共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Radioactive azide derivatives of tetrodotoxin (TTX) were synthesized using 2-nitro-4-azidephenyl-[3H]beta alanine for the purpose of photolabeling of the Na channel. Three azide derivatives, N1, N2 and N3, were separated by ion exchange chromatography on Bio-Rex 70 resin and reversed phase high performance liquid chromatography. N3 was more stable and obtained at a higher yield than the other two derivatives. Bioactivity of N3 was one-twentieth of that of TTX. N3 showed reversible binding to membranes of Electrophorus electricus electroplax in the dark with Kd = 30 nM and B max = 5.2 pmol/mg protein. By photoirradiation, irreversible binding of N3 to the membranes was observed. A N3 binding component was solubilized by lubrol PX and partially purified from the electroplax membranes by Sephadex G25 and Sepharose 6B column chromatography. The component, purified 500 fold from the starting membranes, showed molecular weight of 10,000. 相似文献
3.
4.
5.
The biochemical properties of the electrically excitable sodium channels in the electroplaque of Electrophorus electricus were investigated using tritiated tetrodotoxin (TTX) as a specific membrane probe. Membrane fragments from the electroplaque were isolated essentially by differential centrifugation and characterized with respect to the plasma membrane markers acetylcholine receptors, acetylcholinesterase, (Na+ + K+)ATPase, and [3H]TTX binding. Equilibrium binding studies showed that [3H]TTX bound to a single population of noninteracting receptor sites with an apparent dissociation constant of 6 +/- 1 X 10(-9) M. The toxin-membrane complex dissociated with a first-order rate constant of 0.012 sec-1. Studies on the pH dependence of complex formation demonstrated the requirement for an ionizable, functional group with a pK of 5.3 and this group has been shown to be a carboxyl. Treatment of the membranes with trimethyloxonium tetrafluoroborate, a carboxyl group modifying reagent, resulted in an irreversible loss in the binding of [3H]TTX, which could be prevented by low concentrations of TTX or saxitoxin. This decrease was due to a reduction in the total number of binding sites and not to a decrease in toxin binding affinities. The relative binding affinities of various monovalent alkali metal and polyatomic cations for the TTX-receptor site showed that this site displayed cation discrimination properties which were similar to those reported previously for the electrically excitable sodium channel in intact nerve fibers. A possible role for this site in the ion selectivity of the sodium channel is proposed. 相似文献
6.
Eva Bartels-Bernal Edgar Diaz Rosalina Cadena Jorge Ramos John W. Daly 《Cellular and molecular neurobiology》1983,3(3):203-212
Histrionicotoxin (HTX) at low concentrations of 5-10 microM blocks the postsynaptic potential of the electroplax of Electrophorus electricus. At 100-fold higher concentrations, HTX blocks the directly evoked action potentials of the conducting membrane. The pH dependence of the blockade by HTX at synaptic channels is different from that at the conducting membrane. At the synapse HTX is more potent at acid pH, while at the conducting membrane it is more potent at basic pH. HTX at high concentrations antagonizes the effects of batrachotoxin, indicative of an effect on the batrachotoxin-sensitive sodium channels involved in action potential generation. While the effects of HTX on the synaptic channels are concentration, time, and pH dependent, the effects on the channels of the conducting membrane are, in addition, use dependent, suggesting interactions of HTX with the activated forms of these channels. 相似文献
7.
8.
Tetrodotoxin receptors in membrane fragments: purification from Electrophorus electricus electroplax and binding properties 总被引:1,自引:0,他引:1
A tetrodotoxin receptor-rich preparation of membrane fragments from the electric organ of Electrophorus electricus is described. The specific binding of neurotoxins and freeze-fracture electron microscopy are used as tools to identify and to characterize membrane fractions. Freeze-fracture electron micrographs of the electric organ demonstrate a high density of membrane particles in the extrasynaptic regions. Density gradient fractions show a broad distribution of [3H]tetrodotoxin, [3H]saxitoxin and 125I-labelled bungarotoxin binding in the range of 1.04--1.15 g/ml sucrose densities, with specific neurotoxin binding up to approx. 5 pmol/mg protein. Carrier-free column electrophoresis of density gradient fractions yields a subfraction with tetrodotoxin and alpha-neurotoxin binding up to 30 pmol/mg protein. The major part of the membrane fragments forms vesicles, which are separated by lectin chromatography into an outside-out and inside-out population. The latter represents at least 50% of the material of a density gradient fraction. For the association of tetrodotoxin, a bimolecular kinetic constant kf greater than or equal to 3.10(5) M-1.s-1 is determined. The dissociation constant is k'b = 2.5.10(-2)s-1. These data are in agreement with a thermodynamic dissociation constant of Kd = 20 nM as determined earlier for E. electricus membrane fragments by equilibrium methods (Grünhagen, H.H., Rack, M., St?mpfli, R., Fasold, H. and Reiter, P. (1981) Arch. Biochem. Biophys. 206, in the press). However, these association kinetics of tetrodotoxin binding in vitro are significantly different from kinetics determined electrophysiologically in Rana (Wagner, H.H. and Ulbricht, W. (1975) Pflügers Arch. 359, 297--315) or Xenopus (Schwarz, J.R., Ulbricht, W. and Wagner, H.H. (1973) J. Physiol. 233, 167--194). 相似文献
9.
