首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: β-Amyloid peptide (Aβ) is the main constituent in both senile plaques and diffuse deposits in Alzheimer's diseased brains. It was previously shown that synthetic Aβs were able to form free radical species in aqueous solution and cause both oxidative damage to cell proteins and inactivation of key metabolic enzymes. We also previously demonstrated that an interaction of Aβ(1–40) with the oxidatively sensitive enzyme glutamine synthetase (GS) resulted in both inactivation of GS and an increase of Aβ toxicity to hippocampal cell cultures. In the present study the enhancement of Aβ toxicity during interaction with GS was found to be accompanied by abrogation of fibril formation and partial fragmentation of Aβ(1–40). HPLC elution profiles demonstrated the production of several peptide fragments. Analysis of the amino acid sequence of the major fragments identified them as the first 15 and the last six amino acids of Aβ(1–40). The fragmentation of Aβ was inhibited by immunoprecipitation of GS.  相似文献   

2.
Abstract: Activated microglia, often associated with neuritic amyloid plaques in the Alzheimer's disease brain, are likely to contribute to the progression of the disease process, e.g., by releasing neurotoxic reactive oxygen and/or nitrogen intermediates. In the present study, whether the amyloid β peptide (Aβ), the principal constituent of amyloid plaques, can stimulate microglial respiratory burst activity and/or microglial production of nitric oxide was examined. Using neonatal rat microglial cultures as a model, it was found that neither the spontaneous release of nitric oxide nor the lipopolysaccharide-induced production of nitric oxide was altered in cultures previously incubated with synthetic Aβ(1–40). for 24 h. In addition, no direct stimulatory effect of Aβ(1–40) on the respiratory burst activity was observed. Nevertheless, concomitant with an increase in the number of responsive cells, a profound priming of the phorbol 12-myristate 13-acetate-evoked production of superoxide anion was observed in Aβ(1–40)-treated cultures. Thus, both the maximal rate and the total phorbol 12-myristate 13-acetate-induced production of superoxide appeared to be statistically significantly higher as compared with untreated cultures. It is concluded that, as far as activation of the microglial respiratory burst is concerned, Aβ(1–40) may merely act as a priming rather than a triggering stimulus.  相似文献   

3.
Abstract: Clusterin is a secreted glycoprotein that is markedly induced in many disease states and after tissue injury. In the CNS, clusterin expression is elevated in neuropathological conditions such as Alzheimer's disease (AD), where it is found associated with amyloid-β (Aβ) plaques. Clusterin also coprecipitates with Aβ from CSF, suggesting a physiological interaction with Aβ. Given this interaction with Aβ, the goal of this study was to determine whether clusterin could modulate Aβ neurotoxicity. A mammalian recombinant source of human clusterin was obtained by stable transfection of hamster kidney fibroblasts with pADHC-9, a full-length human cDNA clone for clusterin. Recombinant clusterin obtained from this cell line, as well as a commercial source of native clusterin purified from serum, afforded dose-dependent neuroprotection against Aβ(1–40) when tested in primary rat mixed hippocampal cultures. Clusterin afforded substoichiometric neuroprotection against several lots of Aβ(1–40) but not against H2O2 or kainic acid excitotoxicity. These results suggest that the elevated expression of clusterin found in AD brain may have effects on subsequent amyloid-β plaque pathology.  相似文献   

4.
Abstract: Alzheimer's disease (AD) is identified by the accumulation of amyloid plaques, neurofibrillary degeneration, and the accompanying neuronal loss. AD amyloid assembles into compact fibrous deposits from the amyloid β(Aβ) protein, which is a proteo-lytic fragment of the membrane-associated amyloid precursor protein. To examine the effects of amyloid on neuron growth, a hybrid mouse motoneuron cell line (NSC34) exhibiting spontaneous process formation was exposed to artificial "plaques" created from aggregated synthetic Aβ peptides. These correspond to full-length Aβ residues 1–40 (Aβ1–40), an internal β-sheet region comprising residues 11–28 (Aβ11–28), and a proposed toxic fragment comprising residues 25–35 (Aβ25–35). Fibers were immobilized onto culture dishes, and addition of cells to these in vitro plaques revealed that Aβ was not a permissive substrate for cell adhesion. Neurites in close contact with these deposits displayed abnormal swelling and a tendency to avoid contact with the Aβ fibers. In contrast, Aβ did not affect the adhesion or growth of rat astrocytes, implicating a specific Aβ-neuron relationship. The inhibitory effects were also unique to Aβ as no response was observed to deposits of pancreatic islet amyloid poly-peptide fibers. Considering the importance of cell adhesion in neurite elongation and axonal guidance, the antiadhesive properties of Aβ amyloid plaques found in vivo may contribute to the neuronal loss responsible for the clinical manifestations of AD.  相似文献   

