首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
旋毛虫病是一种常见的人兽共患寄生虫病,也是一种重要的食源性寄生虫病,严重危害着人类的健康。肠黏膜是肠道寄生虫(包括旋毛虫等)进入宿主的重要门户,即机体非特异性抗感染的第一道防线,也是宿主抵御肠道寄生虫入侵的重要固有屏障,后者发挥着固有性免疫和适应性免疫功能的作用。宿主的肠黏膜免疫应答反应决定旋毛虫与宿主相互作用和适应关系。本研究就目前国内外学者研究旋毛虫感染与宿主免疫的现状,分别从肠道黏膜组织学结构、免疫细胞、细胞因子和小肠上皮细胞4个方面,综述一下肠黏膜对旋毛虫感染的免疫应答作用,目的在于揭示宿主肠黏膜对旋毛虫感染的免疫应答机制。  相似文献   

2.
肠道不仅是消化和吸收的主要场所,也是机体重要的免疫器官。人类肠道中存在着超过百万亿的微生物,其在漫长的自然选择及共同进化中与宿主形成了紧密的共生关系。肠上皮是先天免疫的一个组成部分,通过各种黏膜保护屏障将肠腔内容物与机体内环境分隔开。各种肠上皮细胞相互协调维持肠道内稳态,并与肠道微生物、肠黏膜免疫系统共同形成抵御肠腔内有害抗原的第一道防线。肠上皮作为肠道微生物和肠黏膜免疫系统相互作用的枢纽,在黏膜免疫防御体系中具有重要作用,本文就肠上皮与肠道微生物之间的相互作用进行综述,旨在深入理解肠上皮,为探索肠道相关疾病的治疗提供新思路。  相似文献   

3.
肠道黏膜屏障具有防止致病性抗原侵入、维护肠道健康的功能。而肠道菌群是肠道黏膜屏障的重要构成部分,肠道菌群失调会导致肠道黏膜屏障的损伤,引起炎性肠病、肠易激综合征及肝、肾等多种疾病的发生发展。因此,本文从肠道黏膜的结构与功能及肠道菌群对其的影响等方面归纳总结肠道菌群对屏障系统的调控作用,从调节肠道微生态平衡、促进黏液分泌、影响紧密连接和肠道上皮通透性、激发肠黏膜免疫、调控肠上皮凋亡、影响肠上皮DNA稳定性及产生特殊代谢产物等方面阐述其作用机制,为临床胃肠道疾病及其并发症的治疗提供新的思路和方法。  相似文献   

4.
肠黏膜屏障是机体屏障系统的重要组成部分,可有效阻止肠道寄生菌及其毒素向肠腔外组织移位,防止机体受内源性微生物及其毒素的侵害.自噬在各种生命活动中发挥着重要作用.在缺血缺氧等应激状态下,自噬对细胞存活、清除细胞内衰老细胞器等起重要作用.缺氧可诱导自噬.多数情况下自噬被认为是细胞的一种保护作用,然而在某些条件下细胞过度自噬也能导致细胞凋亡.肠黏膜屏障损伤的研究是目前医学研究领域的一个重要课题,本文就自噬在缺氧环境下对肠黏膜屏障的影响做一综述.  相似文献   

5.
类风湿关节炎(rheumatoid arthritis,RA)是一种自身免疫性疾病,致畸率与致残率较高,发病机制尚不清楚,目前尚未有特效药可完全治愈。近年来,国内外相关研究表明RA的发病机制与肠道菌群和肠黏膜屏障密切相关。积极调节肠道菌群和改善肠黏膜屏障可有效缓解RA的关节炎症状,这可能作为RA干预的新靶点。肠道菌群失调引起肠道微生态失衡,一系列有害物质侵入并诱发肠道炎症反应,导致肠道黏膜屏障功能障碍,可能参与RA的发病,但具体作用机制还需进一步明确。本文对肠道菌群和肠黏膜屏障在RA中的具体作用及影响进行总结归纳,以期为治疗RA提供新方向。  相似文献   

