首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apoptosis is the main driver of cell death in bioreactor suspension cell cultures during the production of biopharmaceuticals from animal cell lines. It is known that apoptosis also has an effect on the quality and quantity of the expressed recombinant protein. This has raised the importance of studying apoptosis for implementing culture optimization strategies. The work here describes a novel approach to obtain near real time data on proportion of viable, early apoptotic, late apoptotic and necrotic cell populations in a suspension CHO culture using automated sample preparation in conjunction with flow cytometry. The resultant online flow cytometry data can track the progression of apoptotic events in culture, aligning with analogous manual methodologies and giving similar results. The obtained near-real time apoptosis data are a significant improvement in monitoring capabilities and can lead to improved control strategies and research data on complex biological systems in bioreactor cultures in both academic and industrial settings focused on process analytical technology applications.  相似文献   

2.
The monoclonal antibody productivity of cell culture systems is strongly dependent on the maintenance of hybridoma cell viability. We report that partial (<50%) and transient (3 h) inhibition of protein synthesis by cycloheximide or deprivation of an essential amino acid induces apoptosis (programmed cell death) in B cell hybridomas. This unusual mechanism of apoptosis induction is likely to play a significant role in limiting cell viability in batch and perfusion cultures of hybridomas and emphasizes the importance of constantly maintaining a near optimal rate of macromolecular synthesis by optimization of all culture parameters. Inhibition of apoptosis in hybridomas by cell engineering and other technologies should permit, in the near future, a significant increase in the antibody productivity of existing cell culture systems.Abbreviations CHX cycloheximide - EDTA ethylenediaminetetraacetic acid - FBS fetal bovine serum - MEM minimum essential medium - PBS phosphate buffered saline  相似文献   

3.
Production of complex recombinant proteins requires the culture of mammalian cells in bioreactors. Inherent in these cultures is the problem of cell death, which can result from nutrient depletion, byproduct accumulation, and other bioreactor stresses which signal the cell to die through apoptosis, or programmed cell death. Apoptosis is a highly regulated pathway of both pro- and anti-apoptotic proteins that promote cell survival or death, and cell engineering efforts to inhibit the apoptosis pathway have led to increased culture viability and recombinant protein production. Originally, the exclusive function of many of these pathway proteins was believed to be binding at the mitochondria and regulating apoptosis through modulation of the mitochondria permeability. While this protein functionality does still hold true, it is now evident that these proteins also include roles in the metabolic processes of the mitochondria. Furthermore, apoptosis pathway proteins in other organelles within the cell may also both modulate apoptosis and metabolism. This review first details the known links that exist between apoptosis proteins and metabolic functions in the cytosol, mitochondria, and endoplasmic reticulum. Second, the review turns to look at potentially new cell engineering strategies that are linked to metabolism for improving cell culture viability and protein production.  相似文献   

4.
Cell lines derived from the hemopoetic lineages are widely used as hosts for the production of biologicals. These cell lines have been demonstrated to undergo high levels of the active death program commonly referred to as apoptosis. The effects of overexpression of the apoptosis suppressor gene bcl-2 on the properties of a Burkitt lymphoma were compared with the control cell line (transfected with a negative control plasmid) under a variety of conditions relevant to cell culture production technology. In stationary batch cultures, there was a clear reduction in both the rate of total cell death and the level of apoptosis during the decline phase of the bcl-2 transfected cell cultures as compared with that of the control cell cultures. Nutrient analysis revealed that the onset of death during the control cell cultures occurred following complete exhaustion of glutamine. However, the bcl-2 transfected cell cultures continued to grow even though glutamine had been exhausted, and a significant decline in viability only occurred when glucose had also been completely exhausted.When cells were cultured in suspension without prior adaptation, the bcl-2 transfected cells grew significantly better, suggesting that the bcl-2 gene protected the cells from apoptosis triggered by either the lack of substrate or the hydrodynamic environment. Fluorescence microscopy revealed that death of the control cells was almost entirely by apoptosis, whereas death was almost exclusively by necrosis in the delayed decline phase of the transfected cell cultures. In both instances, death occurred before total exhaustion of glucose and glutamine.The induction of apoptosis following growth arrest is a major impediment to the development of culture strategies that optimize specific productivity by reducing the growth rate. Results presented here suggest that suppression of apoptosis by bcl-2 under the condition of excess thymidine allows the maintenance of cells in a growth-arrested state for much longer than would otherwise be possible.When cells were transferred to a range of commercial serum-free media, cell growth was, in all cases, much better for the bcl-2 transfected cell line. Moreover, when cells were cultivated in glutamine-free medium, the control cells exhibited a decrease in viable cell number within the first 24 h whereas, for the bcl-2 transfected cell cultures, viable cell number did not exhibit any clear decrease until after 75 h. Clearly, these results indicate that the metabolic engineering approach can be used to alter advantageously the survival and proliferative capacity of cells in cell culture environments. (c) 1996 John Wiley & Sons, Inc.  相似文献   