5.
Abstract: Amyloid β protein (Aβ) deposition in the cerebral arterial and capillary walls is one of the major characteristics of brains from patients with Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D). Vascular Aβ deposition is accompanied by degeneration of smooth muscle cells and pericytes. In this study we found that Aβ1–40 carrying the "Dutch" mutation (HCHWA-D Aβ1–40) as well as wild-type Aβ1–42 induced degeneration of cultured human brain pericytes and human leptomeningeal smooth muscle cells, whereas wild-type Aβ1–40 and HCHWA-D Aβ1–42 were inactive. Cultured brain pericytes appeared to be much more vulnerable to Aβ-induced degeneration than leptomeningeal smooth muscle cells, because in brain pericyte cultures cell viability already decreased after 2 days of exposure to HCHWA-D Aβ1–40, whereas in leptomeningeal smooth muscle cell cultures cell death was prominent only after 4–5 days. Moreover, leptomeningeal smooth muscle cell cultures were better able to recover than brain pericyte cultures after short-term treatment with HCHWA-D Aβ1–40. Degeneration of either cell type was preceded by an increased production of cellular amyloid precursor protein. Both cell death and amyloid precursor protein production could be inhibited by the amyloid-binding dye Congo red, suggesting that fibril assembly of Aβ is crucial for initiating its destructive effects. These data imply an important role for Aβ in inducing perivascular cell pathology as observed in the cerebral vasculature of patients with Alzheimer's disease or HCHWA-D.  相似文献   

6.
Abstract: Studies of processing of the Alzheimer β-amyloid precursor protein (βAPP) have been performed to date mostly in continuous cell lines and indicate the existence of two principal metabolic pathways: the "β-secretase" pathway, which generates β-amyloid (Aβ1–40/42; ∼4 kDa), and the "α-secretase" pathway, which generates a smaller fragment, the "p3" peptide (Aβ17–40/42; ∼3 kDa). To determine whether similar processing events underlie βAPP metabolism in neurons, media were examined following conditioning by primary neuronal cultures derived from embryonic day 17 rats. Immunoprecipitates of conditioned media derived from [35S]methionine pulse-labeled primary neuronal cultures contained 4- and 3-kDa Aβ-related species. Radiosequencing analysis revealed that the 4-kDa band corresponded to conventional Aβ beginning at position Aβ(Asp1), whereas both radio-sequencing and immunoprecipitation-mass spectrometry analyses indicated that the 3-kDa species in these conditioned media began with Aβ(Glu11) at the N terminus, rather than Aβ(Leu17) as does the conventional p3 peptide. Either activation of protein kinase C or inhibition of protein phosphatase 1/2A increased soluble βAPPα release and decreased generation of both the 4-kDa Aβ and the 3-kDa N-truncated Aβ. Unlike results obtained with continuously cultured cells, protein phosphatase 1/2A inhibitors were more potent at reducing Aβ secretion by neurons than were protein kinase C activators. These data indicate that rodent neurons generate abundant Aβ variant peptides and emphasize the role of protein phosphatases in modulating neuronal Aβ generation.  相似文献   

7.
Abstract: H2O2 and free radical-mediated oxidative stresses have been implicated in mediating amyloid β(1–40) [Aβ(1–40)] neurotoxicity to cultured neurons. In this study, we confirm that addition of the H2O2-scavenging enzyme catalase protects neurons in culture against Aβ-mediated toxicity; however, it does so by a mechanism that does not involve its ability to scavenge H2O2. Aβ-mediated elevation in intracellular H2O2 production is suppressed by addition of a potent H2O2 scavenger without any significant neuroprotection. Three intracellular biochemical markers of H2O2-mediated oxidative stress were unchanged by Aβ treatment: (a) glyceraldehyde-3-phosphate dehydrogenase activity, (b) hexose monophosphate shunt activity, and (c) glucose oxidation via the tricarboxylic acid cycle. Ionspray mass spectra of Aβ in the incubation medium indicated that Aβ itself is an unlikely source of reactive oxygen species. In this study we demonstrate that intracellular ATP concentration is compromised during the first 24-h exposure of neurons to Aβ. Our results challenge a pivotal role for H2O2 generation in mediating Aβ toxicity, and we suggest that impairment of energy homeostasis may be a more significant early factor in the neurodegenerative process.  相似文献   

