首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Pulmonary clearance of the encapsulated yeast Cryptococcus neoformans requires the development of T1-type immunity. The objective of this study was to determine the role of CCR2 in leukocyte recruitment and development of T1-type cell-mediated immunity during pulmonary C. neoformans infection. Intratracheal inoculation of C. neoformans into CCR2 knockout (CCR2-/-) mice produced a prolonged pulmonary infection (5000-fold CFU at 6 wk compared with CCR2+/+ mice) and significant dissemination to the spleen and brain (160- and 800-fold greater). In addition, CCR2 deficiency resulted in significantly reduced recruitment of macrophages (weeks 1-3) and CD8+ T cells (weeks 1-2) into the lungs. The immune response in CCR2-/- mice was characterized by chronic pulmonary eosinophilia, crystal deposition in the lungs, pulmonary leukocyte production of IL-4 and IL-5 but not IFN-gamma, lack of anticryptococcal delayed-type hypersensitivity, and high levels of serum IgE. These results demonstrate that expression of CCR2 is required for the development of a T1-type response to C. neoformans infection and lack of CCR2 results in a switch to a T2-type response. Thus, CCR2 plays a critical role in promoting the development of T1- over T2-type immune responses in the lung following cryptococcus infection.  相似文献   

2.
After intratracheal inoculation of the AIDS-associated pathogen Cryptococcus neoformans, 12-wk survival was >90% for CCR5+/+ mice but <25% for CCR5-/- mice. There were no defects in lung leukocyte recruitment (wk 5), pulmonary clearance, or delayed-type hypersensitivity in CCR5-/- mice. However, CCR5-/- mice had defects in leukocyte recruitment into the brain and, strikingly, in elimination of cryptococcal polysaccharide from the brain. In nonimmune CCR5-/- mice, there was a significant defect in macrophage recruitment after challenge with shed cryptococcal products (C. neoformans filtrate Ag) but not other nonspecific stimuli. Thus, CCR5 plays specific roles in innate immunity and organ-specific leukocyte trafficking during host defense against C. neoformans.  相似文献   

3.
Host-derived chemoattractant factors are suggested to play crucial roles in leukocyte recruitment elicited by inflammatory stimuli in vitro and in vivo. However, in the case of acute bacterial infections, pathogen-derived chemoattractant factors are also present, and it has not yet been clarified how cross-talk between chemoattractant receptors orchestrates diapedesis of leukocytes in this context of complex chemoattractant arrays. To investigate the role of chemokine (host-derived) and formyl peptide (pathogen-derived) chemoattractants in leukocyte extravasation in life-threatening infectious diseases, we used a mouse model of pneumococcal pneumonia. We found an increase in mRNA expression of eight chemokines (RANTES, macrophage-inflammatory protein (MIP)-1alpha, MIP-1beta, MIP-2, IP-10, monocyte chemoattractant protein (MCP)-1, T cell activation 3, and KC) within the lungs during the course of infection. KC and MIP-2 protein expression closely preceded pulmonary neutrophil recruitment, whereas MCP-1 protein production coincided more closely than MIP-1alpha with the kinetics of macrophage infiltration. In situ hybridization of MCP-1 mRNA suggested that MCP-1 expression started at peribronchovascular regions and expanded to alveoli-facing epithelial cells and infiltrated macrophages. Interestingly, administration of a neutralizing Ab against MCP-1, RANTES, or MIP-1alpha alone did not prevent macrophage infiltration into infected alveoli, whereas combination of the three Abs significantly reduced macrophage infiltration without affecting neutrophil recruitment. The use of an antagonist to N-formyl peptides, N-t-Boc-Phe-D-Leu-Phe-D-Leu-Phe, reduced both macrophages and neutrophils significantly. These data demonstrate that a complex chemokine network is activated in response to pulmonary pneumococcal infection, and also suggest an important role for fMLP receptor in monocyte/macrophage recruitment in that model.  相似文献   