Ellman's method was used to determine the Michaelis-Menten parameters for the hydrolysis of acetylthiocholine by Electrophorus electricus acetylcholinesterase from 12 to 37 degrees C. Arrhenius analysis revealed that the activation energy for formation of the enzyme/substrate complex is 22.2 +/- 1.1 kJ/mole. The Arrhenius plot of k(cat) is markedly curved and attributed to comparable rates of acylation and deacylation due to the absence of evidence for a temperature-dependent enzyme conformational change by differential scanning calorimetry. 相似文献
10.
11.
12.
Isolation of acetylcholine receptor-- -bungarotoxin complexes from Torpedo californica electroplax 总被引:2,自引:0,他引:2
M A Raftery 《Archives of biochemistry and biophysics》1973,154(1):270-276
Affinity chromatography has been utilized to purify acetylcholine receptors from Torpedo californica electroplax membranes. These have been isolated as their [125I]α-bungarotoxin complexes. The major protein subunit found had a molecular weight of 3.5–4.5 × 104 on gel electrophoresis under denaturing conditions. Other components of higher molecular weight were also present in smaller amounts even in the best preparations. This is interpreted as most likely due to either a multiple subunit structure or to more than one type of receptor in the tissue used. 相似文献
13.
Summary The effects of lanthanum on the activity of purified preparations of acetylcholinesterase (AChE) from the electric organ ofE. electricus and on the activity of AChE in intact electro-plaques from the same species were studied. 0.1mm LaCl3 produced an initial inhibition of purified AChE which was followed by a delayed activation of the enzyme. Upon pretreatment of purified enzyme with LaCl3, initial activity was markedly increased. LaCl3 exerted a marked, concentration-dependent inhibition of intact cell AChE.La3+ and Ca2+ appear to interact competitively. In the presence of both 10mm CaCl2 and 0.1mm LaCl3, the initial activity of purified AChE was increased at lower ACh concentrations and inhibited at ACh concentrations greater than 3 × 10–4
m. Inhibition of intact cell enzyme by 0.1mm LaCl3 was relieved by increasing the CaCl2 concentration to 10mm at ACh concentrations less than 2 × 10–4
m.The data were analyzed assuming Michaelis-Menten kinetics and interpreted with reference to the differential binding of divalent and trivalent cations to regulatory anionic sites which are separate and distinct from the anionic site of the active center of the enzyme. 相似文献
14.
15.
An acidic calcium-binding phosphoprotein has been isolated from a cholinergic tissue, electroplax from Electrophorus electricus. The purification procedures included (NH4)2SO4 fractionation, boiling treatment, ECTEOLA-cellulose chromatography, and gel filtration on Sephadex G-100. Experiments were performed to compare this protein and a calcium-binding protein isolated from mammalian brain, adrenal medulla, and testis. These experiments showed that the two proteins were identical in terms of molecular weight (14 000), calcium-binding dissociation constant (kd=2.1-10(-5) M), electrophoretic mobility at pH 8.7 in 15% polyacrylamide gels, and phosphorus content (1 mol phosphorus per mol protein). In addition, the two proteins had similar amino acid compositions and peptide maps. Although the electroplax protein was not present in eel skeletal muscle, preliminary experiments indicated that small amounts of the protein were present in other eel tissues, namely brain, liver and spleen. These results suggest an identity between the electroplax and mammalian calcium-binding proteins and extend the findind of comparatively large amounts of the protein from mammalian nervous tissue to a cholinergic nervous tissue, electroplax. The close similarity of the proteins suggests a conservation of structure during evolution which may be required to fulfill a role in neuronal function. 相似文献
16.