8.
One hallmark of Alzheimer disease (AD) is the extracellular deposition of the amyloid β-peptide (Aβ) in senile plaques. Two major forms of Aβ are produced, 40 (Aβ40) and 42 (Aβ42) residues long. The most abundant form of Aβ is Aβ40, while Aβ42 is more hydrophobic and more prone to form toxic oligomers and the species of particular importance in early plaque formation. Thus, the length of the hydrophobic C-terminal seems to be very important for the oligomerization and neurotoxicity of the Aβ peptide. Here we investigated which Aβ species are deposited in AD brain. We analyzed plaque cores, prepared from occipital and frontal cortex, from sporadic and familial AD cases and performed a quantitative study using Aβ standard peptides. Cyanogen bromide was used to generate C-terminal Aβ fragments, which were analyzed by HPLC coupled to an electrospray ionisation ion trap mass spectrometer. We found a longer peptide, Aβ43, to be more frequent than Aβ40. No variants longer than Aβ43 could be observed in any of the brains. Immunohistochemistry was performed and was found to be in line with our findings. Aβ1-43 polymerizes rapidly and we suggest that this variant may be of importance for AD.  相似文献   

9.
Cdk5 dysregulation is a major event in the neurodegenerative process of Alzheimer's disease (AD). In vitro studies using differentiated neurons exposed to Aβ exhibit Cdk5-mediated tau hyperphosphorylation, cell cycle re-entry and neuronal loss. In this study we aimed to determine the role of Cdk5 in neuronal injury occurring in an AD mouse model obtained through the intracerebroventricular (icv) injection of the Aβ1–40 synthetic peptide. In mice icv-injected with Aβ, Cdk5 activator p35 is cleaved by calpains, leading to p25 formation and Cdk5 overactivation. Subsequently, there was an increase in tau hyperphosphorylation, as well as decreased levels of synaptic markers. Cell cycle reactivation and a significant neuronal loss were also observed. These neurotoxic events in Aβ-injected mice were prevented by blocking calpain activation with MDL28170 , which was administered intraperitoneally (ip). As MDL prevents p35 cleavage and subsequent Cdk5 overactivation, it is likely that this kinase is involved in tau hyperphosphorylation, cell cycle re-entry, synaptic loss and neuronal death triggered by Aβ. Altogether, these data demonstrate that Cdk5 plays a pivotal role in tau phosphorylation, cell cycle induction, synaptotoxicity, and apoptotic death in postmitotic neurons exposed to Aβ peptides in vivo , acting as a link between diverse neurotoxic pathways of AD.  相似文献   

10.
Abstract: Deposit of β-amyloid protein (Aβ) in Alzheimer's disease brain may contribute to the associated neurodegeneration. We have studied the neurotoxicity of Aβ in primary cultures of murine cortical neurons, with the aim of identifying pharmacologic ways of attenuating the injury. Exposure of cultures to Aβ (25–35 fragment; 3–25 4mU M ) generally triggers slow, concentration-dependent neurodegeneration (over 24–72 h). With submaximal Aβ- (25–35) exposure (10 μ M ), substantial (>40% within 48 h) degeneration often occurs and is markedly attenuated by the presence of the Ca2+ channel blockers nimodipine (1–20 μ M ) and Co2+ (100 μ M ) during the Aβ exposure. However, Aβ neurotoxicity is not affected by the presence of glutamate receptor antagonists. We suggest that Ca2+ influx through voltage-gated Ca2+ channels may contribute to Aβ-induced neuronal injury and that nimodipine and Co2+, by attenuating such influx, are able to attenuate Aβ neurotoxicity.  相似文献   