4.
Maintenance of immunity to persistent pathogens is poorly understood. In this study, we used a murine model of persistent pulmonary fungal infection to study the ongoing cell-mediated immune response. CBA/J mice with low-level persistent Cryptococcus neoformans infection had CD4+ T cells of effector memory phenotype present in their lungs. Although unable to eliminate the primary infection to sterility, these mice displayed hallmarks of immunologic memory in response to rechallenge with C. neoformans: 1) the secondary cryptococcal challenge was controlled much more rapidly, 2) the inflammatory response developed and resolved more rapidly, 3) CD4+ T and CD8+ T cell responses were higher in magnitude, and 4) effector cytokine production by T cells was greatly enhanced. Depletion of CD4+ T cells at the time of secondary challenge adversely affected clearance of C. neoformans from the lungs. These results demonstrate that persistent low-level infection with C. neoformans does not impair the cell-mediated response to the fungus. Although they are relatively free of overt disease, these mice can respond with a rapid secondary immune response if the burden of C. neoformans increases. These data support the concept that immunologically healthy individuals can maintain low numbers of cryptococci that can become a nidus for re-activation disease during immunodeficient states such as AIDS.  相似文献   

5.
6.
The purpose of this study was to determine the nature of the CD4(+) Th cell responses induced after nasal-pulmonary immunization, especially those coinciding with previously described pulmonary inflammation associated with the use of the mucosal adjuvant, cholera toxin (CT). The major T cell population in the lungs of naive mice was CD4(+), and these cells were shown to be predominantly of Th2 type as in vitro polyclonal stimulation resulted in IL-4, but not IFN-gamma, production. After nasal immunization with influenza Ag alone, Th2 cytokine mRNA (IL-4 and IL-5) levels were increased, whereas there was no change in Th1 cytokine (IL-2 and IFN-gamma) mRNA expression. The use of the mucosal adjuvant, CT, markedly enhanced pulmonary Th2-type responses; however, there was also a Th1 component to the T cell response. Using in vitro Ag stimulation of pulmonary lymphocytes, influenza virus-specific cytokine production correlated with the mRNA cytokine results. Furthermore, there was a large increase in CD4(+) Th cell numbers in lungs after nasal immunization using CT, correlating with the pulmonary inflammatory infiltrate previously described. Coincidentally, both macrophage-inflammatory protein-1alpha (MIP-1alpha) and MIP-1beta mRNA expression increased in the lungs after immunization with Ag plus CT, while only MIP-1beta expression increased when mice were given influenza Ag alone. Our study suggests a mechanism to foster Th1 cell recruitment into the lung, which may impact on pulmonary immune responses. Thus, while Th2 cell responses may be prevalent in modulating mucosal immunity in the lungs, Th1 cell responses contribute to pulmonary defenses during instances of intense immune stimulation.  相似文献   

7.
Activated T lymphocytes play a crucial role in orchestrating cellular infiltration during a cell-mediated immune (CMI) reaction. TCA3, a C-C chemokine, is produced by Ag-activated T cells and is chemotactic for neutrophils and macrophages, two cell types in a murine CMI reaction. Using a gelatin sponge model for delayed-type hypersensitivity (DTH), we show that TCA3 is a component of the expression phase of an anticryptococcal CMI response in mice. TCA3 mRNA levels are augmented in anticryptococcal DTH reactions at the same time peak influxes of neutrophils and lymphocytes are observed. Neutralization of TCA3 in immunized mice results in reduced numbers of neutrophils and lymphocytes at DTH reaction sites. However, when rTCA3 is injected into sponges in naive mice, only neutrophils are attracted into the sponges, indicating TCA3 is chemotactic for neutrophils, but not lymphocytes. We show that TCA3 is indirectly attracting lymphocytes into DTH-reactive sponges by affecting at least one other chemokine that is chemotactic for lymphocytes. Of the two lymphocyte-attracting chemokines assessed, monocyte-chemotactic protein-1 and macrophage-inflammatory protein-1alpha (MIP-1alpha), only MIP-1alpha was reduced when TCA3 was neutralized, indicating that TCA3 affects the levels of MIP-1alpha, which attracts lymphocytes into the sponges. TCA3 also plays a role in protection against Cryptococcus neoformans in the lungs and brains of infected mice, as evidenced by the fact that neutralization of TCA3 results in increased C. neoformans CFU in those two organs.  相似文献   

