首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The initial events of visual transduction occur on disc membranes which are sequestered within the photoreceptor outer segment. In rod cells, the discs are stacked in the outer segment. Discs are formed at the base of the rod outer segment (ROS) from evaginations of the plasma membrane. As new discs form, older discs move toward the apical tip of the rod, from which they are eventually shed and subsequently phagocytosed by the adjacent pigment epithelium. Thus, disc membranes within a given rod cell are not of uniform age. We have recently shown that disc membranes are not homogeneous with respect to cholesterol content (Boesze-Battaglia, K., Hennessey, T., and Albert, A. D. (1989) J. Biol. Chem. 264, 8151-8155). In the present study, freshly isolated bovine retinas were incubated with [3H]leucine for 4 h in order to allow sufficient time for the radiolabeled proteins to become incorporated into the basal-most (newest) discs. Osmotically intact discs were then isolated. After the addition of digitonin, the discs were fractionated based on cholesterol content, and radioactivity (indicative of newly synthesized protein) was measured. Discs which exhibited high cholesterol content also exhibited high radio-activity. These results demonstrate that the cholesterol heterogeneity of ROS disc membranes is related to the age, and thus the position, of the discs in the ROS.  相似文献   

2.
Cholesterol, a major structural component of plasma membranes, has a profound influence on cell surface receptor characteristics and on adenylate cyclase activity. beta-Adrenergic receptor number, adenylate cyclase activity, and receptor-cyclase coupling were assessed in rat lung membranes following preincubation with cholesteryl hemisuccinate. beta-Adrenergic receptor number increased by 50% without a change in antagonist affinity. However, beta-adrenergic receptor affinity for isoproterenol increased 2-fold as a result of an increase in the affinity of the isoproterenol high-affinity binding site. The increase in agonist affinity did not potentiate hormone-stimulated adenylate cyclase activity, which decreased 3-fold following cholesterol incorporation. However, the ratio of isoproterenol to GTP-stimulated activity was unchanged with cholesterol. Stimulation distal to the receptor by GTP, NaF, GppNHp, Mn2+ and forskolin also demonstrated 50-80% reduced enzyme activity following cholesterol incorporation. These data suggest that membrane cholesterol incorporation decreases catalytic unit activity without affecting transduction of the hormone signal.  相似文献   

3.
Cholesterol, a major structural component of plasma membranes, has a profound influence on cell surface receptor characteristics and on adenylate cyclase activity. β-Adrenergic receptor number, adenylate cyclase activity, and receptor-cyclase coupling were assessed in rat lung membranes following preincubation with cholesteryl hemisuccinate. β-Adrenergic receptor number increased by 50% without a change in antagonist affinity. However, β-adrenergic receptor affinity for isoproterenol increased 2-fold as a result of an increase in the affinity of the isoproterenol high-affinity binding site. This increase in agonist affinity did not potentiate hormone-stimulated adenylate cyclase activity, which decreased 3-fold following cholesterol incorporation. However, the ratio of isoproterenol to GTP-stimulated activity was unchanged with cholesterol. Stimulation distal to the receptor by GTP, NaF, GppNHp, Mn2+ and forskolin also demonstrated 50–80% reduced enzyme activity following cholesterol incorporation. These data suggest that membrane cholesterol incorporation decreases catalytic unit activity without affecting transduction of the hormone signal.  相似文献   

4.
The distribution of cyclic-AMP phosphodiesterase was investigated in subcellular fractions prepared from homogenates of rat liver or isolated hepatocytes. When measured at 1 mM or 1 microM substrate concentration, approx. 35% or 50%, respectively, of enzyme activity was particulate. The soluble activity appeared to be predominantly a 'high Km' form, whereas the particulate activity had both 'high Km' and 'low Km' components. The recovery of cyclic-AMP phosphodiesterase was measured using 1 microM substrate concentraiton, in plasma membrane-containing fractions prepared either by centrifugation or by the use of specific immunoadsorbents. The recovery of phosphodiesterase was lower than that of marker enzymes for plasma membrane, and comparable with the recovery of markers for intracellular membranes. It was concluded that regulation of both 'high Km' and 'low Km' phosphodiesterase could potentially make a significant contribution to the control of cyclic AMP concentration, even at microM levels, in the liver. the 'low Km' enzyme, for which activation by hormones has been previously described, appears to be located predominantly in intracellular membranes in hepatocytes. The immunological procedure for membrane isolation allowed the rapid preparation of plasma membranes in high yield. Liver cells were incubated with rabbit anti-(rat erythrocyte) serum and homogenized. The antibody-coated membrane fragments were then extracted onto an immunoadsorbent consisting of sheep anti-(rabbit IgG) immunoglobulin covalently bound to aminocellulose. Plasma membrane was obtained in approx. 40% yield within 50 min of homogenizing cells.  相似文献   