11.
Abstract: Cerebrovascular amyloid β-protein (Aβ) deposition is a key pathological feature of Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D). Aβ1–40 containing the E22Q HCHWA-D mutation, but not wild-type Aβ1–40, potently induces several pathologic responses in cultured human cerebrovascular smooth muscle cells, including cellular degeneration and a robust increase in the levels of cellular Aβ precursor. In the present study, we show by several quantitative criteria, including thioflavin T fluorescence binding, circular dichroism spectroscopy, and transmission electron microscopic analysis, that at a concentration of 25 µ M neither HCHWA-D Aβ1–40 nor wild-type Aβ1–40 appreciably assembles into β-pleated sheet-containing fibrils in solution over a 6-day incubation period. In contrast, at the same concentrations, HCHWA-D Aβ1–40, but not wild-type Aβ1–40, selectively binds and assembles into abundant fibrils on the surfaces of cultured human cerebrovascular smooth muscle cells. The simultaneous addition of an equimolar concentration of the dye Congo red prevents the cell surface fibril assembly of HCHWA-D Aβ1–40. Moreover, Congo red effectively blocks the key pathologic responses induced by HCHWA-D Aβ1–40 in these cells. The present findings suggest that the surface of human cerebrovascular smooth muscle cells may selectively orchestrate the assembly of pathogenic Aβ fibrils and that cell surface Aβ fibril formation plays an important role in causing the pathologic responses in these cells.  相似文献   

12.
Abstract: Amyloid β-peptides (Aβ) may alter the neuronal membrane lipid environment by changing fluidity and inducing free radical lipid peroxidation. The effects of Aβ1–40 and Aβ25–35 on the fluidity of lipids adjacent to proteins (annular fluidity), bulk lipid fluidity, and lipid peroxidation were determined in rat synaptic plasma membranes (SPM). A fluorescent method based on radiationless energy transfer from tryptophan of SPM proteins to pyrene and pyrene monomer-eximer formation was used to determine SPM annular fluidity and bulk fluidity, respectively. Lipid peroxidation was determined by the thiobarbituric acid assay. Annular fluidity and bulk fluidity of SPM were increased significantly ( p ≤ 0.02) by Aβ1–40. Similar effects on fluidity were observed for Aβ25–35 ( p ≤ 0.002). Increased fluidity was associated with lipid peroxidation. Both Aβ peptides significantly increased ( p ≤ 0.006) the amount of malondialdehyde in SPM. The addition of a water-soluble analogue of vitamin E (Trolox) inhibited effects of Aβ on lipid peroxidation and fluidity in SPM. The fluidizing action of Aβ peptides on SPM may be due to the induction of lipid peroxidation by those peptides. Aβ-induced changes in neuronal function, such as ion flux and enzyme activity, that have been reported previously may result from the combined effects of lipid peroxidation and increased membrane fluidity.  相似文献   

13.
Abstract: The frequency of the ε4 allele of apolipoprotein E(apoE) is increased in late-onset and sporadic forms of Alzheimer's disease (AD). ApoE also binds to β-amyloid (Aβ) and both proteins are found in AD plaques. To further investigate the potential interaction of apoE and Aβ in the pathogenesis of AD, we have determined the binding, internalization, and degradation of human apoE isoforms in the presence and absence of Aβ peptides to rat primary hippocampal neurons. We demonstrate that the lipophilic Aβ peptides, in particular Aβ1–42, Aβ1–40, and Aβ25–35, increase significantly apoE-liposome binding to hippocampal neurons. For each Aβ peptide, the increase was significantly greater for the apoE4 isoform than for the apoE3 isoform. The most effective of the Aβ peptides to increase apoE binding, Aβ25–35, was further shown to increase significantly the internalization of both apoE3- and apoE4-liposomes, without affecting apoE degradation. Conversely, Aβ1–40 uptake by hippocampal neurons was shown to be increased in the presence of apoE-liposomes, more so in the presence of the apoE4 than the apoE3 isoform. These results provide evidence that Aβ peptides interact directly with apoE lipoproteins, which may then be transported together into neuronal cells through apoE receptors.  相似文献   