8.
Immunity to the opportunistic fungus Cryptococcus neoformans is dependent on cell-mediated immunity. Individuals with defects in cellular immunity, CD4(+) T cells in particular, are susceptible to infection with this pathogen. In host defense against a number of pathogens, CD8(+) T cell responses are dependent upon CD4(+) T cell help. The goal of these studies was to determine whether CD4(+) T cells are required for the generation of antifungal CD8(+) T cell effectors during pulmonary C. neoformans infection. Using a murine intratracheal infection model, our results demonstrated that CD4(+) T cells were not required for the expansion and trafficking of CD8(+) T cells to the site of infection. CD4(+) T cells were also not required for the generation of IFN-gamma-producing CD8(+) T cell effectors in the lungs. In CD4(-) mice, depletion of CD8(+) T cells resulted in increased intracellular infection of pulmonary macrophages by C. neoformans, increasing the pulmonary burden of the infection. Neutralization of IFN-gamma in CD4(-)CD8(+) mice similarly increased macrophage infection by C. neoformans, thereby blocking the protection provided by CD8(+) T cells. Altogether, these data support the hypothesis that effector CD8(+) T cell function is independent of CD4(+) T cells and that IFN-gamma production from CD8(+) T cells plays a role in controlling C. neoformans by limiting survival of C. neoformans within macrophages.  相似文献   

9.
MRL/fas(lpr) mice are affected by a systemic autoimmune disease that results in leukocyte recruitment to a wide range of vascular beds, including the cerebral microvasculature. The mechanisms responsible for the leukocyte trafficking to the brain in these animals are not known. Therefore, the aim of this study was to directly examine the cerebral microvasculature in MRL/fas(lpr) mice and determine the molecular mechanisms responsible for this leukocyte recruitment. Intravital microscopy was used to assess leukocyte-endothelial cell interactions (rolling, adhesion) in the pial microcirculation of MRL(+/+) (control) and MRL/fas(lpr) mice at 8, 12, and 16 wk of age. Leukocyte rolling and adhesion were rarely observed in MRL(+/+) mice of any age. MRL/fas(lpr) mice displayed similar results at 8 and 12 wk. However, at 16 wk, significant increases in leukocyte rolling and adhesion were observed in these mice. Histological analysis revealed that the interacting cells were exclusively mononuclear. Leukocyte rolling was reduced, but not eliminated in P-selectin(-/-)-MRL/fas(lpr) mice. However, leukocyte adhesion was not reduced in these mice, indicating that P-selectin-dependent rolling was not required for leukocyte recruitment to the cerebral vasculature in this model of systemic inflammation. E-selectin blockade also had no effect on leukocyte rolling. In contrast, blockade of either the alpha4 integrin or VCAM-1 eliminated P-selectin-independent leukocyte rolling. alpha4 Integrin blockade also significantly inhibited leukocyte adhesion. These studies demonstrate that the systemic inflammatory response that affects MRL/fas(lpr) mice results in leukocyte rolling and adhesion in the cerebral microcirculation, and that the alpha4 integrin/VCAM-1 pathway plays a central role in mediating these interactions.  相似文献   

10.
Invasive pulmonary aspergillosis is a devastating complication of immunosuppression that usually occurs in neutropenic patients. In this setting, augmentation of the antifungal activity of available immune cells may improve the outcome of the infection. Macrophage inflammatory protein-1 alpha (MIP-1 alpha) is a CC chemokine with potent chemotactic activity for various subsets of mononuclear leukocytes. We therefore tested the hypothesis that the influx of mononuclear cells into the lung in invasive pulmonary aspergillosis is in part mediated by MIP-1 alpha, and the manipulation of this ligand alters the outcome of the infection. We found that in both immunocompetent and neutropenic mice, MIP-1 alpha was induced in the lungs in response to intratracheal administration of Aspergillus fumigatus conidia. In neutrophil-depleted mice challenged with intratracheal conidia, there was evidence of invasive fungal pneumonia associated with a predominantly mononuclear leukocyte infiltrate. Ab-mediated depletion of MIP-1 alpha resulted in a 6-fold increase in mortality in neutropenic mice, which was associated with a 12-fold increase in lung fungal burden. Studies of single-cell suspensions of whole lungs revealed a 36% decrease in total lung leukocyte infiltration as a result of MIP-1 alpha neutralization. Flow cytometry on whole lung suspensions showed a 41% reduction in lung monocyte/macrophages as a result of MIP-1 alpha neutralization, but no difference in other lung leukocyte subsets. These studies indicate that MIP-1 alpha is a critical mediator of host defense against A. fumigatus in the setting of neutropenia and may be an important target in devising future therapeutic strategies against invasive aspergillosis.  相似文献   