5.
Bioreactor stresses, including nutrient deprivation, shear stress, and byproduct accumulation can cause apoptosis, leading to lower recombinant protein yields and increased costs in downstream processing. Although cell engineering strategies utilizing the overexpression of antiapoptotic Bcl‐2 family proteins such as Bcl‐2 and Bcl‐xL potently inhibit apoptosis, no studies have examined the use of the Bcl‐2 family protein, Mcl‐1, in commercial mammalian cell culture processes. Here, we overexpress both the wild type Mcl‐1 protein and a Mcl‐1 mutant protein that is not degraded by the proteasome in a serum‐free Chinese hamster ovary (CHO) cell line producing a therapeutic antibody. The expression of Mcl‐1 led to increased viabilities in fed‐batch culture, with cell lines expressing the Mcl‐1 mutant maintaining ~90% viability after 14 days when compared with 65% for control cells. In addition to enhanced culture viability, Mcl‐1‐expressing cell lines were isolated that consistently showed increases in antibody production of 20–35% when compared with control cultures. The quality of the antibody product was not affected in the Mcl‐1‐expressing cell lines, and Mcl‐1‐expressing cells exhibited 3‐fold lower caspase‐3 activation when compared with the control cell lines. Altogether, the expression of Mcl‐1 represents a promising alternative cell engineering strategy to delay apoptosis and increase recombinant protein production in CHO cells. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

6.
The development of serum- and protein-free Chinese hamster ovary (CHO) cell cultures is a high priority for the production of biopharmaceuticals. Protein-free competent CHO cells lines have been previously constructed by two different methods-metabolic engineering with cell-cycle regulatory proteins and long-term selective adaptation. Apoptosis was present in both cell lines during protein-free, static-batch culture as a result of nutrient deprivation, and glucose deprivation alone was a potent inducer of apoptosis compared to the depletion of other nutrients such as amino acids. By adding back serum to the cultures during batch growth or nutrient deprivation, it was shown that unidentified survival factors in serum can greatly reduce apoptosis in protein-competent cell lines in all phases of the culture. Both observations contrast to previous reports for hybridoma cells, in which amino acids were the key determinants of apoptosis and serum had no additional antiapoptotic effect. Serum's protective effect against CHO cell death in batch culture was multifaceted and complex: (1) 10% FBS increased cell viability to >99% during exponential growth from roughly 75-90%, (2) 5-10% fetal bovine serum (FBS) reduced specific glucose consumption rates in both cell lines by 40%, thereby delaying the onset of apoptosis caused by glucose deprivation, and (3) 5% FBS reduced the specific cell death rate by 65% during a 3-d lactate-consumption phase characterized by substantial abortive proliferation, in which the cells both proliferated and died at a constant rate. The benefit of serum on cell production over the various phases of batch growth was combined into a single parameter by integrating the viable cell concentration vs. time profile (termed here as cumulative volumetric viable cell-time, VCTvol). Despite the ability of both cell lines to grow indefinitely without any exogenous growth factors, the addition of serum resulted in a 2. 3-fold increase in the VCTvol. Thus, it is clear that there is much room for improvement of protein-free CHO cell lines despite their adequate growth competence, and new strategies different from those successfully used for hybridomas may be necessary to combat CHO cell apoptosis.  相似文献   