14.
Abstract: Mutations in the presenilin genes PS1 and PS2 cause the most common form of early-onset familial Alzheimer's disease. The influence of PS1 mutations on the generation of endogenous intracellular amyloid β-protein (Aβ) species was assessed using a highly sensitive immunoblotting technique with inducible mouse neuro-blastoma (Neuro 2a) cell lines expressing the human wild-type (wt) or mutated PS1 (M146L or Δexon 10). The induction of mutated PS1 increased the intracellular levels of two distinct Aβ species ending at residue 42 that were likely to be Aβ1–42 and its N-terminally truncated variant(s) Aβx-42. The induction of mutated PS1 resulted in a higher level of intracellular Aβ1–42 than of intracellular Aβx-42, whereas extracellular levels of Aβ1–42 and Aβx-42 were increased proportionally. In addition, the intracellular generation of these Aβ42 species in wt and mutated PS1 -induced cells was completely blocked by brefeldin A, whereas it exhibited differential sensitivities to monensin: the increased accumulation of intracellular Aβx-42 versus inhibition of intracellular Aβ1–42 generation. These data strongly suggest that Aβx-42 is generated in a proximal Golgi, whereas Aβ1–42 is generated in a distal Golgi and/or a post-Golgi compartment. Thus, it appears that PS1 mutations enhance the degree of 42-specific γ-secretase cleavage that occurs in the normal β-amyloid precursor protein processing pathway (a) in the endoplasmic reticulum or the early Golgi apparatus prior to β-secretase cleavage or (b) in the distinct sites where Aβx-42 and Aβ1–42 are generated.  相似文献   

15.
Age-related macular degeneration (AMD) is characterized by the formation of drusen, extracellular deposits associated with atrophy of the retinal pigmented epithelium (RPE), disturbance of the transepithelial barrier and photoreceptor death. Amyloid-β (Aβ) is present in drusen but its role during AMD remains unknown. This study investigated the in vitro and in vivo effects of the oligomeric form of Aβ(1-42) – OAβ(1-42) – on RPE and found that it reduced mitochondrial redox potential and increased the production of reactive oxygen species, but did not induce apoptosis in RPE cell cultures. It also disorganized the actin cytoskeleton and halved occludin expression, markedly decreasing attachment capacity and abolishing the selectivity of RPE cell transepithelial permeability. Antioxidant pretreatment partially reversed the effects of OAβ(1-42) on mitochondrial redox potential and transepithelial permeability. Subretinally injected OAβ(1-42) induced pigmentation loss and RPE hypertrophy but not RPE cell apoptosis in C57BL/6 J mice. Rapid OAβ(1-42)-induced disorganization of cytoskeletal actin filaments was accompanied by decreased RPE expression of the tight junction proteins occludin and zonula occludens-1 and of the visual cycle proteins cellular retinaldehyde-binding protein and RPE65. The number of photoreceptors decreased by half within a few days. Our study pinpoints the role of Aβ in RPE alterations and dysfunctions leading to retinal degeneration and suggests that targeting Aβ may help develop selective methods for treating diseases involving retinal degeneration, such as AMD.  相似文献   

16.
Abstract: Amyloid β protein (Aβ), the central constituent of senile plaques in Alzheimer's disease (AD) brain, is known to exert toxic effects on cultured neurons. The role of the voltage-sensitive Ca2+ channel (VSCC) in β(25–35) neurotoxicity was examined using rat cultured cortical and hippocampal neurons. When L-type VSCCs were blocked by application of nimodipine, β(25–35) neurotoxicity was attenuated, whereas application of ω-conotoxin GVIA (ω-CgTX-GVIA) or ω-agatoxin IVA (ω-Aga-IVA), the blocker for N- or P/Q-type VSCCs, had no effects. Whole-cell patch-clamp studies indicated that the Ca2+ current density of β(25–35)-treated neurons is about twofold higher than that of control neurons. Also, β(25–35) increased Ca2+ uptake, which was sensitive to nimodipine. The 2',7'-dichlorofluorescin diacetate assay showed the ability of β(25–35) to produce reactive oxygen species. Nimodipine had no effect on the level of free radicals. In contrast, vitamin E, a radical scavenger, reduced the level of free radicals, neurotoxicity, and Ca2+ uptake. These results suggest that β(25–35) generates free radicals, which in turn, increase Ca2+ influx via the L-type VSCC, thereby inducing neurotoxicity.  相似文献   