5.
Attempts to optimize the recovery of light-stimulated phosphodiesterase activity following reassociation of the hypotonically extractable proteins derived from retinal rod segments with hypotonically stripped disc membranes lead to the following observations: the best reassociations were obtained by mixing proteins and stripped disc membranes under hypotonic conditions and slowly increasing the salt concentration; the binding of G-protein and phosphodiesterase to stripped disc membrane occurs in less than 5 minutes and the recovery of light-stimulated phosphodiesterase activation in response to subsaturating stimulus levels requires 2-3 h to plateau. Stripped disc membranes and proteins were reassociated in 'isotonic' buffers containing KCl/NaCl, KCl/NaCl plus Mg2+, or KCl/NaCl plus Ca2+. Large fractional rhodopsin bleaches produced nearly identical light-stimulated phosphodiesterase activities in each of these samples and in the control rod outer segment membranes. Rod outer segment membranes and reassociated stripped disc membrane samples containing divalent cations showed similar phosphodiesterase activities in response to low fractional rhodopsin bleaches (e.g. less than or equal to 0.1%), however, samples devoid of divalent cations during reassociation required rhodopsin bleaches up to 10-fold larger to elicit comparable phosphodiesterase activities. These results suggest that not all phosphodiesterase and/or G-protein molecules bound to the disc membrane surface are equivalent with regard to their efficiency of activation by bleached rhodopsin and that divalent cations can modulate the distribution of G-protein and/or phosphodiesterase between these populations.  相似文献   

6.
Photoreceptor discs are membrane organelles harboring components of the visual signal transduction pathway. The mechanism by which discs form remains enigmatic and is the subject of a major controversy. Classical studies suggest that discs are formed as serial plasma membrane evaginations, whereas a recent alternative postulates that discs, at least in mammalian rods, are formed through intracellular vesicular fusion. We evaluated these models in mouse rods using methods that distinguish between the intracellular vesicular structures and plasma membrane folds independently of their appearance in electron micrographs. The first differentiated membranes exposed to the extracellular space from intracellular membranes; the second interrogated the orientation of protein molecules in new discs. Both approaches revealed that new discs are plasma membrane evaginations. We further demonstrated that vesiculation and plasma membrane enclosure at the site of new disc formation are artifacts of tissue fixation. These data indicate that all vertebrate photoreceptors use the evolutionary conserved membrane evagination mechanism to build their discs.  相似文献   

7.
J J Keirns  N Miki  M W Bitensky  M Keirns 《Biochemistry》1975,14(12):2760-2766
Frog (Rana pipiens) rod outer segment disc membranes contain guanosine 3',5'-cyclic monophosphate phosphodiesterase (EC 3.1.4.1.c) which, in the presence of ATP, is stimulated 5- to 20-fold by illumination. The effectiveness of monochromatic light of different wavelengths in activating phosphodiesterase was examined. The action spectrum has a maximum of 500 nm, and the entire spectrum from 350 to 800 nm closely matches the absorption spectrum of rhodopsin, which is apparently the pigment which mediates the effects of light on phosphodiesterase activity. trans-Retinal alone does not mimic light. Half-maximal activation of the phosphodiesterase occurs with a light exposure which bleaches 1/2000 of the rhodopsins. Half-maximal activation can also be achieved by mixing 1 part of illuminated disc membranes in which the rhodopsin is bleached with 99 parts of unilluminated membranes. Regeneration of bleached rhodopsin by addition of 11-cis-retinal is illuminated disc membranes reverses the ability of these membranes to activate phosphodiesterase in unilluminated membranes. If the rhodopsin regenerated by 11-cis-retinal is illuminated again, it regains the ability to activate phosphodiesterase. These studies show that the levels of cyclic nucleotides in vetebrate rod outer segments are regulated by minute amounts of light and clearly indicate that rhodopsin is the photopigment whose state of illumination is closely linked to the enzymatic activity of disc membrane phosphodiesterase.  相似文献   