6.
摘要:人类肠道中微生物群与肠道环境相互作用以维持机体健康。肠黏膜屏障主要由黏液层、肠道菌群、肠道免疫系统和肠上皮细胞本身的完整性等构成。肠道作为直接与大量菌群接触的器官,其屏障功能在肠道健康中的作用尤为显著。肠道菌群与肠道屏障相互作用,保持肠道菌群与肠道屏障相对稳定,肠道菌群参与肠道免疫反应的建立,共同建立机体天然防御系统,在保持肠道免疫的动态平衡中具有重要作用。当两者之间的平衡被打破时,可诱发功能性胃肠病(如肠易激综合征)及免疫相关性疾病(如炎症性肠病)。本文主要阐述肠黏膜屏障与肠道菌群之间的相互关系以及与肠道屏障功能障碍相关的肠道疾病。  相似文献   

7.
益生菌及其细胞组分的免疫调节作用   总被引:4,自引:2,他引:2  
益生菌对肠道黏膜系统的调节作用是应用益生菌提高宿主抵抗某些病源菌感染及预防肿瘤发生的基础。但是,益生菌的作用机理目前还不完全清楚。益生菌细胞壁组分可能是引发免疫反应的功能性物质,而构成各种益生菌细胞壁组分的差异可能是益生菌免疫调节作用存在菌种特异性的主要原因。肠道派伊尔斑外层的M细胞是介导益生菌或其细胞组分进入上皮下层的主要通道,进入上皮下层的益生菌或其细胞残片可以被黏膜免疫系统的树突状细胞(DC)或巨噬细胞吞噬,并呈递给淋巴细胞。益生菌及其细胞组分在黏膜局部刺激黏膜免疫系统,也可以引起系统免疫反应,但其通过局部免疫刺激引起系统免疫反应的机理目前还不清楚。研究益生菌细胞组分构成和益生菌免疫激活作用之间的关系,及由局部免疫刺激引发系统免疫反应的机理是益生菌免疫刺激作用机理研究需要解决的两大问题。  相似文献   

8.
人体肠道中寄居着数量众多、种类繁异的微生物,其在机体营养吸收、物质代谢以及免疫调节等方面发挥着积极作用,但肠道微生物(gut microbiota)群落结构失调或组织易位则与多种疾病的发生发展密切相关。肠上皮细胞(intestinal epithelial cells)作为机体直接接触众多肠道微生物的第一道屏障,在响应肠道微生物定植、调节肠道微生物群落结构以及维持肠黏膜屏障功能等方面发挥着至关重要的作用。本文将主要从肠黏膜免疫调控的角度,介绍肠道微生物与肠上皮细胞互作分子机制的最新研究进展。  相似文献   

9.
中华鳖肠道黏膜免疫相关细胞的形态学研究   总被引:1,自引:1,他引:0  
应用光镜和透射电镜技术,对中华鳖肠道黏膜免疫相关细胞的分布和结构进行了详细观察,并结合形态结构特点,对爬行动物黏膜免疫的特征进行了讨论。鳖肠道黏膜上皮细胞(尤其大肠段)排列较疏松,细胞间隙明显,上皮间隙内普遍分布着上皮内淋巴细胞(IEL)和浆细胞。IEL在上皮不同部位的分布比例为核下区∶核区∶核上区=4∶3∶3。核上区IEL以小淋巴细胞为主,而核区和核下区的IEI体积略大。淋巴细胞胞质内含有数个粗大的膜包颗粒。上皮内未见微皱褶细胞,IEL位于上皮细胞之间,并在上皮细胞之间伸出伪足。肠腔内有完整的游离淋巴细胞。肠道黏膜上皮间隙内的浆细胞一般位于核下区或核区,胞质内充满着扩张状态的粗面内质网。肠道固有膜散布着许多淋巴细胞(LPL)、浆细胞、巨噬细胞和一些白血细胞,以小肠段的分布最丰富。在有些肠绒毛内,LPL分布密集,几乎占据整个绒毛中心,但并未出现淋巴小结。固有膜浆细胞有两种形态:一种浆细胞的粗面内质网呈短的扩张状态,其数量占多数;另一种浆细胞的粗面内质网为板层状排列的扁囊状,数量较少。结果表明,参与中华鳖肠道黏膜免疫反应的细胞数量多,但黏膜上皮内缺乏微皱褶细胞(M细胞),固有膜中也不形成淋巴小结。提示爬行动物的黏膜免疫机理与哺乳动物和鸟类不尽相同。  相似文献   