11.
Vitronectin is present in large concentrations in serum and participates in regulation of humoral responses, including coagulation, fibrinolysis, and complement activation. Because alterations in coagulation and fibrinolysis are common in acute lung injury, we examined the role of vitronectin in LPS-induced pulmonary inflammation. Vitronectin concentrations were significantly increased in the lungs after LPS administration. Neutrophil numbers and proinflammatory cytokine levels, including IL-1beta, MIP-2, KC, and IL-6, were significantly reduced in bronchoalveolar lavage fluid from vitronectin-deficient (vitronectin(-/-)) mice, as compared with vitronectin(+/+) mice, after LPS exposure. Similarly, LPS induced increases in lung edema, myeloperoxidase-concentrations, and pulmonary proinflammatory cytokine concentrations were significantly lower in vitronectin(-/-) mice. Vitronectin(-/-) neutrophils demonstrated decreased KC-induced chemotaxis as compared with neutrophils from vitronectin(+/+) mice, and incubation of vitronectin(+/+) neutrophils with vitronectin was associated with increased chemotaxis. Vitronectin(-/-) neutrophils consistently produced more TNF-alpha, MIP-2, and IL-1beta after LPS exposure than did vitronectin(+/+) neutrophils and also showed greater degradation of IkappaB-alpha and increased LPS-induced nuclear accumulation of NF-kappaB compared with vitronectin(+/+) neutrophils. These findings provide a novel vitronectin-dependent mechanism contributing to the development of acute lung injury.  相似文献   

12.
The Duffy blood group Ag (dfy) binds selective CXC and CC chemokines at high affinity and is expressed on erythrocytes and endothelial cells. However, it does not transmit a signal via G proteins, as occurs with other seven-transmembrane receptors. We hypothesized that dfy functions as a chemokine reservoir and regulates inflammation by altering soluble chemokine concentrations in the blood and tissue compartments. We determined whether Duffy Ag "loss-of-function" phenotypes (human and murine) are associated with alterations in plasma chemokine concentrations during the innate inflammatory response to LPS. Plasma CXCL8 and CCL2 concentrations from humans homozygous for the GATA-1 box polymorphism, a dfy polymorphism that abrogates erythrocyte chemokine binding, were higher than in heterozygotes following LPS stimulation of their whole blood in vitro. Similarly, dfy(-/-) mice showed higher plasma MIP-2 concentrations than dfy(+/+) mice following LPS stimulation of whole blood in vitro. We then determined the relative contributions of erythrocyte and endothelial Duffy Ag in modifying chemokine concentrations and neutrophil recruitment in the lungs following intratracheal LPS administration in dfy(-/-) and dfy(+/+) mice reconstituted with dfy(-/-) or dfy(+/+) marrow. Mice lacking endothelial dfy expression had higher MIP-2 and keratinocyte chemoattractant concentrations in the airspaces. Mice lacking erythrocyte dfy had higher MIP-2 and keratinocyte chemoattractant concentrations in the lung tissue vascular space, but lower plasma chemokine concentrations associated with attenuated neutrophil recruitment into the airspaces. These data indicate that dfy alters soluble chemokine concentrations in blood and local tissue compartments and enhances systemic bioavailability of chemokines produced during local tissue inflammation.  相似文献   