8.
Plasma membranes have been isolated from 3T3 and SV-3T3 cells grown in culture. Cells were harvested mechanically and disrupted in simple isotonic buffered salt solutions without resorting to hypotonic swelling or chemical membrane “hardeners.” The method of storing collected cells, the cell concentration during disruption, and the method of mechanical disruption were found to be significant variables affecting the yield of plasma membranes. The plasma membranes were separated from mitochondria and other cellular organelles by a single centrifugation through a step sucrose gradient containing a viscosity barrier of Dextran T-500 (modified fromA. S. Sun and B. Poole (1975)Anal. Biochem.68, 260). The isolated plasma membranes were located by assay for the “marker” enzyme, alkaline phosphatase (EC 3.1.3.1). The isolated plasma membrane fraction was free of mitochondrial and essentially free of lysozymal and endoplasmic reticulum contamination, which were assayed by measuring cytochrome c reductase, arylsulfatase, and hydrolysis of α-naphthol acetate, respectively. Of the enzymes tested, the phosphodiesterase activity was found to be the most specific assay for the plasma membrane from culture mouse fibroblast cells. The 5′-nucleotidase (EC 3.1.3.5) activity, the other plasma membrane marker, was extremely low in activity and gave an additional peak of activity when 5′-adenilic acid was used as substrate as compared to the expected single peak obtained with 5′-cytidilic acid as substrate. Overall recovery of isolated plasma membranes was greater than 75% as measured by the final recovery of phosphodiesterase activity.  相似文献   

9.
The physiological regulation of light-activated cyclic GMP phosphodiesterase (EC 3.1.4.17) in rod outer segments has been shown to depend upon a heat-stable inhibitor and upon the reversal of its effect by a specific GTP/GTP-binding protein complex (Hurley, J. B. (1980) Biochem. Biophys. Res. Commun. 92, 505-510; Yamazaki, A., Bartucca, F., Ting, A., and Bitensky, M. W. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 3702-3706). Washing of illuminated disc membranes with an isotonic buffer released 86% of the peripheral proteins without any release of inhibitor. Subsequent washing with the same isotonic buffer containing GTP released 80% of the inhibitor. When inhibitor was eluted with guanosine-5'-(beta, gamma-imino)triphosphate, it had an apparent molecular weight of 60,000 on Sephadex G-100. The release of inhibitor by guanosine-5'-(beta, gamma-imino)triphosphate was also demonstrated with sucrose density gradient centrifugation. Inhibitor release from the disc membrane by GTP or its analogue was accompanied by the release of the GTP-binding protein and an increased phosphodiesterase activity in the membrane. However, following GTP hydrolysis, both inhibitor and GTP-binding protein returned to the membrane and phosphodiesterase activity in the membrane decreased proportionally. In contrast, incubation of disc membranes with guanosine-5'-(beta, gamma-imino)-triphosphate produced an increase of inhibitor activity in the supernatant and an increase of phosphodiesterase activity in the pellet which remained constant after the initial increase. These data clearly show that the activation of phosphodiesterase by the GTP/GTP-binding protein complex resulted from the release of inhibitor. Hydrolysis of GTP resulted in the reassociation of inhibitor with and concomitant inhibition of disc membrane phosphodiesterase.  相似文献   

10.
Comparison of electric characteristics of photoreceptor disc and plasma membranes of photoreceptor was made by means of photopotential registration from the adhized to the impregnated by lipids filters photoreceptor discs or isolated rod outer segments. The resistance of the photoreceptor disc membrane is shown to be by three orders of magnitude higher than the resistance of photoreceptor plasma membrane; namely 1-2 MOhm X cm2 versus 1-2 KOhm X cm2. This is the evidence for the absence of channel structures in the disc membrane.  相似文献   

