首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
AIMS: In the present study, a method based on SDS-PAGE fingerprinting of surface layer proteins was developed to identify Lactobacillus delbrueckii subsp. bulgaricus and subsp. lactis dairy isolates. METHODS AND RESULTS: The two subspecies, identified by species-specific PCR, were characterized by different SDS-PAGE cell-wall protein profiles; subspecies bulgaricus showed one band of about 31 kDa which, in some cases, was observed at a doublet, and subspecies lactis showed one band of about 21 kDa or 18 kDa. CONCLUSION: The sensitivity of this procedure for discriminating between the two subspecies was very high. The different types of SDS-PAGE profile for cell-wall proteins of the strains studied in this work did not seem to be correlated to the different dairies of origin. SIGNIFICANCE AND IMPACT OF THE STUDY: The method appears to be an efficient taxonomic tool. It has the advantage of easy gel interpretation over fingerprinting of whole-cell protein extracts, and may be used as an alternative to established PCR-based techniques which, though rapid and safe, require expensive instruments and reagents.  相似文献   

2.
Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412(T), which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains.  相似文献   

3.
Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412T, which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains.  相似文献   

4.
An energy source (glucose or lactose) was required for the transport of l-glutamic acid by Lactobacillus helveticus. Mg2+, K+ and Li+ increased its accumulation while Ca2+ and Na+ decreased it. It was inhibited by NaF, indicating that ATP may be involved in uptake. Optimum transport was at pH 7.3 and 45°C. l-Glutamic acid transport showed a high degree of stereospecificity, as neither d-glutamate nor d-aspartate were active. Proton-conducting uncouplers, like carbonyl cyanide-m-chlorophenylhydrazone, and ionophores (nigericin, monensin and gramicidin) were strongly inhibitory. These results indicate that a proton motive force may be involved in the transport of l-glutamic acid.The authors are with the Centro de Referencia para Lactobacilos, Chacabuco 145 4000 S.M. de Tucumán, Argentina and the Cátedra de Microbiologia Superior, Universidad Nacional de Tucumán, Argentina.  相似文献   

5.
A new insertion sequence element designated ISLdl1 has been isolated and characterized from Lactobacillus delbrueckii subsp. lactis ATCC 15808. It is the first IS element of L. delbrueckii subsp. lactis described. ISLdl1 is a 1508 bp element flanked by 26 bp imperfect inverted repeats, and generates an 8 bp AT-rich target duplication upon insertion. It contains one ORF encoding a protein of 455 amino acids. This protein shows significant homology to the transposases of the ISL3 family and to other bacterial transposases and putative transposases, and no homology to other proteins. Based on these structural features, ISLdl1 belongs to the ISL3 family. ISLdl1 is present in about 10-12 copies in the genome of ATCC 15808 based on Southern hybridization analysis. Location sites of eight ISLdl1 copies have been determined in more detail by cloning and sequencing one or both of the flanking regions of each ISLdl1 copy. ISLdl1 or ISLdl1-like IS elements were found exclusively in Lactobacillus delbrueckii species and in all strains of subsp. lactis tested. The nucleotide sequence of ISLdl1 is deposited under the accession number AJ302652.  相似文献   

6.
Lactobacillus helveticus grown in milk with pH control at 6.2 had a slower growth rate (=0.27 h–1) and produced less exopolysaccharide (49 mg l–1) but increased lactic acid production (425 mM) compared to cultures without pH control (=0.5 h–1, 380 mg exopolysaccharide l–1, and 210 mM lactate), respectively. Both cultures displayed a mixed-acid fermentation with formation of acetate, which is linked not only to citrate metabolism, but also to alternative pathways from pyruvate.  相似文献   

7.
Several physiological tests of glucose metabolism and genetic tools including species specific probes and 16S rDNA sequences were used to identify strains of L. helveticus and the group of L. delbrueckii with its three subspecies lactis, bulgaricus, and delbrueckii. These species are important for the milk industry as fermenting lactic acid bacteria. The identification procedure was applied to the different strains of these species available from the ATCC collection and allowed to reclassify part of them.  相似文献   

8.
We describe, for the first time, a detailed electroporation procedure for Lactobacillus delbrueckii. Three L. delbrueckii strains were successfully transformed. Under optimal conditions, the transformation efficiency was 104 transformants per μg of DNA. Using this procedure, we identified several plasmids able to replicate in L. delbrueckii and integrated an integrative vector based on phage integrative elements into the L. delbrueckii subsp. bulgaricus chromosome. These vectors provide a good basis for developing molecular tools for L. delbrueckii and open the field of genetic studies in L. delbrueckii.  相似文献   

