4) at 1359 cm(-1) indicates that histidine is the proximal ligand. A weak band at 226-228 cm(-1) was tentatively assigned as the Fe-His stretching vibration. Cyanoferric PGHS-1 exhibited a nu(Fe)(-)(CN) line at 446 cm(-1) and delta(Fe)(-)(C)(-)(N) at 410 cm(-1), indicating a "linear" Fe-C-N binding conformation with the proximal histidine. This linkage agrees well with the open distal heme pocket in PGHS-1. The ferrous PGHS-1 CO complex exhibited three important marker lines: nu(Fe)(-)(CO) (531 cm(-1)), delta(Fe)(-)(C)(-)(O) (567 cm(-1)), and nu(C)(-)(O) (1954 cm(-1)). No hydrogen bonding was detected for the heme-bound CO in PGHS-1. These frequencies markedly deviated from the nu(Fe)(-)(CO)/nu(C)(-)(O) correlation curve for heme proteins and porphyrins with a proximal histidine or imidazolate, suggesting an extremely weak bond between the heme iron and the proximal histidine in PGHS-1. At alkaline pH, PGHS-1 is converted to a second CO binding conformation (nu(Fe)(-)(CO): 496 cm(-1)) where disruption of the hydrogen bonding interactions to the proximal histidine may occur.  相似文献   

8.
Iwaki M  Puustinen A  Wikström M  Rich PR 《Biochemistry》2006,45(36):10873-10885
Structural and chemical changes in the P(M) intermediate of Paracoccus denitrificans cytochrome c oxidase have been investigated by attenuated total reflection-Fourier transform infrared spectroscopy. Prior studies of P(M) minus oxidized (O) IR difference spectra of unlabeled, universally (15)N-labeled and ring-d(4)-tyrosine-labeled proteins (Iwaki, M., Puustinen, A., Wikstr?m, M., and Rich, P. R. (2004) Biochemistry 43, 14370-14378). provided a basis for band assignments to changes in metal centers and the covalently linked His-Tyr ligand of Cu(B) and highlighted a structural alteration of the protonated Glu278 in the P(M) intermediate. This work has been extended to equivalent measurements on enzymes with (13)C(9)(15)N-labeled and ring-(13)C(6)-labeled tyrosine and with (13)C(6)(15)N(3)-labeled histidine. Histidine labeling allows the assignment of troughs at 1104 and 973 cm(-1) in reduced minus O spectra to histidine changes, whereas tyrosine labeling moves otherwise obscured tyrosine bandshifts to 1454-1437 and 1287-1284 cm(-1). P(M) minus O spectra reveal bands at 1506, 1311, and 1094 cm(-1) in the oxidized state that are replaced by a band at 1519 cm(-1) in P(M). These bands shift with both tyrosine- and histidine-labeling, providing evidence for their assignment to the covalent His-Tyr and for its chemical change in P(M). Comparisons of isotope effects on the amide I regions in P(M) minus O spectra demonstrate that amide carbonyl bonds of tyrosine and histidine are major contributors. This suggests a structural alteration in P(M) that is centered on the His276-Pro277-Glu278-Val279-Tyr280 pentapeptide formed by the His-Tyr covalent linkage. This structural change is proposed to mediate the perturbation of the IR band of the protonated Glu278 headgroup.  相似文献   