11.
A procedure for cellular fractionation and preparation of plasma membrane from a Burkitt's lymphoma cell line is described. This procedure involves homogenization with a Polytron in buffered isotonic sucrose, and separation of cellular fractions by differential and isopycnic centrifugation in sucrose. The isolated plasma membrane fraction contains 44% of the cellular cholesterol, 50% of the ouabain-sensitive (Na+ + K+)-ATPase activity, 43% of the γ-glutamyltranspeptidase activities and 16% of the phospholipid. This fraction contains only 3% of cellular protein and is contaminated with less than 4% of the total cellular activities of microsomal, lysosomal, mitochondrial, Golgi and soluble marker enzymes. The cholesterol : phospholipid molar ratio of the crude plasma membrane is 0.56. The membranes in this fraction are in the form of vesicles. Further purification of plasma membrane is achieved by sucrose density gradient centrifugation and results in a 25- to 30-fold enrichment of plasma membrane markers. Plasma membrane markers band in these gradients between 1.10 and 1.15 g/cm3.The distribution patterns in the cell fractions of 18 cellular constituents are quantitatively determined. Most constituents are found to distribute in a fashion consistent with the results obtained in other systems. Thymidine-5′-phosphodiesterase (phosphodiesterase I), esterase, nucleoside diphosphatase and glucose-6-phosphatase, however, are shown to be poor markers of membrane fractions in this system.Lactoperoxidase-catalyzed iodination was used to identify several plasma membrane proteins which are exposed at the surface. After separation of labeled polypeptides by sodium dodecyl sulfate gel electrophoresis, the predominant labeled protein was identified as the heavy chain of IgM. Several lesser labeled proteins were observed.  相似文献   

12.
Thymocyte plasma and nuclear membranes obtained by the procedure described in the accompanying paper were analyzed for their biochemical composition. Plasma membranes were very rich in phospholipid, cholesterol, sialic aicd; they did not contain nucleic acids. In comparison, nuclear membranes had a lower phospholipid to protein ratio and contained much less sialic acid and cholesterol. 50% of the cellular cholesterol and of the membrane-bound sialic acid were found in the plasma membranes, 14% in the nuclear membranes. Live cells were labeled with 131I, and the acid-insoluble radioactivity was followed in the subfractions. A good correlation with the distribution and enrichment of plasma membrane market-enzymes was obtained. Label enrichment was about 50-fold in the two lightest of the three plasma membrane fractions. 60% of the label was contained in the plasma membranes, only 4% in the nuclear membranes. Cross-contamination of these two types of membranes was thus negligible. Sodium dodecyl sulfate-gel electrophoresis revealed three different patterns specific for, respectively, plasma membranes, the microsomal-mitochondrial fraction, and nuclear membranes. Each pattern was characterized by a set of proteins and glycoproteins, among which high molecular weight glycoproteins could be considered as marker-proteins of, respectively, 280,000, 260,000, and 230,000 daltons. 131I-labeling of live cells tagged with a very high specific activity three glycoproteins of mol wt 280,000, 200,000, and 135,000 daltons. Nuclear membranes prepared from labeled isolated nuclei had a set of labeled proteins completely different from plasma membranes.  相似文献   

13.
Both adipocyte plasma membranes and microsomes possess insulin-sensitive low Km cyclic AMP phosphodiesterase activity. The activity of the enzyme from both sources was susceptible to activation by several anionic phospholipids. Activators of the plasma membrane enzyme were lysophosphatidylglycerol greater than lysophosphatidylcholine greater than lysophosphatidylserine greater than phosphatidylserine greater than phosphatidylglycerol. These same phospholipids activated the microsomal enzyme but the extent of activation by each phospholipid was reversed. Neutral phospholipids and other anionic phospholipids were without effect. The phospholipids had no effect on high Km cAMP phosphodiesterase in either membrane. The results suggest that the phospholipid headgroup was an important determinant for enzyme activation by phospholipid. The increased susceptibility of the plasma membrane enzyme to lysophospholipid may be attributed to a difference in the plasma membrane enzyme compared to the microsomal membrane enzyme or to differences in plasma membrane and microsomal membrane phospholipid composition and their ability to regulate low Km cAMP phosphodiesterase activity.  相似文献   