10.
双歧杆菌免疫调节作用的研究进展   总被引:3,自引:0,他引:3  
双歧杆菌是人和动物肠道内最重要的生理性细菌之一,参与宿主的多种生态效应和生理作用,对维持宿主健康起着重要的作用。本文总结了近年来双歧杆菌对肠黏膜上皮细胞的黏附及其引发机体免疫反应的研究进展,并对肠黏膜免疫系统做了简要描述。  相似文献   

11.
The inside of our gut is inhabited with enormous number of commensal bacteria. The mucosal surface of the gastrointestinal tract is continuously exposed to them and occasionally to pathogens. The gut-associated lymphoid tissue (GALT) play a key role for induction of the mucosal immune response to these microbes1, 2. To initiate the mucosal immune response, the mucosal antigens must be transported from the gut lumen across the epithelial barrier into organized lymphoid follicles such as Peyer''s patches. This antigen transcytosis is mediated by specialized epithelial M cells3, 4. M cells are atypical epithelial cells that actively phagocytose macromolecules and microbes. Unlike dendritic cells (DCs) and macrophages, which target antigens to lysosomes for degradation, M cells mainly transcytose the internalized antigens. This vigorous macromolecular transcytosis through M cells delivers antigen to the underlying organized lymphoid follicles and is believed to be essential for initiating antigen-specific mucosal immune responses. However, the molecular mechanisms promoting this antigen uptake by M cells are largely unknown. We have previously reported that glycoprotein 2 (Gp2), specifically expressed on the apical plasma membrane of M cells among enterocytes, serves as a transcytotic receptor for a subset of commensal and pathogenic enterobacteria, including Escherichia coli and Salmonella enterica serovar Typhimurium (S. Typhimurium), by recognizing FimH, a component of type I pili on the bacterial outer membrane 5. Here, we present a method for the application of a mouse Peyer''s patch intestinal loop assay to evaluate bacterial uptake by M cells. This method is an improved version of the mouse intestinal loop assay previously described 6, 7. The improved points are as follows: 1. Isoflurane was used as an anesthetic agent. 2. Approximately 1 cm ligated intestinal loop including Peyer''s patch was set up. 3. Bacteria taken up by M cells were fluorescently labeled by fluorescence labeling reagent or by overexpressing fluorescent protein such as green fluorescent protein (GFP). 4. M cells in the follicle-associated epithelium covering Peyer''s patch were detected by whole-mount immunostainig with anti Gp2 antibody. 5. Fluorescent bacterial transcytosis by M cells were observed by confocal microscopic analysis. The mouse Peyer''s patch intestinal loop assay could supply the answer what kind of commensal or pathogenic bacteria transcytosed by M cells, and may lead us to understand the molecular mechanism of how to stimulate mucosal immune system through M cells.  相似文献   

12.
M cells in the follicle-associated epithelium (FAE) of Peyer’s patches (PPs) serve as a main portal for external antigens and function as a sentinel in mucosal immune responses. The scarcity of these cells has hampered identification of M cell-specific molecules. Recent efforts have begun to provide insight into antigen transcytosis and differentiation of M cells; however, the molecular mechanisms underlying these processes are not fully elucidated. Small non-coding RNAs including microRNA (miRNA) have been reported to regulate gene expression and control various biological processes such as cellular differentiation and function. To evaluate the expression of miRNAs in FAE, including M cells, we previously performed microarray analysis comparing intestinal villous epithelium (VE) and PP FAE. Here we confirmed FAE specific miRNA expression levels by quantitative PCR. To gain insight into miRNA function, we generated mice with intestinal epithelial cell-specific deletion of Dicer1 (DicerΔIEC) and analyzed intestinal phenotypes, including M-cell differentiation, morphology and function. DicerΔIEC mice had a marked decrease in M cells compared to control floxed Dicer mice, suggesting an essential role of miRNAs in maturation of these cells. Furthermore, transmission electron microscopic analysis revealed that depletion of miRNA caused the loss of endosomal structures in M cells. In addition, antigen uptake by M cells was impaired in DicerΔIEC mice. These results suggest that miRNAs play a significant role in M cell differentiation and help secure mucosal immune homeostasis.  相似文献   