9.
Iwaki M  Puustinen A  Wikström M  Rich PR 《Biochemistry》2004,43(45):14370-14378
The structure of the P(M) intermediate of Paracoccus denitrificans cytochrome c oxidase was investigated by perfusion-induced attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. Transitions from the oxidized to P(M) state were initiated by perfusion with CO/oxygen buffer, and the extent of conversion was quantitated by simultaneously monitoring visible absorption changes. In prior work, tentative assignments of bands were proposed for heme a(3), a change in the environment of the protonated state of a carboxylic acid, and a covalently linked histidine-tyrosine ligand to Cu(B) that has been found in the catalytic site. In this work, reduced minus oxidized difference spectra at pH 6.5 and 9.0 and P(M) minus oxidized difference spectra at pH 9.0 were compared in unlabeled, universally (15)N-labeled, and tyrosine-ring-d(4)-labeled proteins to improve these assignments. In the reduced minus oxidized difference spectrum, (15)N labeling resulted in large changes in the amide II region and a 9 cm(-1) downshift in a 1105 cm(-1) trough that is attributed to histidine. In contrast, changes induced by tyrosine-ring-d(4) labeling were barely detectable where the isotope-sensitive bands are expected. Both isotope substitutions had large effects on P(M) minus oxidized difference spectra. A prominent trough at 1542 cm(-1) was shifted to 1527 cm(-1) with (15)N labeling, and its magnitude was diminished with the appearance of a 1438 cm(-1) trough with tyrosine-ring-d(4) labeling. Both isotope substitutions also had large effects on a 1314 cm(-1) trough in the same spectra. These shifts indicate that the bands are linked to both a nitrogenous compound and a tyrosine, the most obvious candidate being the covalent histidine-tyrosine ligand of Cu(B). Comparison with model material data suggests that the tyrosine hydroxyl group is protonated when the binuclear center is oxidized but deprotonated in the P(M) intermediate. Positive bands at 1519 and 1570 cm(-1) were replaced with bands at 1504 and 1556 cm(-1), respectively, with tyrosine-ring-d(4) labeling, are characteristic of upsilon(7a)(C-O) and upsilon(C-C) bands of neutral phenolic radicals, and most likely reflect the formation of the neutral radical state of the histidine-tyrosine ligand in P(M).  相似文献   

10.
Xiao K  Liu X  Yu CA  Yu L 《Biochemistry》2004,43(6):1488-1495
Sequence alignment of the Rieske iron-sulfur protein (ISP) of cytochrome bc(1) complex from various sources reveals that bacterial ISPs contain an extra fragment. To study the role of this fragment in bacterial cytochrome bc(1) complex, Rhodobacter sphaeroides mutants expressing His-tagged cytochrome bc(1) complexes with deletion or single- or multiple-alanine substitution at various positions of this fragment (residues 96-107) were generated and characterized. The ISPDelta(96-107), ISP(96-107)A, and ISP(104-107)A mutant cells, in which residues 96-107 of ISP are deleted, and residues 96-107 and 104-107 are substituted with alanine, respectively, do not grow photosynthetically and show no bc(1) complex activity in intracytoplasmic membranes prepared from these mutant cells. The ISP(96-99)A, in which residues 96-99 are substituted with alanine, grows photosynthetically at a rate comparable to that of the complement cells, whereas ISP(100-103)A, in which residues 100-103 are substituted with alanine, has a longer lag period prior to photosynthetic growth. Chromatophores prepared from these two mutant cells have 48% and 9% of the bc(1) activity found in the complement chromatophores. The loss (or decrease) of bc(1) activity in these mutant membranes results from a lack (or decrease) of ISP in the membrane due to ISP protein instability and not from mutations affecting the assembly of cytochromes b and c(1) into the membrane, the binding affinity of cytochrome b to cytochrome c(1), or the ability of these two cytochromes to interact with ISP or subunit IV. The order of essentiality of residues in this fragment is residues 104-107 > residues 100-103 > residues 96-99.  相似文献   