14.
The activities of three components of the cyclic AMP system were compared in erythrocyte ghost membranes prepared from the blood of rats at various ages from 1.5 to 15 months. The apparent number of β-adrenergic receptor sites, adenylate cyclase activity and cyclic AMP phosphodiesterase activity all declined about 50% in the membranes from the older animals (>5 months) as compared to the 1.5 month ones. The soluble erythrocyte phosphodiesterase also declined with age, but the decline did not parallel that of the membrane-associated activity. In contrast, there was no age-related change in the number of β-adrenergic receptors in membranes from the brains of the same animals. In erythrocyte ghosts, both the ratio of isoproterenol-stimulated adenylate cyclase activity to basal activity and the ratio of sodium fluoride-stimulated activity to basal were constant with age. Neither the dissociation constant for the β-adrenergic receptor nor the Michaelis constant for the phosphodiesterase changed as a function of age. Together with other data in the literature, these results suggest a close functional association of the components of the cyclic AMP system in the mature erythrocyte membrane, and support a physiological role for the cyclic AMP mediated β-adrenergic effects in the red blood cell.  相似文献   

15.
The photoreceptor rod outer segment (ROS) provides a unique system in which to investigate the role of cholesterol, an essential membrane constituent of most animal cells. The ROS is responsible for the initial events of vision at low light levels. It consists of a stack of disk membranes surrounded by the plasma membrane. Light capture occurs in the outer segment disk membranes that contain the photopigment, rhodopsin. These membranes originate from evaginations of the plasma membrane at the base of the outer segment. The new disks separate from the plasma membrane and progressively move up the length of the ROS over the course of several days. Thus the role of cholesterol can be evaluated in two distinct membranes. Furthermore, because the disk membranes vary in age it can also be investigated in a membrane as a function of the membrane age. The plasma membrane is enriched in cholesterol and in saturated fatty acids species relative to the disk membrane. The newly formed disk membranes have 6-fold more cholesterol than disks at the apical tip of the ROS. The partitioning of cholesterol out of disk membranes as they age and are apically displaced is consistent with the high PE content of disk membranes relative to the plasma membrane. The cholesterol composition of membranes has profound consequences on the major protein, rhodopsin. Biophysical studies in both model membranes and in native membranes have demonstrated that cholesterol can modulate the activity of rhodopsin by altering the membrane hydrocarbon environment. These studies suggest that mature disk membranes initiate the visual signal cascade more effectively than the newly synthesized, high cholesterol basal disks. Although rhodopsin is also the major protein of the plasma membrane, the high membrane cholesterol content inhibits rhodopsin participation in the visual transduction cascade. In addition to its effect on the hydrocarbon region, cholesterol may interact directly with rhodopsin. While high cholesterol inhibits rhodopsin activation, it also stabilizes the protein to denaturation. Therefore the disk membrane must perform a balancing act providing sufficient cholesterol to confer stability but without making the membrane too restrictive to receptor activation. Within a given disk membrane, it is likely that cholesterol exhibits an asymmetric distribution between the inner and outer bilayer leaflets. Furthermore, there is some evidence of cholesterol microdomains in the disk membranes. The availability of the disk protein, rom-1 may be sensitive to membrane cholesterol. The effects exerted by cholesterol on rhodopsin function have far-reaching implications for the study of G-protein coupled receptors as a whole. These studies show that the function of a membrane receptor can be modulated by modification of the lipid bilayer, particularly cholesterol. This provides a powerful means of fine-tuning the activity of a membrane protein without resorting to turnover of the protein or protein modification.  相似文献   