7.
Glial fibrillary acidic protein (GFAP) is an astrocytic lineage-specific intermediate filament protein, and its expression or non-expression is inversely correlated with the tumourigenecity of astrocytoma cells. To estimate the GFAP levels of astrocytes in intracranial tumour tissues, we established primary cultures from six astrocytic tumour specimens and used a double-staining flow cytometric method to detect the different levels of GFAP among these primary cultures. Although these primary cultures exhibited the same Matrigel invasiveness, their GFAP expression is inversely related to the rate of cell growth and the histologic grade of the original tumour. Phenylacetate, 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium butyrate, which are potent inducers of differentiation in various cancer cells, have been examined for their effects on these primary cultures. Cytostasis was more or less caused by these compounds in all six primary cultures, but induction of GFAP was observed only in the primary culture derived from a less malignant astrocytoma specimen having the highest intrinsic GFAP level. Interestingly, this primary culture, but not others, also exhibited increased HRG-α expression after phenylacetate or sodium butyrate treatment. Loss of the inducibility of differentiation-related gene expression could be one of the events involved in the malignant progression of astrocytomas. In addition, the chemotherapeutic agent BiCNU has a killing effect on all six primary culture cells, with LD50 less than 60nM. The underlying mechanism was through the induction of apoptosis in these primary culture cells regardless of their varying malignancies of original tumours. However, unlike colon cancer and leukaemia cells, sodium butyrate could not induce apoptosis within 4 days in these astrocytic tumour cells, indicating that the cell context of different cell types indeed determined the ability of sodium butyrate to induce apoptosis. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
In the field of therapeutic protein production, process intensification strategies entailing higher starting cell seeding densities, can potentially increase culture productivity, lower cost of goods and improve facility utilization. However, increased cell densities often trigger apoptotic cell death at the end of the cell culture process and thus reduce total viable cell count. Apoptosis-resistant Chinese hamster ovary cell lines may offer the possibility to diminish this undesired outcome of the intensified production process. In this study, we have generated and tested Bax/Bak double-knock-out (DKO) apoptosis resistant hosts to express standard and bispecific antibodies, as well as complex molecules in intensified production processes both as pools and single cell clones, and at different scales. In all cases, therapeutic proteins expressed from clones or pools generated from the Bax/Bak DKO hosts showed not only better viability but also enabled extended productivity in the later stages of the 14-day intensified production process. The product qualities of the produced molecules were comparable between Bax/Bak DKO and wild type cells. Overall, we showed that Bax/Bak DKO apoptosis-resistant host cell lines significantly improve viability and volumetric productivity of the intensified production cultures without altering product qualities.  相似文献   

9.
The protein kinase C (PKC) inhibitor safingol increased rounding and detachment of human oral squamous cell carcinoma (SCC) cells in monolayer cultures. When dissociated cells were incubated in the presence of safingol, cell adhesion was prevented and cell viability was lost gradually, while most cells survived in the absence of safingol even if their attachment was blocked by coating the culture plates with polyhydroxyethyl methacrylate. Flow cytometric analysis and agarose gel electrophoresis of cellular DNA revealed an increase in the proportion of sub-G1 cells and DNA fragmentation, indicating that safingol induced apoptosis of dissociated cells. During the induction of apoptosis in cell suspensions by safingol, there was an increase of the pro-apoptotic BH-3 only protein Bim and decrease of pro-survival Bcl-2 family proteins Bcl-xL and mitochondrial pro-apoptogenic factor endonuclease G translocated to the nucleus. The level of phosphorylated focal adhesion kinase (FAK) required for cell survival also rapidly decreased, followed by a decrease in the protein level. The introduction of siRNA against PKCα into SAS cells resulted in an increase of Bim, a decrease of Bcl-xL, the translocation of endonuclease G, and a decrease in the phosphorylation of FAK. These results suggest that Bim, Bcl-xL, FAK and endonuclease G are involved in safingol-induced apoptosis of detached oral SCC cells. Safingol can be used to induce apoptosis with cell detachment, anoikis, of oral SCC cells.  相似文献   

10.
Cell death by apoptosis limits growth and productivity in most animal cell cultures. It is therefore desirable to define genetic interventions to generate robust cell lines with superior performance in bioreactors, either by increasing specific productivity, life-span of the cultures or both. In this context, forced expression of BHRF1, an Epstein–Barr virus-encoded early protein with structural and functional homology with the anti-apoptotic protein Bcl-2, effectively protected hybridomas in culture and delayed cell death under conditions of glutamine starvation. In the present study, we explored the potential application of BHRF1 expression in hybridomas for long-term apoptosis protection under different biotechnological process designs (batch and continuous) and compared it to strategies based on Bcl-2 overexpression. Our results confirmed that long-term maintenance of the anti-apoptotic effect of BHRF1 can be obtained using bicistronic configurations conferring enhanced protection compared to Bcl-2, even in the absence of selective pressure. Such protective effect of BHRF1 is demonstrated both in batch and continuous culture. Moreover, a further analysis at high cell densities in semi-continuous perfusion cultures indicated that the mechanism of action of BHRF1 involves cell cycle arrest in G0–G1 state and this is translated in lower numbers of dead cells.  相似文献   