Presence of specific auxin-binding sites in strawberry fruit (Fragaria ananassa Duch. cv. Ozark Beauty) membranes has been demonstrated. These 1-naphthaleneacetic acid (NAA)-binding sites in the 80,000g to 120,000g fraction of the strawberry fruit membrane were pronase sensitive with an estimated equilibrium dissociation constant for NAA of 1.1 × 10−6 molar. The minimum concentration of NAA required to stimulate strawberry fruit growth was at least one order of magnitude higher than the minimum concentration of NAA required to stimulate corn coleoptile elongation. This was consistent with the higher equilibrium dissociation constant (lower affinity) for auxin binding to strawberry fruit membranes than to corn coleoptiles. Twelve auxin analogs, ranging from very strong to weak auxins, were tested for abilities to stimulate in situ strawberry fruit growth and to bind (displace or compete with NAA) to strawberry fruit membranes. The observed positive correlation (r = 0.74) between the in vitro binding to the 80,000 to 120,000 membrane fraction and the in situ biological activity of these analogs indicated that the NAA-binding sites in strawberry fruit membranes may represent physiologically relevant auxin receptors. 相似文献
17.
Antibodies against Lubrol-solubilized Electrophorus electroplax (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) and its 96 000-dalton polypeptide (P96) were raised in rabbits. The P96 antibody does not cross react with the (Na+ + K+)-ATPase from mammalian species and tissues, but it cross reacts with the (Na+ + K+)-ATPase from both Electrophorus electroplax and brain. The combination of enzyme with anti-P96 is found to inhibit phosphoryl enzyme formation to the same extent that it inhibits enzyme activity. The rate of K+-sensitive dephosphorylation of phosphoryl enzyme appears to be unchanged. These are also found to be true with the antibody against the whole enzyme. Upon tryptic digestion of the enzyme-anti-P96 complex only the large polypeptide of the enzyme is protected. In the case of enzyme-anti-Lubrol-solubilized enzyme complex, both the large and small polypeptides are protected, whereas preimmune sera are without any protecting effect. The data indicate that the phosphoryl acceptor polypeptide and the Lubrol-solubilized electroplax (Na+ + K+)-ATPase from which the polypeptide is derived are phylogenetically distinct from those of the mammalian (Na+ + K+)-ATPases. The selective tryptic resistance of the enzyme-anti-P96 complex indicates that the two polypeptides are spatially well separated, possibly on opposite sides of the membrane. 相似文献
18.
A binding protein with apparent specificity for beta-glucuronidase has been partially purified from a Triton X-100 extract of rat liver microsomes by affinity chromatography on glucuronidase-Sepharose 2B. It appears that once removed from the membrane, this binding protein self-aggregates to form large macromolecular complexes. With the use of polyacrylamide gel electrophoretic and sucrose density gradient ultracentrifugation assays to monitor the conversion of glucuronidase tetramer to a very high molecular weight complex, it was shown that the binding activity is heatlabile and protease-sensitive. However, binding activity is not influenced by salts, carbohydrates, other proteins or glycoproteins, or by extensive periodate oxidation of beta-glucuronidase, nor does binding occur with any other protein tested. The binding protein does not discriminate against any form of beta-glucuronidase from any rat organ tested. However, the binding protein does show organ localization, being present in the liver and kidney but not the spleen. The possible relationship of this binding protein to egasyn, a membrane protein which stabilizes beta-glucuronidase in mouse liver endoplasmic reticulum, is discussed. 相似文献
19.
20.
Elena B. Pasquale Jayant B. Udgaonkar George P. Hess 《The Journal of membrane biology》1986,93(2):195-204
Summary Extensive chemical kinetic measurements of acetylcholine receptor-controlled ion translocation in membrane vesicles isolated from the electroplax ofElectrophorus electricus have led to the proposal of a minimum model which accounts for the activation, desensitization, and voltage-dependent inhibition of the receptor by acetylcholine, suberyldicholine, and carbamoylcholine. Comparison of chemical kinetic measurements of the dynamic properties of the acetylcholine receptor in vesicles with the properties of the receptor in cells obtained from the same organ and animal have been hampered by an inability to make the appropriate measurements withElectrophorus electricus electroplax cells. Here we report a method for exposing and cleaning the surface of electroplax cells obtained from both the Main electric organ and the organ of Sachs and the results of single-channel current recordings which have now become possible. The single-channel current recordings were made in the presence of either carbamoylcholine or suberyldicholine, as a function of temperature and transmembrane voltage. Both the channel open times and the single-channel conductance were measured. The data were found to be consistent with the model based on chemical kinetic measurements using receptor-rich membrane vesicles prepared from the Main electric organ ofE. electricus. 相似文献