16.
The effect of cholesterol depletion on the activity of phosphatidylinositol/phosphatidylinositol 4-phosphate and diacylglycerol kinases and polyphosphoinositide phosphodiesterase has been studied in isolated membranes of human normal and cholesterol-depleted erythrocytes. Polyphosphoinositide synthesis (phosphatidylinositol/phosphatidylinositol 4-phosphate kinase activities) were found to depend on the permeability and sidedness characteristics of the membrane vesicles, which could limit the accessibility of ATP for the enzymes. When measured under proper conditions, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate synthesis were decreased in cholesterol-depleted membranes as compared with control membranes. The same level of synthesis could be obtained in both membranes by the addition of phosphatidylinositol (and Triton X-100) or of phosphatidylinositol 4-phosphate. Phosphatidic acid synthesis (diacylglycerol kinase activity) was also decreased in cholesterol-depleted membranes as compared with control membranes when measured in the presence of Ca2+. Addition of diolein (and Triton X-100) caused a large increase in phosphatidic acid synthesis which reached approximately the same level in both membranes. This showed that the apparent inhibition of polyphosphoinositide and phosphatidic acid synthesis was not due to a loss or to an inactivation of the kinases. Ca2+-activated polyphosphoinositide phosphodiesterase promoted the hydrolysis of 65-70% of the polyphosphoinositides in control and of only 45-55% in cholesterol-depleted membranes without changing the Ca2+ concentration for half-maximum hydrolysis (1 microM). Upon addition of sodium oleate, the extent of polyphosphoinositide hydrolysis became identical in both membranes, indicating again that there was no loss nor inactivation of the polyphosphoinositide phosphodiesterase in the cholesterol-depleted membranes. Since the concentration of the polyphosphoinositides was not changed by cholesterol depletion [Giraud, M'Zali, Chailley & Mazet (1984) Biochim. Biophys. Acta 778, 191-200], the reduction in both their synthesis and degradation observed here could be attributed to a reorganization of the phosphoinositides in membrane domains where they were not accessible to the kinases and phosphodiesterase. The reduction in phosphatidic acid synthesis was likely caused by a reduction in the total amount of the substrate diacylglycerol in cholesterol-depleted membranes as already shown [Giraud, M'Zali, Chailley & Mazet (1984) Biochim. Biophys. Acta 778, 191-200].  相似文献   

17.
The distribution of cyclic-AMP phosphodiesterase was investigated in subcellular fractions prepared from homogenates of rat liver or isolated hepatocytes. When measured at 1 mM or 1 μM substrate concentration, approx. 35% or 50%, respectively, of enzyme activity was particulate. The soluble activity appeared to be predominantly a ‘high Km’ form, whereas the particulate activity had both ‘high Km’ and ‘low Km’ components. The recovery of cyclic-AMP phosphodiesterase was measured using 1 μM substrate concentration, in plasma membrane-containing fractions prepared either by centrifugation or by the use of specific immunoadsorbents. The recovery of phosphodiesterase was lower than that of marker enzymes for plasma membrane, and comparable with the recovery of markers for intracellular membranes. It was concluded that regulation of both ‘high Km’ and ‘low Km’ phosphodiesterase could potentially make a significant contribution to the control of cyclic AMP concentration, even at μM levels, in the liver. The ‘low Km’ enzyme, for which activation by hormones has been previously described, appears to be located predominantly in intracellylar membranes in hepatocytes.The immunological procedure for membrane isolation allowed the rapid preparation of plasma membranes in high yield. Liver cells were incubated with rabbit anti-(rat erythrocyte) serum and homogenized. The antibody-coated membrane fragments were then extracted onto an immunoadsorbent consisiting of sheep anti-(rabbit IgG) immunoglobulin covalently bound to aminocellulose. Plasma membrane was obtained in approx. 40% yield within 50 min of homogenizing cells.  相似文献   

18.
P L Yeagle  J Young  D Rice 《Biochemistry》1988,27(17):6449-6452
The (Na+,K+)-ATPase ATP hydrolyzing activity from rabbit kidney medulla basolateral membrane vesicles was studied as a function of the cholesterol content of the basolateral membranes. The cholesterol content of the membranes was modified by incubation with phospholipid vesicles. When the cholesterol content was increased above that found in the native membrane, the (Na+,K+)-ATPase ATP hydrolyzing activity was inhibited. When the cholesterol content was decreased from that found in the native membranes, the (Na+,K+)-ATPase ATP hydrolyzing activity was inhibited. Analogous effects were found with the K+-activated phosphatase activity of the same membrane vesicles. Therefore, at low cholesterol contents, cholesterol was stimulatory, and at high cholesterol contents, cholesterol was inhibitory. The structural specificity of this effect was tested by introducing lanosterol and ergosterol as 50% of the membrane sterol. Ergosterol was the least effective at supporting (Na+,K+)-ATPase ATP hydrolyzing activity, while lanosterol was more effective, but still not as effective as cholesterol.  相似文献   