13.
M cells are specialized epithelial cells mediating immune surveillance of the mucosal lumen by transepithelial delivery of Ags to underlying dendritic cells (DC). At least three M cell phenotypes are known in the airways and intestine, but their developmental relationships are unclear. We used reporter transgenic mouse strains to follow the constitutive development of M cell subsets and their acute induction by cholera toxin (CT). M cells overlying intestinal Peyer's patches (PPs), isolated lymphoid follicles, and nasal-associated lymphoid tissue are induced by distinct settings, yet show convergent phenotypes, such as expression of a peptidoglycan recognition protein-S (PGRP-S) transgene reporter. By contrast, though PP, isolated lymphoid follicle, and villous M cells are all derived from intestinal crypt stem cells, their phenotypes were clearly distinct; for example, PP M cells frequently appeared to form M cell-DC functional units, whereas villous M cells did not consistently engage underlying DC. B lymphocytes are critical to M cell function by forming a basolateral pocket and possible signaling through CD137; however, initial commitment to all M cell lineages is B lymphocyte and CD137 independent. CT causes induction of new M cells in the airway and intestine without cell division, suggesting transdifferentiation from mature epithelial cells. In contrast with intestinal PP M cells, CT-induced nasal-associated lymphoid tissue M cells appear to be generated from ciliated Foxj1(+)PGRP-S(+) cells, indicative of a possible precommitted progenitor. In summary, constitutive and inducible differentiation of M cells is toward strictly defined context-dependent phenotypes, suggesting specialized roles in surveillance of mucosal Ags.  相似文献   

14.
M cells are a kind of intestinal epithelial cell in the follicle-associated epithelium of Peyer's patches. These cells can transport antigens and microorganisms into underlying lymphoid tissues. Despite the important role of M cells in mucosal immune responses, the origin and mechanisms of differentiation as well as cell death of M cells remain unclear. To clarify the mechanism of M cell differentiation, we established a novel murine intestinal epithelial cell line (MIE) from the C57BL/6 mouse. MIE cells grow rapidly and have a cobblestone morphology, which is a typical feature of intestinal epithelial cells. Additionally, they express cytokeratin, villin, cell-cell junctional proteins, and alkaline phosphatase activity and can form microvilli. Their expression of Musashi-1 antigen indicates that they may be close to intestinal stem cells or transit-amplifying cells. MIE cells are able to differentiate into the M cell lineage following coculture with intestinal lymphocytes, but not with Peyer's patch lymphocytes (PPL). However, PPL costimulated with anti-CD3/CD28 MAbs caused MIE cells to display typical features of M cells, such as transcytosis activity, the disorganization of microvilli, and the expression of M cell markers. This transcytosis activity of MIE cells was not induced by T cells isolated from PPL costimulated with the same MAbs and was reduced by the depletion of the T cell population from PPL. A mixture of T cells treated with MAbs and B cells both from PPL led MIE cells to differentiate into M cells. We report here that MIE cells have the potential ability to differentiate into M cells and that this differentiation required activated T cells and B cells.  相似文献   

15.
Pancreatic autoantibodies are Crohn disease-specific serologic markers. The function and immunological role of their recently identified autoantigen, glycoprotein 2 (GP2), are unknown. We therefore investigated the impact of GP2 on modulation of innate and adaptive immune responses to evaluate its potential therapeutic use in mucosal inflammation. Our data indicate a previously unknown function for GP2 as an immunomodulator. GP2 was ubiquitously expressed on cells vital to mucosal immune responses. The expression of GP2 was upregulated on activated human T cells, and it was further influenced by pharmaceutical TNF-α inhibitors. Recombinant GP2 significantly decreased human intestinal epithelial cells, mucosal and peripheral T cell proliferation, apoptosis, and activation, and it distinctly modulated cytokine secretion. Furthermore, intestinal epithelial cells stimulated with GP2 potently attracted T cells. In conclusion, we demonstrate a novel role for GP2 in immune regulation that could provide a platform for new therapeutic interventions in the treatment of Crohn disease.  相似文献   