9.
In this study we present a novel multiplex PCR assay for rapid and efficient detection of Lactobacillus delbrueckii subsp. bulgaricus. The accuracy of our method was confirmed by the successful identification of L. delbrueckii subsp. bulgaricus in commercial yoghurts and food supplements and it may be readily applied to the food industry.  相似文献   

10.
We describe, for the first time, a detailed electroporation procedure for Lactobacillus delbrueckii. Three L. delbrueckii strains were successfully transformed. Under optimal conditions, the transformation efficiency was 10(4) transformants per microg of DNA. Using this procedure, we identified several plasmids able to replicate in L. delbrueckii and integrated an integrative vector based on phage integrative elements into the L. delbrueckii subsp. bulgaricus chromosome. These vectors provide a good basis for developing molecular tools for L. delbrueckii and open the field of genetic studies in L. delbrueckii.  相似文献   

11.
In this work, the protective capacity of galacto-oligosaccharides in the preservation of Lactobacillus delbrueckii subsp. bulgaricus CIDCA 333 was evaluated.Lactobacillus bulgaricus was freeze-dried or dried over silica gel in the presence of three commercial products containing galacto-oligosaccharides. The freeze-dried samples were stored at 5 and 25 °C for different periods of time. After desiccation, freeze-drying or storage, samples were rehydrated and bacterial plate counts were determined.According to the results obtained, all galacto-oligosaccharides assays demonstrated to be highly efficient in the preservation of L. bulgaricus. The higher content of galacto-oligosaccharides in the commercial products was correlated with their higher protective capacity.Galacto-oligosaccharides are widely known by their prebiotic properties. However, their role as protective molecules have not been reported nor properly explored up to now. In this work the protective capacity of galacto-oligosaccharides in the preservation of L. bulgaricus, a strain particularly sensitive to any preservation process, was demonstrated.The novel role of galacto-oligosaccharides as protective molecules opens up several perspectives in regard to their applications. The supplementation of probiotics with galacto-oligosaccharides allows the production of self-protected synbiotic products, galacto-oligosaccharides exerting both a prebiotic and protecting effect.  相似文献   

12.
AIMS: To investigate the diversity in specificity of cell-bound extracellular proteinases in Lactobacillus helveticus and Lactobacillus delbrueckii subsp. bulgaricus. METHODS AND RESULTS: HPLC analysis of whole-cell preparations of 14 Lact. delbrueckii subsp. bulgaricus and eight Lact. helveticus strains incubated with alpha (s1)-casein (f 1-23) detected at least six distinct proteolytic patterns. Differences between groups were found in both the primary and secondary specificity toward alpha(s1)-casein (f 1-23) and its breakdown products. No correlation was found between the o-phthaldialdehyde (OPA) general proteolysis analysis and alpha(s1)-casein (f 1-23) cleavage profiles. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF STUDY: Using the alpha(s1)-CN (f 1-23) method, six patterns of proteolysis were found in the dairy lactobacilli tested. Understanding the influence of Lactobacillus proteinase specificity on casein degradation should facilitate efforts to develop starter cultures that predictably improve the functional properties of Mozzarella cheese.  相似文献   

13.
Exopolysaccharide (EPS) metabolism was studied in a galactose-negative strain of Lactobacillus delbrueckii subsp. bulgaricus, using two different approaches. Firstly, using both the parent strain and a chemically induced mutant with higher yield and specific productivity of EPS than the parent, comparative information was obtained relating to enzyme activities and metabolite levels associated with EPS formation when grown on lactose. Under continuous culture conditions (D=0.10 h−1), the higher metabolic flux towards EPS formation in the mutant strain relative to the parent appeared to be mediated by raised levels of UDP-glucose pyrophosphorylase (UGP). Marginally raised UDP-galactose 4-epimerase (UGE) activity in the mutant strain suggested that this enzyme could also play a role in EPS overproduction. The second approach involved investigating the effect of growth rate on sugar nucleotide metabolism in the parent, as it is known that EPS production is growth-associated in this strain. UGE activity in the parent strain appeared to increase when the growth rate was elevated from 0.05 to 0.10 h−1, and further to 0.35 h−1, conditions that can be associated with higher levels of metabolic flux to EPS formation. Concurrent with these increments, intracellular ATP levels in the cell were raised. In both investigations glucose-6-phosphate accumulated pointing to a constriction at this branch-point, and a limitation in the flow of carbon towards fructose-6-phosphate or glucose-1-phosphate. The changes in metabolism associated with enhanced flux to EPS provide guidance as to how the yield of Lactobacillus delbrueckii subsp. bulgaricus EPS can be improved.  相似文献   