11.
A combined electrochemical and FTIR spectroscopic approach was used to identify the vibrational modes of tyrosines in cytochrome c oxidase from Paracoccus denitrificans which change upon electron transfer and coupled proton transfer. Electrochemically induced FTIR difference spectra of the Tyr-D4-labeled cytochrome c oxidase reveal that only small contributions arise from the tyrosines. Contributions between 1600 and 1560 cm(-1) are attributed to nu8a/8b(CC) ring modes. The nu19(CC) ring mode for the protonated form of tyrosines is proposed to absorb with an uncommonly small signal at 1525-1518 cm(-1) and for the deprotonated form at 1496-1486 cm(-1), accompanied by the increase of the nu19(CC) ring mode of the Tyr-D(4)-labeled oxidase at approximately 1434 cm(-1). A signal at 1270 cm(-1) can be tentatively attributed to the nu7'a(CO) and delta(COH) mode of a protonated tyrosine. Uncommon absorptions, like the mode at 1524 cm(-1), indicate the involvement of Tyr280 in the spectra. Tyr280 is a crucial residue close to the binuclear center and is covalently bonded to His276. The possible changes of the spectral properties are discussed together with the absorbance spectra of tyrosine bound to histidine. The vibrational modes of Tyr280 are further analyzed in combination with the mutation to histidine, which is assumed to abolish the covalent bonding. The electrochemically induced FTIR difference spectra of the Tyr280His mutant point to a change in protonation state in the environment of the binuclear center. Together with an observed decrease of a signal at 1736 cm(-1), previously assigned to Glu278, a possible functional coupling is reflected. In direct comparison to the FTIR difference spectra of the D4-labeled compound and comparing the spectra at pH 7 and 4.8, the protonation state of Tyr280 is discussed. Furthermore, a detailed analysis of the mutant is presented, the FTIR spectra of the CO adduct revealing a partial loss of Cu(B). Electrochemical redox titrations reflect a downshift of the heme a3 midpoint potential by 95 +/- 10 mV. Another tyrosine identified to show redox dependent changes upon electron transfer is Tyr35, a residue in the proposed D-pathway of the cytochrome c oxidase.  相似文献   

12.
Infrared and optical spectra of carbonmonoxy horseradish peroxidase were monitored as a function of pH and substrate binding. The analyses of experimental results together with semiempirical calculations show that the CO-porphyrin complex is sensitive to environmental changes. The electronic Q(0,0) band of the porphyrin and the CO stretching mode respond to external perturbations with different symmetry dependencies. In this way, the complex is nonisotropic, and the combined spectral analyses constitute a valuable tool for the investigation of structure. In the absence of substrate and at pH 6.0, the low-spin heme optical Q(0,0) absorption band is a single peak that narrows as the temperature decreases. Under these conditions, the CO vibrational stretch frequency is at 1903 cm(-1). Addition of the substrates benzohydroxamic acid or naphthohydroxamic acid produces a split of approximately 320 cm(-1) in the Q(0,0) absorption band that is clearly evident at < 100 K and shifts the CO absorption to 1916 cm(-1). Increasing the pH to 9.3 also causes a split in the Q(0,0) optical band and elicits a shift in nu(CO) to a higher frequency (1936 cm(-1)). The splitting of the Q(0,0) band and the shifts in the IR spectra are both consistent with changes in the local electric field produced by the proximity of the electronegative carbonyl of the substrate near the heme or the protonation and/or deprotonation of the distal histidine, although other effects are also considered. The larger effect on the Q(0,0) band with substrate at low pH and the shift of nu(CO) at high pH can be rationalized by the directionality of the field and the orientation dependence of dipolar interactions.  相似文献   

13.
Uchida T  Mogi T  Kitagawa T 《Biochemistry》2000,39(22):6669-6678
Cytochrome bo from Escherichia coli, a member of the heme-copper terminal oxidase superfamily, physiologically catalyzes reduction of O(2) by quinols and simultaneously translocates protons across the cytoplasmic membrane. The reaction of its ferric pulsed form with hydrogen peroxide was investigated with steady-state resonance Raman spectroscopy using a homemade microcirculating system. Three oxygen-isotope-sensitive Raman bands were observed at 805/X, 783/753, and (767)/730 cm(-)(1) for intermediates derived from H(2)(16)O(2)/H(2)(18)O(2). The experiments using H(2)(16)O(18)O yielded no new bands, indicating that all the bands arose from the Fe=O stretching (nu(Fe)(=)(O)) mode. Among them, the intensity of the 805/X cm(-)(1) pair increased at higher pH, and the species giving rise to this band seemed to correspond to the P intermediate of bovine cytochrome c oxidase (CcO) on the basis of the reported fact that the P intermediate of cytochrome bo appeared prior to the formation of the F species at higher pH. For this intermediate, a Raman band assignable to the C-O stretching mode of a tyrosyl radical was deduced at 1489 cm(-)(1) from difference spectra. This suggests that the P intermediate of cytochrome bo contains an Fe(IV)=O heme and a tyrosyl radical like compound I of prostaglandin H synthase. The 783/753 cm(-)(1) pair, which was dominant at neutral pH and close to the nu(Fe)(=)(O) frequency of the oxoferryl intermediate of CcO, presumably arises from the F intermediate. On the contrary, the (767)/730 cm(-)(1) species has no counterpart in CcO. Its presence may support the branched reaction scheme proposed previously for O(2) reduction by cytochrome bo.  相似文献   