11.
McNamee JP  Bellier PV  McLean JR 《Cytokine》2001,15(5):274-280
The collection of finger-stab (FS) blood is a convenient and non-invasive method of rapidly acquiring human blood and is becoming increasingly popular for use in human biomonitoring studies. This study compared whole blood (WB) and peripheral blood mononuclear cell (PBMC) cultures derived from venipuncture (VP) and FS blood, to determine whether they respond similarly under culture conditions. The rates of spontaneous- and radiation-induced apoptosis and pro-inflammatory cytokine production were monitored over 72 h in each of four culture conditions. In non-irradiated WB cultures, the spontaneous rate of apoptosis was significantly lower in cultures from FS-derived blood than from VP-derived blood. However, FS- and VP-derived cultures responded similarly to radiation-induced apoptosis. PBMC cultures, regardless of the source, were the most responsive to radiation. When the levels of pro-inflammatory cytokines were measured, a significant time-dependent increase in TNF-alpha, IL-6 and IL-1beta production was observed in FS-derived cultures, but not in VP-derived cultures. While VP and FS blood cultures were found to respond similarly to radiation-induced apoptosis, there was a significant difference in the rate of spontaneous apoptosis in non-irradiated WB cultures and in the in situ production of pro-inflammatory cytokines between VP- and FS-derived blood cultures.  相似文献   

12.
Although glutamine is used as a major substrate for the growth of mammalian cells in culture, it suffers from some disadvantages. Glutamine is deaminated through storage or by cellular metabolism, leading to the formation of ammonia which can result in growth inhibition. Non-ammoniagenic alternatives to glutamine have been investigated in an attempt to develop strategies for obtaining improved cell yields for ammonia sensitive cell lines.Glutamate is a suitable substitute for glutamine in some culture systems. A period of adaptation to glutamate is required during which the activity of glutamine synthetase and the rate of transport of glutamate both increase. The cell yield increases when the ammonia accumulation is decreased following culture supplementation with glutamate rather than glutamine. However some cell lines fail to adapt to growth in glutamate and this may be due to a low efficiency transport system.The glutamine-based dipeptides, ala-gln and gly-gln can substitute for glutamine in cultures of antibody-secreting hybridomas. The accumulation of ammonia in these cultures is less and cell yields in dipeptide-based media may be improved compared to glutamine-based controls. In murine hybridomas, a higher concentration of gly-gln is required to obtain comparable cell growth to ala-gln or gln-based cultures. This is attributed to a requirement for dipeptide hydrolysis catalyzed by an enzyme with higher affinity for ala-gln than gly-gln.  相似文献   

13.
Summary The rates of spontaneous cell detachment, cell viability, and apoptosis in primary cultures of rat hepatocytes plated at high and low density were compared. Apoptosis was frequent in detached cells, and the rates of cell detachment and apoptosis were greater in high-density than in low-density cultures. Among attached cells, more cells had condensed or fragmented nuclei in high-density than in low-density cultures. Further, ladder-like DNA fragmentation was not seen in low-cell-density cultures but was clearly evident in high-density cultures. Bax was more highly expressed in cells cultured at high density, and on collagen vs. matrigel, whereas changes of Bcl-2 and Fas expression observed in culture appeared unrelated to the rate of apoptosis. The rate of hepatocyte apoptosis appeared to be identical in low-density cultures on collagen 1 and matrigel, but when cells were cultured at high density, matrigel suppressed apoptosis by more than 50% at 36 h. In hepatocytes cultured on collagen 1, dexamethasone (0.1 μM) suppressed apoptosis in both low- and high-density cultures; higher doses had no further effects. In high density cultures, aurintricarboxylic acid (10 μM) suppressed apoptosis and this improved cell attachment at 48 h. It is concluded that cell viability in primary cultures of rat hepatocytes grown on collagen I is dependent on optimal culture density and that the cell population is regulated, at least in part, by apoptosis. Corticosteroids suppress spontaneous apoptosis of cultured hepatocytes in a non-dose-dependent manner, whereas matrigel abolishes apoptosis induced by increasing cell density. Bax may be an important protein in the cell density and cell matrix-dependent regulation of apoptosis in cultured hepatocytes.  相似文献   