13.
Macrophage inflammatory protein 1 alpha (MIP-1 alpha), a CC chemokine, is a chemoattractant for T cells and immature dendritic cells. Plasmacytoma cells expressing MIP-1 alpha generate a cytotoxic T cell response without affecting tumor growth. To understand this discrepancy, we compared a local tumor model with a metastatic one using MIP-1 alpha-transfected B16 F10 melanoma cells. Clonal idiosyncrasies were controlled by selecting three lipotransfected tumor clones and two pcDNA vector transfected control clones with equivalent in vitro proliferative capacities. No significant differences were seen between the MIP-1 alpha-producing and control melanoma cells after s.c. injection in the hind leg. All animals had a leg diameter of 10 cm in 18.5-21.5 days. However, after i.v. injection the number of pulmonary foci was significantly reduced in the MIP-1 alpha-producing clones. Injection of 10(6) control transfected cells resulted in a median of 98.5 tumor foci in 2 wk, whereas the injection of the MIP-1 alpha-producing clones resulted in 89.5, 26.5, and 0 foci. The number of metastatic foci was inversely proportional to the amount of MIP-1 alpha produced by the clone in vitro. Flow cytometry showed a significant increase in CD8(+) cells in lungs of mice with MIP-1 alpha-transfected tumors 3 days after injection. This increase was not maintained 10 days later despite continued production of MIP-1 alpha. The protection offered by transfection with MIP-1 alpha was significantly impaired in beta(2)-microglobulin(-/-) mice. Our findings suggest that MIP-1 alpha is effective in preventing the initiation of metastasis, but not at sustaining an effective antitumor response.  相似文献   

14.
A murine pulmonary infection with Cryptococcus neoformans (Cne) has been used to determine mechanisms regulating effective T cell-mediated immunity in the lungs. In BALB/c and C.B-17 mice, following intratracheal deposition of Cne, the fungus initially grows rapidly and is then progressively cleared from the lungs. Cne clearance in C.B-17 mice requires CD4 and CD8 T cells, IFN-gamma, and NO. Clearance in congenic BALB/c mice proceeds more slowly than in C.B-17 mice, even though the only genetic difference between these strains is at the Ig H chain-containing region of chromosome 12. Examination of the pulmonary immune response in the two strains revealed that both cleared lung Cne by T cell-dependent mechanisms and generated equivalent levels of NO. Furthermore, both strains recruited equal numbers of macrophages, lymphocytes, and neutrophils to the lungs, although BALB/c mice recruited higher numbers of eosinophils. Notably, leukocytes isolated from BALB/c lungs during infection secreted lower levels of IFN-gamma and higher levels of the Th2 cytokines IL-4 and IL-5 as compared with lung leukocytes from C.B-17 mice. Furthermore, serum levels of IgM, IgG1, IgG2a, and IgG3 anti-Cne Abs generated during infection were significantly greater in BALB/c mice than C.B-17 mice. These data suggest that although both BALB/c and C.B-17 mice clear pulmonary cryptococcosis through T cell-mediated mechanisms, Ig H chain-linked genes in BALB/c mice are associated with a decreased effectiveness of the host response, which we suggest might influence the balance in Th1/Th2 T cell subset development or increase anti-Cne Abs, or both.  相似文献   

15.
The present study was designed to elucidate the role of Vgamma4(+) gammadelta T cells, a major subset of pulmonary gammadelta T cells, in host defense against infection with Streptococcus pneumoniae. The proportion and number of whole gammadelta T cells, identified as CD3(+) and TCR-delta(+) cells, and Vgamma4(+) gammadelta T cells, identified as CD3(+) and TCR-Vgamma4(+) cells, increased in the lungs at 3, 6 and 12h post-infection. Survival of infected mice and lung bacterial clearance were severely impaired in TCR-Vgamma4(-/-) mice compared with control wild-type (WT) mice. The impaired host protection in TCR-Vgamma4(-/-) mice correlated well with attenuated recruitment of neutrophils in lungs. MIP-2 and TNF-alpha synthesis in the infected tissues was significantly reduced in TCR-Vgamma4(-/-) mice compared with WT mice. Similar results were noted in the synthesis of TNF-alpha, but not clearly of MIP-2, by lung leukocytes stimulated with live bacteria. Our results demonstrate that Vgamma4(+) gammadelta T cells play an important role in the neutrophil-mediated host defense against S. pneumoniae infection by promoting the synthesis of TNF-alpha and possibly of MIP-2 in the lungs.  相似文献   

