首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
β-glucuronidase (GUS) can be qualitatively assayed in seedlings and fully grown plants without injury or irreversible damage by short term incubations in X-gluc or by spraying 4-MUG.  相似文献   

3.
4.
The effect of cerulenin on the production of -lactamase and other periplasmic proteins was studied in Escherichia coli IA199 carrying plasmid pBR322. Cerulenin (10 to 25 g/ml) had almost no effect on the growth rate of E. coli but it decreased the amount of -lactamase and other periplamic proteins in shock fluid. Higher amounts of the antibiotic (40 to 100 g/ml)decreased turbidity and almost completely prevented synthesis of -lactamase and other periplasmic proteins. Cerulenin decreased incorporation of l-[35S]methionine into membranes during growth as well. Spheroplasts secreted -lactamase into the external medium, but during a 3-h incubation in the presence of cerulenin (25 g/ml) this secretion was prevented by more than 90%. -Lactamase was secreted into the isolated membrane vesicles from E. coli IA199. However, only 5% of the total amount of pre--lactamase was secreted and processed by the membranes in vitro. Cerulenin did not prevent processing in vitro but the membranes prepared from the cells grown in the presence of cerulenin (25 g/ml) did not catalyze processing of pre--lactamase at all. Membrane preparations from Bacillus subtilis did not process pre--lactamase either in the absence or in the presence of cerulenin.  相似文献   

5.
6.
7.
A new enzymatic method for the synthesis of β-galactosides of nucleosides and acyclic nucleoside analogues has been developed, using β-galactosidase from Escherichia coli as a catalyst and lactose as a sugar donor. The method is very rapid, feasible and last but not least inexpensive. Its applicability has been proven for a broad variety of possible substrates with respect to its scaling up for preparative use. Five new compounds from a series of nucleoside and acyclic nucleoside analogues have been prepared on a scale of several hundred milligrams, in all cases revealing very good results of the method concerning the reproducibility of the reaction yields and simplicity of the purification process.  相似文献   

8.
Synthesis of -glucuronidase in starch-degrading Escherichia coli (S1) was induced by amylose, amylopectin and pullulan supplied in mineral medium as the sole carbon source (1%, w/v). The maximum activity occurred after 4 days when cultures reached the stationary phase of growth, but induction was also evident during log-phase. The effects obtained with amylose, amylopectin and pullulan were higher than that obtained with maize starch.  相似文献   

9.
[目的]β-甘露聚糖酶和木聚糖酶都属于半纤维素酶,它们已经同时运用于工农业生产的许多领域.构建β-甘露聚糖酶和木聚糖酶共表达菌株并进行相关评价.[方法]通过设计一个共同的酶切位点,将菌株Bacillus subtilis BE-91中的β-甘露聚糖酶和木聚糖酶基因串联到表达载体pET28a(+)上,转化大肠杆菌构建了一株能够共表达β-甘露聚糖酶和木聚糖酶的菌株B.pET28a-man-xyl.[结果]菌株诱导21h后,发酵液中β-甘露聚糖酶和木聚糖酶的酶活分别为713.34 U/mL和1455.83 U/mL,是胞内酶活的11.8倍和2.53倍.[结论]SDS-PAGE分析、水解圈活性检测和胞外酶与胞内酶酶活检测表明:两个酶均以功能蛋白独立分泌到胞外.此外,与β-甘露聚糖酶和木聚糖酶单独酶解半纤维素相比,复合酶的酶解效果更好.菌株的成功构建为复合酶制剂(半纤维素酶制剂)的研究和生产奠定基础.  相似文献   

10.
11.
The -glucuronidase (GUS) gene is to date the most frequently used reporter gene in plants. Marketing of crops containing this gene requires prior evaluation of their biosafety. To aid such evaluations of the GUS gene, irrespective of the plant into which the gene has been introduced, the ecological and toxicological aspects of the gene and gene product have been examined. GUS activity is found in many bacterial species, is common in all tissues of vertebrates and is also present in organisms of various invertebrate taxa. The transgenic GUS originates from the enterobacterial species Escherichia coli that is widespread in the vertebrate intestine, and in soil and water ecosystems. Any GUS activity added to the ecosystem through genetically modified plants will be of no or minor influence. Selective advantages to genetically modified plants that posses and express the E. coli GUS transgene are unlikely. No increase of weediness of E. coli GUS expressing crop plants, or wild relatives that might have received the transgene through outcrossing, is expected. Since E. coli GUS naturally occurs ubiquitously in the digestive tract of consumers, its presence in food and feed from genetically modified plants is unlikely to cause any harm. E. coli GUS in genetically modified plants and their products can be regarded as safe for the environment and consumers  相似文献   

12.
Firefly (Luciola mingrelica) luciferase [Photinus luciferin 4-monooxygenase (ATP-hydrolysing); Photinus luciferin: oxygen 4-oxidoreductase (decarboxylating, ATP-hydrolysing), EC 1.13.12.7] has been immobilized on albumin and polyacrylamide gel, on AH-, CH- and CNBr-Sepharose 4B as well as on Ultragel, Ultradex and cellophane film activated by cyanogen bromide. Only immobilization on cyanogen bromide-activated polysaccharide carriers resulted in highly active immobilized luciferase. Kinetic properties of immobilized luciferase hardly differed from those of the soluble enzyme. The inactivation rate constants of soluble and immobilized luciferase were measured at pH 5.5–9.0 and 25°C as well as at pH 7.8 and 20–40°C. The ΔH and ΔS values for inactivation of soluble and immobilized luciferases were obtained. A 1000-fold stabilization effect was noted for the luciferase immobilized on CNBr-Sepharose 4B at pH 7.5 and 25°C. A stabilization mechanism for the immobilized luciferase is discussed.  相似文献   