16.
Roundtrip ticket for secretory IgA: role in mucosal homeostasis?   总被引:9,自引:0,他引:9  
An important activity of mucosal surfaces is the production of Ab referred to as secretory IgA (SIgA). SIgA serves as the first line of defense against microorganisms through a mechanism called immune exclusion. In addition, SIgA adheres selectively to M cells in intestinal Peyer's patches, thus mediating the transepithelial transport of the Ab molecule from the intestinal lumen to underlying gut-associated organized lymphoid tissue. In Peyer's patches, SIgA binds and is internalized by dendritic cells in the subepithelial dome region. When used as carrier for Ags in oral immunization, SIgA induces mucosal and systemic responses associated with production of anti-inflammatory cytokines and limits activation of dendritic cells. In terms of humoral immunity at mucosal surfaces, SIgA appears thus to combine properties of a neutralizing agent (immune exclusion) and of a mucosal immunopotentiator inducing effector immune responses in a noninflammatory context favorable to preserve local homeostasis of the gastrointestinal tract.  相似文献   

17.
目的:研究谷氨酰胺对脓毒症患者肠道黏膜屏障功能和免疫功能的影响。方法:将2012年10月至2013年10本院收治的40例脓毒症患者随机分为治疗组和对照组,每组20例。两组患者均给予常规对症治疗,治疗组在此基础上加用谷氨酰胺治疗,对照组接受安慰剂治疗。采用分光光度法监测其血清D-乳酸水平,高效液相色谱法监测尿乳果糖/甘露醇(L/M)值。对比两组肠道黏膜屏障功能和免疫功能指标及ARDS、MODS发生率。结果:治疗后,治疗组ARDS和MODS发生率分别为24.1%,17.2%,均低于对照组的38.9%,33.3%,两组比较差异均有统计学意义(P0.05);治疗14 d后,治疗组D-乳酸及尿L/M水平较对照组明显降低,血清Ig G、Ig M、CD4+和CD4+/CD8+水平均增高,两组比较差异均有统计学意义(P0.05)。结论:谷氨酰胺治疗脓毒性患能明显改善肠道黏膜屏障功能,促进患者免疫功能和营养状态的提高,同时还能够降低患者肠道细菌、内毒素移位。  相似文献   

18.
Mucosal surfaces such as the intestinal tract are continuously exposed to both potential pathogens and beneficial commensal microorganisms. This creates a requirement for a homeostatic balance between tolerance and immunity that represents a unique regulatory challenge to the mucosal immune system. Recent findings suggest that intestinal epithelial cells, although once considered a simple physical barrier, are a crucial cell lineage for maintaining intestinal immune homeostasis. This Review discusses recent findings that identify a cardinal role for epithelial cells in sampling the intestinal microenvironment, discriminating pathogenic and commensal microorganisms and influencing the function of antigen-presenting cells and lymphocytes.  相似文献   

19.
20.
肠神经胶质细胞分布于消化道黏膜层、黏膜下层和肌层,其具有广泛的异质性和可塑性。黏膜层最靠近肠腔,易受病原体侵袭和炎症影响,因此黏膜稳态备受关注。肠黏膜神经胶质细胞(mucosal enteric glial cells,mEGCs)与肠上皮细胞、血管内皮细胞、免疫细胞等非神经元细胞具有复杂的相互作用关系。从结构和功能的角度来看,mEGCs可能处于中心调控位置。最近研究不断揭示mEGCs的亚型和新功能,表明mEGCs在病理条件下存在功能改变。了解mEGCs如何引起黏膜功能障碍及其在疾病发展中的作用至关重要。本文将总结mEGCs在维持粘膜内环境稳定和调节炎症方面的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号