17.
Abstract: Increasing data suggest that the amyloid β-peptide (Aβ), which accumulates in the brains of Alzheimer's victims, plays a role in promoting neuronal degeneration. Cell culture studies have shown that Aβ can be neurotoxic and recent findings suggest that the mechanism involves destabilization of cellular calcium homeostasis. We now report that cytochalasin D, a compound that depolymerizes actin microfilaments selectively, protects cultured rat hippocampal neurons against Aβ neurotoxicity. Cytochalasin D was effective at concentrations that depolymerized actin (10–100 n M ). The elevation of [Ca2+]i induced by Aβ, and the enhancement of [Ca2+]i responses to glutamate in neurons exposed to Aβ, were markedly attenuated in neurons pretreated with cytochalasin D. The protective effect of cytochalasin D appeared to result from a specific effect on actin filaments and reduction in calcium influx, because cytochalasin E, another actin filament-disrupting agent, also protected neurons against Aβ toxicity; the microtubule-disrupting agent colchicine was ineffective; cytochalasin D did not protect neurons against the toxicity of hydrogen peroxide. These findings suggest that actin filaments play a role in modulating [Ca2+]i responses to neurotoxic insults and that depolymerization of actin can protect neurons against insults relevant to the pathogenesis of Alzheimer's disease.  相似文献   

18.
Abstract: β-Amyloid peptide (Aβ), a proteolytic fragment of the β-amyloid precursor protein, is a major component of senile plaques in the brain of Alzheimer's disease patients. This neuropathological feature is accompanied by increased neuronal cell loss in the brain and there is evidence that Aβ is directly neurotoxic. In the present study reduced cell viability in four different neuroblastoma cell types was observed after treatment with human Aβ1–42 for 1 day. Of the cell types tested rat PC12 and human IMR32 cells were most susceptible to Aβ toxicity. Chromosomal condensation and fragmentation of nuclei were seen in PC12, NB2a, and B104 cells but not in IMR32 cells irrespective of their high sensitivity to Aβ. Electrophoretic analysis of cellular DNA confirmed internucleosomal DNA fragmentation typical for apoptosis in all cell types except IMR32. These findings suggest that the form of Aβ-induced cell death (necrosis or apoptosis) may depend on the cell type.  相似文献   

19.
The deposition of amyloid β (Aβ) protein is a consistent pathological hallmark of Alzheimer's disease (AD) brains; therefore, inhibition of Aβ fibril formation and destabilization of pre-formed Aβ fibrils is an attractive therapeutic and preventive strategy in the development of disease-modifying drugs for AD. This study demonstrated that Paeonia suffruticosa , a traditional medicinal herb, not only inhibited fibril formation of both Aβ1–40 and Aβ1–42 but it also destabilized pre-formed Aβ fibrils in a concentration-dependent manner. Memory function was examined using the passive-avoidance task followed by measurement of Aβ burden in the brains of Tg2576 transgenic mice. The herb improved long-term memory impairment in the transgenic mice and inhibited the accumulation of Aβ in the brain. Three-dimensional HPLC analysis revealed that a water extract of the herb contained several different chemical compounds including 1,2,3,4,6-penta- O -galloyl-β- d -glucopyranose (PGG). No obvious adverse/toxic were found following treatment with PGG. As was observed with Paeonia suffruticosa , PGG alone inhibited Aβ fibril formation and destabilized pre-formed Aβ fibrils in vitro and in vivo . Our results suggest that both Paeonia suffruticosa and its active constituent PGG have strong inhibitory effects on formation of Aβ fibrils in vitro and in vivo . PGG is likely to be a safe and promising lead compound in the development of disease-modifying drugs to prevent and/or cure AD.  相似文献   

20.
Abstract: There is mounting evidence that at least some of the neurotoxicity associated with Alzheimer's disease (AD) is due to proteolytic fragments of the β-amyloid precursor protein (βAPP). Most research has focused on the amyloid β protein (Aβ), which has been shown to possess ion channel activity. However, the possible role of other cleaved products of the βAPP is less clear. We have investigated the ability of various products of βAPP to induce membrane ion currents by applying them to Xenopus oocytes, a model system used extensively for investigating electrophysiological aspects of cellular, including neuronal, signalling. We focussed on the 105-amino-acid C-terminal fragment (CT105) (containing the full sequence Aβ), which has previously been found to be toxic to cells, although little is known about its mode of action. We have found that CT105 is exceedingly potent, with a threshold concentration of 100–200 n M , in inducing nonselective ion currents when applied from either outside or inside the oocyte and is more effective than either βAPP or the Aβ fragments, β25–35 or β1–40. The ion channel activity of CT105 was concentration dependent and blocked by a monoclonal antibody to Aβ. These results suggest the possible involvement of CT105 in inducing the neural toxicity characteristic of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号