13.
14.
Metabolic engineering of the early non-mevalonate terpenoid pathway of Escherichia coli was carried out to increase the supply of prenyl pyrophosphates as precursor for carotenoid production. Transformation with the genes dxs for over-expression of 1-deoxy-d-xylulose 5-phosphate synthase, dxr for 1-deoxy-d-xylulose 5-phosphate reductoisomerase and idi encoding an isopentenyl pyrophosphate stimulated carotenogenesis up to 3.5-fold. Co-transformation of idi with either dxs or dxr had an additive effect on ß-carotene and zeaxanthin production which reached 1.6 mg g–1 dry wt.  相似文献   

15.
The kinetics of renaturation of the β2-subunit of Escherichia coli tryptophan-synthetase (l-serine hydrolyase (adding indole) E.C. 4.2.1.20) and those of its two proteolytic fragments F1 and F2 are studied and compared. Steps corresponding to the refolding of F1, to the association of the folded F1 and F2 fragments, and to an isomerization of the associated protein are identified. These steps are ordered on the pathway of renaturation and some of their kinetic parameters are determined. This leads to a tentative kinetic model for the renaturation of nicked-β2 starting from the denatured F1 and F2 fragments.The step corresponding to the refolding of the F1 domain, as well as that corresponding to the last rate-limiting isomerization leading to the native protein, is shown to be the same in the refolding of the entire, uncleaved β2-protein. It is concluded that the refolded F1 fragment corresponds to a folding intermediate on the pathway of renaturation of the β2-subunit.  相似文献   

16.
Summary A fast 4-step isolation procedure for -D-galactosidase from E. coli has been developed: cell disruption, two-stage aqueous two-phase extraction and ultrafiltration. A 60-fold purification of the enzyme with a total yield of 75% was achieved.  相似文献   

17.
(13),(14)--d-Glucans represent an important component of cell walls in the Poaceae family of higher plants. A number of glycoside endo- and exohydrolases is required for the depolymerization of (13),(14)--d-glucans in germinated grain or for the partial hydrolysis of the polysaccharide in elongating vegetative tissues. The enzymes include (13),(14)--d-glucan endohydrolases (EC 3.2.1.73), which are classified as family 17 glycoside hydrolases, (14)--d-glucan glucohydrolases (family 1) and -d-glucan exohydrolases (family 3). Kinetic analyses of hydrolytic reactions enable the definition of action patterns, the thermodynamics of substrate binding, and the construction of subsite maps. Mechanism-based inhibitors and substrate analogues have been used to study the spatial orientation of the substrate in the active sites of the enzymes, at the atomic level. The inhibitors and substrate analogues also allow us to define the catalytic mechanisms of the enzymes and to identify catalytic amino acid residues. Three-dimensional structures of (13),(14)--d-glucan endohydrolases, (14)--d-glucan glucohydrolases and -d-glucan exohydrolases are available or can be reliably modelled from the crystal structures of related enzymes. Substrate analogues have been diffused into crystals for solving of the three-dimensional structures of enzyme-substrate complexes. This information provides valuable insights into potential biological roles of the enzymes in the degradation of the barley (13),(14)--d-glucans during endosperm mobilization and in cell elongation.  相似文献   

18.
Summary A -galactosidase gene from Lactobacillus sake coding for lactose hydrolysis was cloned and expressed in Escherichia coli. Chromosomal DNA from L. sake was partially digested with the restriction enzyme Sau3AI, and the 3–6 Kb fragment was ligated to the cloning vector pSP72 digested with BamHI. One E. coli transformant expressing -galactosidase was isolated on X-gal plates. It contained a plasmid with an insertion of approx. 4 Kb. The restriction map of the recombinant plasmid was constructed. The characteristics of the recombinant -galactosidase were compared with those of the wild type. The optima pH and temperature for both enzymes was 6.5 and 50°C, respectively. Stability of the enzymes at different temperatures and activity on lactose were determined.  相似文献   

19.
Kim CS  Ji ES  Oh DK 《Biotechnology letters》2003,25(20):1769-1774
Kluyveromyces lactis -galactosidase gene, LAC4, was expressed in Escherichia coli as a soluble His-tagged recombinant enzyme under the optimized culture conditions. The expressed protein was multimeric with a subunit molecular mass of 118 kDa. The dimeric form of the -galactosidase was the major fraction but had a lower activity than those of the multimeric forms. The purified enzyme required Mn2+ for activity and was inactivated irreversibly by imidazole above 50 mM. The activity was optimal at 37 and 40 °C for o-nitrophenyl--d-galactopyranoside (oNPG) and lactose, respectively. The optimum pH value is 7. The K m and V max values of the purified enzyme for oNPG were 1.5 mM and 560 mol min–1 mg–1, and for lactose 20 mM and 570 mol min–1 mg–1, respectively.  相似文献   

20.
The kinetic parameters of E.coli -galactosidase were not altered by the addition of 2-propanol or ethyl acetate (1.6% v/v). While ethylene glycol (1.6% v/v) doubled the values of both KM (0.29 mM) and kcat (1393 s–), tetraethyleneglycol-dimethylether (Tetraglyme,1.6% v/v) preserved KM, but decreased kcat. At 50°C all the cosolvents dramatically shortened the enzymatic half life, and so did Tetraglyme and 2-propanol at 28°C. At 28°C, both ethyl acetate and ethylene glycol stabilised the enzyme 9- and 6-fold respectively. This fact, together with the activation effect of ethylene glycol may lead to practical applications. © Rapid Science Ltd. 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号