14.
Astrid R. Klingen  Carola Hunte 《BBA》2007,1767(3):204-221
Cytochrome bc1 is a major component of biological energy conversion that exploits an energetically favourable redox reaction to generate a transmembrane proton gradient. Since the mechanistic details of the coupling of redox and protonation reactions in the active sites are largely unresolved, we have identified residues that undergo redox-linked protonation state changes. Structure-based Poisson-Boltzmann/Monte Carlo titration calculations have been performed for completely reduced and completely oxidised cytochrome bc1. Different crystallographically observed conformations of Glu272 and surrounding residues of the cytochrome b subunit in cytochrome bc1 from Saccharomyces cerevisiae have been considered in the calculations. Coenzyme Q (CoQ) has been modelled into the CoQ oxidation site (Qo-site). Our results indicate that both conformational and protonation state changes of Glu272 of cytochrome b may contribute to the postulated gating of CoQ oxidation. The Rieske iron-sulphur cluster could be shown to undergo redox-linked protonation state changes of its histidine ligands in the structural context of the CoQ-bound Qo-site. The proton acceptor role of the CoQ ligands in the CoQ reduction site (Qi-site) is supported by our results. A modified path for proton uptake towards the Qi-site features a cluster of conserved lysine residues in the cytochrome b (Lys228) and cytochrome c1 subunits (Lys288, Lys289, Lys296). The cardiolipin molecule bound close to the Qi-site stabilises protons in this cluster of lysine residues.  相似文献   

15.
Nabedryk E  Breton J  Joshi HM  Hanson DK 《Biochemistry》2000,39(47):14654-14663
The photoreduction of the secondary quinone Q(B) in native reaction centers (RCs) of Rhodobacter capsulatus and in RCs from the GluL212 --> Gln and GluL212 --> Ala mutants has been investigated at pH 7 in (1)H(2)O and (2)H(2)O by light-induced Fourier transform infrared (FTIR) difference spectroscopy. The Q(B)(-)/Q(B) FTIR difference spectra reflect changes of quinone-protein interactions and of protonation state of carboxylic acid groups as well as reorganization of the protein upon electron transfer. Comparison of Q(B)(-)/Q(B) spectra of native and mutant RCs indicates that the interactions between Q(B) or Q(B)(-) and the protein are similar in all RCs. A differential signal at approximately 1650/1640 cm(-1), which is common to all the spectra, is associated with a movement of a peptide carbonyl or a side chain following Q(B) reduction. On the other hand, Q(B)(-)/Q(B) spectra of native and mutant RCs display several differences, notably between 1700 and 1650 cm(-1) (amide I and side chains), between 1570 and 1530 cm(-1) (amide II), and at 1728-1730 cm(-1) (protonated carboxylic acid groups). In particular, the latter region in native RCs is characterized by a main positive band at 1728 cm(-1) and a negative signal at 1739 cm(-1). In the L212 mutants, the amplitude of the positive band is strongly decreased leading to a differential signal at 1739/1730 cm(-1) that is insensitive to (1)H/(2)H isotopic exchange. In native RCs, only the 1728 cm(-1) band is affected in (2)H(2)O while the 1739 cm(-1) signal is not. The effects of the mutations and of (1)H/(2)H exchange on the Q(B)(-)/Q(B) spectra concur in the attribution of the 1728 cm(-1) band in native RCs to (partial) proton uptake by GluL212 upon the first electron transfer to Q(B), as previously observed in Rhodobacter sphaeroides RCs [Nabedryk, E., Breton, J., Hienerwadel, R., Fogel, C., M?ntele, W., Paddock, M. L., and Okamura, M. Y. (1995) Biochemistry 34, 14722-14732]. More generally, strong homologies of the Q(B) to Q(B)(-) transition in the RCs from Rb. sphaeroides and Rb. capsulatus are detected by differential FTIR spectroscopy. The FTIR data are discussed in relation with the results from global proton uptake measurements and electrogenic events concomitant with the reduction of Q(B) and with a model of the Q(B) turnover in Rb. sphaeroides RCs [Mulkidjanian, A. Y. (1999) FEBS Lett. 463, 199-204].  相似文献   