19.
Summary Plasma membranes were isolated from rat and mouse livers, one rat hepatoma (and its subline) and two mouse hepatomas, and their lipid class compositions were determined. Lipids accounted for 30 to 35% of the dry weight of the membranes of livers and mouse hepatomas, and for 45% in the case of rat hepatoma-subline. Of the total lipids of rat-liver plasma membranes, 60% consisted of phospholipids, the corresponding values for mouse-liver and rat-hepatoma plasma membranes amounting to 55% and for both mouse-hepatoma plasma membranes to about 50%. The free cholesterol and cholesteryl ester contents of all hepatoma plasma membranes were significantly increased as compared with normal. Evidence is presented that the increase of free cholesterol was not a preparative artefact. The major phospholipid classes in all plasma membranes were phosphatidyl choline, sphingomyelin, phosphatidyl ethanolamine and phosphatidyl serine. The relative proportions in each plasma membrane species could differ appreciably, the mouse- and rat-liver membranes showing the closest resemblance. Possible reasons for (a) the higher level of phosphatidyl serine as compared with published values, and (b) the wide divergencies which may be found among the phospholipid profiles of rat-liver plasma membranes reported by other authors, are presented. Cardiolipin was absent from liver plasma membranes, but some could be found in the hepatoma membranes due to mitochondrial contamination. No consistent phospholipid profile characterized hepatoma as distinct from liver plasma membranes, nor did the hepatoma data-including plasmalogens-resemble the few available data on other hepatomas.  相似文献   

20.
Frog (Rana catesbiana) rod outer segment disc membranes contain a cyclic nucleotide phosphodiesterase (EC 3.1.4.17) which is activated by light in the presence of ATP. This enzyme is firmly bound to the disc membrane, but can be eluted from the membrane with 10 mM Tris-HCl buffer, pH 7.4 and 2 mM EDTA. The eluted phosphodiesterase has reduced activity, but can be activated approximately 10-fold by polycations such as protamine and polylysine. The eluted phosphodiesterase can no longer be activated by light in the presence of ATP, that is, activation by light apparently depends on the native orientation of phosphodiesterase in relationship to other disc membrane components. The eluted phosphodiesterase was purified to homogeneity as judged by analytical polyacrylamide gel electrophoresis and polyacrylamide gel isoelectric focusing. The over-all purification from intact retina was approximately 925-fold. The purification of phosphodiesterase from the isolated rod outer segment preparation was about 185-fold with a 28% yield. Phosphodiesterase accounts for approximately 0.5% of the disc membrane protein. The eluted phosphodiesterase (inactive form) has a sedimentation coefficient of 12.4 S corresponding to an approximate molecular weight of 240,000. Sodium dodecyl sulfate polyacrylamide gel electrophoresis separates the purified phosphodiesterase into two subunits of 120,000 and 110,000 daltons. With cyclic 3':5'-GMP (cGMP) as substrate the Km for the purified phosphodiesterase is 70 muM. Protamine increases the Vmax without changing the Km for cGMP. The isoelectric point (pI) of the native dimer is 5.7. Limited exposure of the eluted phosphodiesterase (inactive form) to trypsin produces a somewhat greater activation than is obtained with 0.5 mg/ml of protamine. The trypsin-activated phosphodiesterase has a sedimentation coefficient of 7.8 S corresponding to an approximate molecular weight of 170,000. The 110,000-dalton subunit is much less sensitive to trypsin hydrolysis and the 120,000-dalton subunit is rapidly replaced by smaller fragments. On the basis of the molecular weight of the purified phosphodiesterase (240,000) and the concentrations of phosphodiesterase and rhodopsin in the rod outer segment, it is estimated that the molar ratio ophosphodiesterase to rhodopsin in the rod outer segment is approximately 1:900. Since all of the disc phosphodiesterase molecules are activated when 0.1% of the rhodopsins are bleached, we conclude that in the presence of ATP 1 molecule of bleached rhodopsin can activate 1 molecule of phosphodiesterase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号