14.
Lactobacillus delbrueckii subsp. bulgaricus NCFB 2483, when grown on lactose in continuous culture, showed increasing specific yields and volumetric productivities of exopolysaccharide (EPS) with increasing dilution rate. Specific and volumetric productivities of lactate and galactose, as extracellular metabolites, increased in response to the incremental changes in the dilution rate up to 0.4 h–1. Elevated Yp/s values determined for EPS (0.025 g EPSg lactose–1) at the dilution rates of 0.3 h–1–0.4 h–1, relative to those determined at lower dilution rates, suggest a diversion of carbon flux towards EPS being associated with the higher rates of growth.  相似文献   

15.
16.
17.
Some properties of an extracellular lipase produced byLactobacillus delbrueckii subsp.bulgaricus were studied. Maximum enzyme activity was found against olive and butter oil as enzyme substrates. Addition of 9% acacia gum, 0.1% Na-deoxycholate and 0.01 M CaCl2 to the enzyme reaction mixture increased-lipase activity from 5.3 to 14.5 (FFA/mg protein/minute) at pH 6.0 and at 40° C. Maximum lipase production was reached in the presence of glucose as a sole source of carbon, wheat bran as nitrogen source, olive oil as a sole lipid source and butyric acid as fatty acid supporting the growth medium. An initial pH value of the culture medium of 6.0 and a temperature of 35° C gave the highest lipolytic activity.  相似文献   

18.
Response surface methodology (RSM) was used to optimize a protective medium for enhancing the cell viability of Lactobacillus delbrueckii subsp. bulgaricus LB14 during freeze-drying. Using a previous Plackett–Burman design, it was found that sucrose, glycerol, sorbitol and skim milk were the most effective freeze-drying protective agents for L. bulgaricus LB14. A full factorial central composite design was applied to determine the optimum levels of these four protective agents. The experimental data allowed the development of an empirical model (P<0.0001) describing the inter-relationships between the independent and dependent variables. By solving the regression equation, and analyzing the response surface contour and surface plots, the optimal concentrations of the agents were determined as: sucrose 66.40 g/L, glycerol 101.20 g/L, sorbitol 113.00 g/L, and skim milk 130.00 g/L. L. bulgaricus LB14 freeze-dried in this medium obtained a cell viability of up to 86.53%.  相似文献   

19.
Two-dimensional polyacrylamide gel electrophoresis of membrane proteins   总被引:2,自引:0,他引:2  
Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) is one of the most powerful separation techniques for complex protein solutions. The proteins are first separated according to their isoelectric point, driven by an electric field across a pH gradient. The pH gradient necessary for the separation according to isoelectric point (pL) is usually established by electrophoresing carrier ampholytes prior to and/or concomitantly with the sample. The second dimension is usually a separation according to molecular size. Mostly this separation is performed after complete denaturation of the proteins by sodium dodecyl sulfate and 2-mercaptoethanol (SDS-PAGE). This standard method has considerable disadvantages when relatively hydrophobic membrane proteins are to be separated: cathodic drift, resulting in nonreproducible separation, and the denaturation of the protein, mostly making it impossible to detect native properties of the proteins after separation (e.g., enzymatic activity, antigenicity, intact multimers, and so on). The protocols presented here take care of most of these obstacles. However, there is probably no universal procedure that can guarantee success at first try for any mixture of membrane proteins; some experimentation will be necessary for optimization. Two procedures are each presented: a denaturing (with urea) and a nondenaturing method for IEF in immobilized pH gradient gels using Immobilines, and a denaturing (with SDS and 2-mercaptoethanol) and a nondenaturing technique (with CHAPS) for the second dimension. Essential tips and tricks are presented to keep frustrations of the newcomer at a low level.  相似文献   

20.
LL-H, a virulent phage of Lactobacillus delbrueckii subsp. lactis, produces a peptidoglycan-degrading enzyme, Mur, that is effective on L. delbrueckii, Lactobacillus acidophilus, Lactobacillus helveticus, and Pediococcus damnosus cell walls. In this study, the LL-H gene mur was cloned into Escherichia coli, its nucleotide sequence was determined, and the enzyme produced in E. coli was purified and biochemically characterized. Mur was purified 112-fold by means of ammonium sulfate precipitation and cation-exchange chromatography. The cell wall-hydrolyzing activity was found to be associated with a 34-kDa protein. The C-terminal domain of Mur is not essential for catalytic activity since it can be removed without destroying the lytic activity. The N-terminal sequence of the purified lysin was identical to that deduced from the nucleotide sequence, but the first methionine is absent from the mature protein. The N-terminal part of this 297-amino-acid protein had homology with several Chalaropsis-type lysozymes. Reduction of purified and Mur-digested L. delbrueckii cell wall material with labeled NaB3H4 indicated that the enzyme is a muramidase. The temperature optimum of purified Mur is between 30 and 40 degrees C, and the pH optimum is around 5.0. The LL-H lysin Mur is stable at temperatures below 60 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号