14.
Chinese hamster ovary (CHO) cells are widely used in biopharmaceutical production. Improvements to cell lines and bioprocesses are constantly being explored. One of the major limitations of CHO cell culture is that the cells undergo apoptosis, leading to rapid cell death, which impedes reaching high recombinant protein titres. While several genetic engineering strategies have been successfully employed to reduce apoptosis, there is still room to further enhance CHO cell lines performance. ‘Omics analysis is a powerful tool to better understand different phenotypes and for the identification of gene targets for engineering. Here, we present a comprehensive review of previous CHO 'omics studies that revealed changes in the expression of apoptosis‐related genes. We highlight targets for genetic engineering that have reduced, or have the potential to reduce, apoptosis or to increase cell proliferation in CHO cells, with the final aim of increasing productivity.  相似文献   

15.
TRAIL (TNF-alpha Related Apoptosis-Inducing Ligand) is an attractive candidate for anticancer therapy. TRAIL selectively kills tumor cells, without damaging normal cells. It is known that cancer cells can acquire resistance to chemotherapeutic drugs, oxidative stress in high density culture. This phenomenon appears as a multi-cell resistance, cell adhesion-dependent resistance, or density-dependent resistance of tumor cells. However, it is unclear whether such resistance appears in TRAIL-induced apoptosis. We observed that the resistance to izTRAIL of all tumor cell lines used was considerably increased in confluent cultures. The increase in tumor cell resistance in dense populations is not related to their proliferative status. It was shown that the dissociation of calcium-dependent cell-cell contacts with EGTA did not suppress tumor cell resistance to izTRAIL in confluent cultures. This phenomenon of cancer cells resistance to TRAIL-induced apoptosis should be considered in the development of methods of anticancer therapy.  相似文献   

16.
We have previously demonstrated that insulin-like growth factor binding protein-5 (IGFBP-5) is upregulated following treatment of the mouse mammary epithelial cell line HC11 with lactogenic hormones (dexamethasone, insulin, and prolactin-DIP). In addition, we have also shown that IGFBP-5 is upregulated in mammary epithelial cells in vivo during involution of the rodent mammary gland. We have, therefore, postulated that there may be a dual regulation of IGFBP-5 expression during the temporally separated processes of differentiation and apoptosis of mammary epithelial cells. To test this hypothesis further, we have used a phenotypically differentiated model, which comprises primary cultures of mouse mammary epithelial cells grown on a layer of EHS (Engelbreth-Holm-Swarm) extracellular matrix. We show that lactogenic hormone treatment (hydrocortisone, insulin, and prolactin-HIP) of these cultures induces the upregulation of IGFBP-5 thus replicating the results obtained with the HC11 cell line. In addition, following the induction of apoptosis in primary cultures of mammary epithelial cells by treatment with TGFbeta-3, IGFBP-5 expression is also upregulated. In parallel with this upregulation of IGFBP-5, there is also an increase in the levels of cleaved caspase-3, a well-characterized marker of cellular apoptosis. These findings confirm previous in vivo work demonstrating an increase in IGFBP-5 expression during involution of the mouse mammary gland. When HC11 cells are cultured under serum-free conditions (a well-characterized apoptotic insult in cell culture), there is also an increase in cleaved caspase-3 levels. Unexpectedly, in the presence of TGFbeta-3, caspase-3 levels are attenuated. In the presence of DIP, caspase-3 levels are also decreased in HC11 cells. As described previously, TGFbeta-3 inhibits beta-casein synthesis in HC11 cells. In the HC11 cell line (in contrast to primary cultures of mammary epithelial cells), there is no evidence for TGFbeta-3 induction of IGFBP-5 under either serum-free or DIP-supplemented conditions. We believe our data with primary cultures of mammary epithelial cells support the hypothesis of dual regulation of IGFBP-5 expression during both differentiation and apoptosis in the mammary gland and emphasizes the importance of using appropriate cell culture models to investigate such phenomena in this tissue. We discuss the possible implications of our observations in relation to the physiological processes of pregnancy, lactation, and involution in the mammary gland and the associated changes in mammary epithelial cell function.  相似文献   