16.
Rich PR  Breton J 《Biochemistry》2001,40(21):6441-6449
Photolysis spectra of the CO and cyanide adducts of reduced bovine cytochrome c oxidase have been studied by FTIR difference spectroscopy. Bound CO is predominantly in a single 1963 cm(-1) form whereas cyanide is bound in at least two forms (2058/2045 cm(-1)). These forms are pH-independent between pH 6.5 and 8.5, indicating that there is no titratable protonatable group that influences significantly their binding in this pH range. Photolysis spectra of the cyanide adduct have a positive band around 2090 cm(-1) in H(2)O due at least in part to free HCN and at 1880 cm(-1) in D(2)O due to free DCN. The frequency of the positive band around 2090 cm(-1), and its persistence in D(2)O media, raises the possibility that a transient cyanide-Cu(B) adduct also contributes to this signal, equivalent to the CO-Cu(B) species that is formed when CO is photolyzed. Photolysis produces changes throughout the 1000-1800 cm(-1) region. Reduced minus (reduced + CO) photolysis spectra in H(2)O exhibit a pH-independent and symmetrical peak/trough at 1749/1741 cm(-1). A related feature in homologous oxidases has been suggested to arise from a conserved glutamic acid. However, only around one-third of the feature is shifted to lower frequencies by incubation in D(2)O media, and an additional fraction is shifted if catalytic turnover occurs in D(2)O. Reduced minus (reduced + cyanide) photolysis spectra exhibit multiple features in H(2)O in this region with peaks at 1752, 1725, and 1708 cm(-1) and troughs at 1740, 1715, and 1698 cm(-1). Again, only a part of these features shift in D(2)O, even with catalytic turnover. A variety of additional H/D-sensitive features in the 1700-1000 cm(-1) region of the spectra can be discerned, one of which in cyanide photolysis spectra is tentatively assigned to a conserved tyrosine, Y244. Data are discussed in relation to the structure of the binuclear center and protonatable groups in its vicinity.  相似文献   

17.
Two variants of the cytochrome c1 component of the Rhodobacter capsulatus cytochrome bc1 complex, in which Met183 (an axial heme ligand) was replaced by lysine (M183K) or histidine (M183H), have been analyzed. Electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectra of the intact complex indicate that the histidine/methionine heme ligation of the wild-type cytochrome is replaced by histidine/lysine ligation in M183K and histidine/histidine ligation in M183H. Variable amounts of histidine/histidine axial heme ligation were also detected in purified wild-type cytochrome c1 and its M183K variant, suggesting that a histidine outside the CSACH heme-binding domain can be recruited as an alternative ligand. Oxidation-reduction titrations of the heme in purified cytochrome c1 revealed multiple redox forms. Titrations of the purified cytochrome carried out in the oxidative or reductive direction differ. In contrast, titrations of cytochrome c1 in the intact bc1 complex and in a subcomplex missing the Rieske iron-sulfur protein were fully reversible. An Em7 value of -330 mV was measured for the single disulfide bond in cytochrome c1. The origins of heme redox heterogeneity, and of the differences between reductive and oxidative heme titrations, are discussed in terms of conformational changes and the role of the disulfide in maintaining the native structure of cytochrome c1.  相似文献   