16.
The susceptibility of congenitally immunodeficient mice to a nonencapsulated strain of Cryptococcus neoformans (strain M7) was evaluated. Gnotobiotic mice with defined congenital defects in innate immunity (beige) or cell-mediated immunity (athymic) or with combined defects in innate and cellular immunity (beige athymic) were i.v. challenged with C. neoformans M7. The nonencapsulated strain of C. neoformans produced a persistent low-grade infection in the brains of all immunodeficient and immunocompetent mice used in this study. Immunocompetent mice (nu/+;bg/+) and immunodeficient bg/bg mice readily cleared nonencapsulated cryptococci from their kidneys, liver, lungs, and spleen. In contrast to nu/+ mice, nu/nu mice had a reduced capacity to clear nonencapsulated cryptococci from their kidneys and liver after i.v. challenge. Both bg/bg-nu/nu and bg/bg-nu/+ mice developed a low-grade infection in their kidneys, liver, lungs, and spleen, which was maintained throughout the 21-day study. Persistent infections were not due to reversion to an encapsulated state. These data indicate that a capsule may not always be necessary for C. neoformans to survive, in vivo, in tissues of immunodeficient and immunocompetent mice.  相似文献   

17.
Immunity to Mycobacterium tuberculosis infection is critically dependent on the timely priming of T effector lymphocytes and their efficient recruitment to the site of mycobacterial implantation in the lung. E-, P-, and L-selectin counterreceptors control lymphocyte homing to lymph nodes and leukocyte trafficking to peripheral sites of acute inflammation, their adhesive function depending on fucosylation by fucosyltransferases (FucT) IV and VII. To address the relative importance of differentially glycosylated selectin counterreceptors for priming of T cell effector functions in a model of mycobacteria-induced granulomatous pulmonary inflammation, we used aerosol-borne M. tuberculosis to infect FucT-IV-/-, FucT-VII-/-, FucT-IV-/-/FucT-VII-/-, or wild-type control mice. In lymph nodes, infected FucT-IV-/-/FucT-VII-/- and, to a lesser extent, FucT-VII-/- mice had severely reduced numbers of T cells and reduced Ag-specific effector responses. By contrast, recruitment of activated T cells into the lungs was similar in all four groups of mice during infection and expression of T cell, and macrophage effector functions were only delayed in lungs of FucT-IV-/-/FucT-VII-/- mice. Importantly, lungs from all groups expressed CXCL13, CCL21, and CCL19 and displayed organized follicular neolymphoid structures after infection with M. tuberculosis, which suggests that the lung served as a selectin ligand-independent priming site for immune responses to mycobacterial infection. All FucT-deficient strains were fully capable of restricting M. tuberculosis growth in infected organs until at least 150 days postinfection. Our observations indicate that leukocyte recruitment functions dictated by FucT-IV and FucT-VII-dependent selectin ligand activities are not critical for inducing or maintaining T cell effector responses at levels necessary to control pulmonary tuberculosis.  相似文献   

18.
IL-13 stimulates inflammatory and remodeling responses and contributes to the pathogenesis of human airways disorders. To further understand the cellular and molecular events that mediate these responses, we characterized the effects of IL-13 on monocyte chemotactic proteins (MCPs) and compared the tissue effects of transgenic IL-13 in mice with wild-type (+/+) and null (-/-) CCR2 loci. Transgenic IL-13 was a potent stimulator of MCP-1, -2, -3, and -5. This stimulation was not specific for MCPs because macrophage-inflammatory protein (MIP)-1alpha, MIP-1beta, MIP-2, MIP-3alpha, thymus- and activation-regulated chemokine, thymus-expressed chemokine, eotaxin, eotaxin 2, macrophage-derived chemokines, and C10 were also induced. The ability of IL-13 to increase lung size, alveolar size, and lung compliance, to stimulate pulmonary inflammation, hyaluronic acid accumulation, and tissue fibrosis, and to cause respiratory failure and death were markedly decreased, whereas mucus metaplasia was not altered in CCR2(-/-) mice. CCR2 deficiency did not decrease the basal or IL-13-stimulated expression of target matrix metalloproteinases or cathepsins but did increase the levels of mRNA encoding alpha1-antitrypsin, tissue inhibitor of metalloproteinase-1, -2, and -4, and secretory leukocyte proteinase inhibitor. In addition, the levels of bioactive and total TGF-beta(1) were decreased in lavage fluids from IL-13 transgenic mice with -/- CCR2 loci. These studies demonstrate that IL-13 is a potent stimulator of MCPs and other CC chemokines and document the importance of MCP-CCR2 signaling in the pathogenesis of the IL-13-induced pulmonary phenotype.  相似文献   