17.
Hodge G  Hodge S  Han P 《Cytokine》2000,12(12):1763-1768
Most of the investigatory studies of cytokine production by cells have been performed on purified cells or cell lines by measuring the secreted cytokine levels in the bulk culture supernatant. However, results of cytokine production from isolated peripheral blood mononuclear cells (PBMCs) cultivated in synthetic media, have been reported to be inaccurate and of low reproducibility. Isolation procedures have been shown to be toxic to certain cells. We hypothesised that purified cell culture techniques may result in increased levels of apoptosis of cells compared with whole blood culture techniques. To compare the effects on cell viability between PBMCs and whole blood techniques, an Annexin V binding assay was utilised. The effect of different cell concentration and serum/plasma concentrations on apoptosis levels in the various leukocyte subsets in PBMC and whole blood cultures following stimulation was investigated. There were significantly increased levels of apoptosis of cells in PBMC compared to whole culture at similar plasma concentrations, suggesting that cell viability was plasma concentration-dependent. There were significantly increased levels of apoptosis in PBMC cultures at the same cell concentration to whole blood techniques, suggesting that interaction between all cellular elements (as in whole blood techniques) is important in maintaining cell viability. These results suggest that whole blood culture techniques provide the best conditions for study of leukocyte cytokine production. If PBMC culture is performed, similar plasma and cell concentration to whole blood will best preserve cell viability.  相似文献   

18.
Lactate and ammonia accumulation is a major factor limiting the performance of fed‐batch strategies for mammalian cell culture processes. In addition to the detrimental effects of these by‐products on production yield, ammonia also contributes to recombinant glycoprotein quality deterioration. In this study, we tackled the accumulation of these two inhibiting metabolic wastes by culturing in glutamine‐free fed‐batch cultures an engineered HEK293 cell line displaying an improved central carbon metabolism. Batch cultures highlighted the ability of PYC2‐overexpressing HEK293 cells to grow and sustain a relatively high viability in absence of glutamine without prior adaptation to the culture medium. In fed‐batch cultures designed to maintain glucose at high concentration by daily feeding a glutamine‐free concentrated nutrient feed, the maximum lactate and ammonia concentrations did not exceed 5 and 1 mM, respectively. In flask, this resulted in more than a 2.5‐fold increase in IFNα2b titer in comparison to the control glutamine‐supplied fed‐batch. In bioreactor, this strategy led to similar reductions in lactate and ammonia accumulation and an increase in IFNα2b production. Of utmost importance, this strategy did not affect IFNα2b quality with respect to sialylation and glycoform distribution as confirmed by surface plasmon resonance biosensing and LC‐MS, respectively. Our strategy thus offers an attractive and simple approach for the development of efficient cell culture processes for the mass production of high‐quality therapeutic glycoproteins. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:494–504, 2018  相似文献   

19.
The production of biopharmaceuticals from mammalian cell culture is hindered by apoptosis, which is the primary cause of cell death in these cultures. As a tool for optimization of culture yield, this study presents a population-based model describing the progression of apoptosis in a monoclonal antibody (mAb)-producing Chinese hamster ovary (CHO) cell culture. Because mAb production does not cease when apoptosis begins, the model was designed to incorporate subpopulations at various stages in the progression of apoptosis. The model was validated against intracellular measurements of caspase activity as well as cell density, nutrient levels, and toxic metabolites. Since the specific details of apoptotic mechanisms have not been elucidated in this cell line, we employed a model comparison analysis that suggests the most plausible pathways of activation.  相似文献   

20.
动物细胞培养过程中的细胞自然凋亡   总被引:3,自引:0,他引:3  
细胞培养过程中的细胞自然凋亡是细胞受环境压力的影响而发生的现象。随着细胞自然凋亡的分子生物学和生物化学研究的深入,对以动物细胞产品生产为目的的细胞培养产业将产生极有价值的影响。采用DNA重组技术把预防细胞自然凋亡的基因导入细胞和在培基中加入具有抗细胞自然凋亡的化合物等手段已用于预防或减缓细胞培养过程中的细胞自然凋亡。这些技术将大大延长细胞达到饱和密度后的培养时间,从而使细胞培养系统的生产效率得以显著提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号