18.
Point mutations of E243D and I67N were introduced into subunit I of a 6histidine-tagged (6H-WT) form of yeast Saccharomyces cerevisiae mitochondrial cytochrome c oxidase. The two mutants (6H-E243D(I) and 6H-I67N(I)) were purified and showed ≈50 and 10% of the 6H-WT turnover number. Light-induced CO photolysis FTIR difference spectra of the 6H-WT showed a peak/trough at 1749/1740cm(-1), as seen in bovine CcO, which downshifted by 7cm(-1) in D(2)O. The bands shifted to 1736/1762cm(-1) in 6H-E243D(I), establishing that the carboxyl group affected by CO binding in mitochondrial CcOs is E243. In 6H-I67N(I), the trough at 1740cm(-1) was shifted to 1743cm(-1) and its accompanying peak intensity was greatly reduced. This confirms that the I67N mutation interferes with conformational alterations around E243. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

19.
The chromophore of bacteriorhodopsin undergoes a transition from purple (570 nm absorbance maximum) to blue (605 nm absorbance maximum) at low pH or when the membrane is deionized. The blue form was stable down to pH 0 in sulfuric acid, while 1 M NaCl at pH 0 completely converted the pigment to a purple form absorbing maximally at 565 Other acids were not as effective as sulfuric in maintaining the blue form, and chloride was the best anion for converting blue membrane to purple membrane at low pH. The apparent dissociation constant for Cl- was 35 mM at pH 0, 0.7 M at pH 1 and 1.5 M at pH 2. The pH dependence of apparent Cl- binding could be modeled by assuming two different types of chromophore-linked Cl- binding site, one pH-dependent. Chemical modification of bacteriorhodopsin carboxyl groups (probably Asp-96, -102 and/or -104) by 1-ethyl-3-dimethlyaminopropyl carbodiimide, Lys-41 by dansyl chloride, or surface arginines by cyclohexanedione had no effect on the conversion of blue to purple membrane at pH 1. Fourier transform infrared difference spectroscopy of chloride purple membrane minus acid blue membrane showed the protonation of a carboxyl group (trough at 1392 cm -1 and peak at 1731 cm -1). The latter peak shifted to 1723 cm -1 in D2O. Ultraviolet difference spectroscopy of chloride purple membrane minus acid blue membrane showed ionization of a phenolic group (peak at 243 nm and evidence for a 295 nm peak superimposed on a tryptophan perturbation trough). This suggests the possibility of chloride-induced proton transfer from a tyrosine phenolic group to a carboxylate side-chain. We propose a mechanism for the purple to acid blue to chloride purple transition based on these results and the proton pump model of Braiman et al. (Biochemistry 27 (1988) 8516-8520).  相似文献   

20.
To study the essentiality of head domain movement of the Rieske iron-sulfur protein (ISP) during bc(1) catalysis, Rhodobacter sphaeroides mutants expressing His-tagged cytochrome bc(1) complexes with three pairs of cysteines engineered (one cysteine each) on the interface between cytochrome b and ISP, A185C(cytb)/K70C(ISP), I326C(cytb)/G165C(ISP), and T386C(cytb)/K164C(ISP), were generated and characterized. Formation of an intersubunit disulfide bond between cytochrome b and ISP is detected in membrane (intracytoplasmic membrane and air-aged chromatophore), and purified bc(1) complex was prepared from the A185C(cytb)/K70C(ISP) mutant cells. Formation of the intersubunit disulfide bond in this cysteine pair mutant complex is concurrent with the loss of its bc(1) activity. Reduction of this disulfide bond by beta-mercaptoethanol restores activity, indicating that mobility of the head domain of ISP is functionally important in the cytochrome bc(1) complex. The rate of intramolecular electron transfer, between 2Fe2S and heme c(1), in the A185C(cytb)/K70C(ISP) mutant complex is much lower than that in the wild type or in their respective single cysteine mutant complexes, indicating that formation of an intersubunit disulfide bond between cytochrome b and ISP arrests the head domain of ISP in the "fixed state" position, which is too far for electron transfer to heme c(1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号