19.
Chemokine-chemokine receptor interaction plays an essential role in leukocyte/dendritic cell (DC) trafficking in inflammation and immune responses. We investigated the pathophysiological roles of secondary lymphoid tissue chemokine (SLC; CCL21) and macrophage inflammatory protein-2 (MIP-2) in the development of acute pulmonary inflammation induced by an intratracheal injection of Propionibacterium acnes in mice. Immunohistochemical studies revealed that SLC was constitutively expressed in the peribronchial areas and perivascular lymphatics in normal mice. MIP-2-positive cells were observed in alveolar spaces in mice challenged with P. acnes. Both neutralization Abs against MIP-2 and CXC chemokine receptor 2 alleviated the P. acnes-induced pulmonary inflammation when injected before P. acnes Ag challenge. On the other hand, polyclonal anti-SLC Abs (pAbs) exacerbated the pulmonary inflammation. The numbers of mature DCs (MHC class II +, CD11c+, and CD86+) as well as macrophages and neutrophils in the P. acnes Ag-challenged lungs were increased, whereas the number of CD4+ T cells, including memory T cells, was decreased. The numbers of mature and proliferating CD4+ T cells (bromodeoxyuridine(+)CD4+) in regional lymph nodes were decreased in mice injected with anti-SLC pAbs compared with those in mice treated with control Abs. An in vitro proliferation assay confirmed the impairment of the Ag-specific T cell response in regional lymph nodes of mice treated with anti-SLC pAbs. These results indicate for the first time a regulatory role for SLC-recruited mature DCs in bridging an acute inflammatory response (innate immunity) and acquired immunity in the lung.  相似文献   

20.
We investigated mechanisms by which TLR9 signaling promoted the development of the protective response to Cryptococcus neoformans in mice with cryptococcal pneumonia. The afferent (week 1) and efferent (week 3) phase immune parameters were analyzed in the infected wild-type (TLR9(+/+)) and TLR-deficient (TLR9(-/-)) mice. TLR9 deletion diminished 1) accumulation and activation of CD11b(+) dendritic cells (DCs), 2) the induction of IFN-γ and CCR2 chemokines CCL7, CCL12, but not CCL2, at week 1, and 3) pulmonary accumulation and activation of the major effector cells CD4(+) and CD8(+) T cells, CD11b(+) lung DCs, and exudate macrophages at week 3. The significance of CCL7 induction downstream of TLR9 signaling was investigated by determining whether CCL7 reconstitution would improve immunological parameters in C. neoformans-infected TLR9(-/-) mice. Early reconstitution with CCL7 1) improved accumulation and activation of CD11b(+) DCs at week 1, 2) restored early IFN-γ production in the lungs, and 3) restored the accumulation of major effector cell subsets. CCL7 administration abolished the difference in lung fungal burdens between TLR9(+/+) and TLR9(-/-) mice at week 3; however, significant reduction of fungal burdens between PBS- and CCL7-treated mice has not been observed, suggesting that additional mechanism(s) apart from early CCL7 induction contribute to optimal fungal clearance in TLR9(+/+) mice. Collectively, we show that TLR9 signaling during the afferent phase contributes to the development of protective immunity by promoting the early induction of CCL7 and IFN-γ and the subsequent early recruitment and activation of DCs and additional effector cells in mice with cryptococcal pneumonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号