首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have employed colloidal silica (Percoll) density-gradient subcellular fractionation technique to examine the distribution of lysosomal hydrolases between intermediate vesicles (primary lysosomes) and secondary lysosomes in contact-inhibited non-proliferating vs proliferating chicken embryo fibroblasts. We find that the activities of lysosomal specific enzymes from both phases of growth are distributed within two peaks; however, the relative amounts differ markedly. In normal, non-proliferating cells approx. 60% of the total activities of cathepsin B, beta-mannosidase, alpha-fucosidase, beta-galactosidase and hexosaminidase is recovered in the heavier density fraction corresponding to secondary lysosomes, while less than 9% of the enzyme activities are recovered in the light-density peak. With transformed cells, between 16 and 22% of activity for these enzymes are recovered in the lighter density intermediate vesicle fraction, when less than 40% of the enzyme activities recovered in the heavy density fraction. beta-Glucuronidase distribution was different from that of the above enzymes. First, a more even distribution between the two lysosomal fractions was found with non-proliferating normal cells (33% in heavy-density fraction and 21% in light-density fraction), whereas more than 40% of the total enzyme activity was recovered in the lighter density fraction from transformed cells. Also, the amount of cathepsin B contained in the vesicle fractions is increased severalfold relative to that of contact-inhibited normal cells. However, the apparent differences in enzyme distribution between confluent normal and transformed cells are not found when vesicles are prepared from subconfluent, actively proliferating cultures. We have also compared the Percoll density gradient patterns of membrane vesicles from proliferating and non-proliferating human fibroblasts, since most earlier studies utilized this system. Again, we find that the majority of beta-hexosaminidase activity (41%) of contact-inhibited, confluent cells is recovered in the heavier density fraction with less than 15% in the lighter density fraction. Also, the distribution of beta-hexosaminidase between the heavy density and light density vesicle fractions is altered in homogenates from exponentially growing cells, being 22% and 26% respectively. We conclude that the distribution of lysosomal hydrolases between the two vesicle populations is growth-phase dependent and is markedly heterogeneous in proliferating cells.  相似文献   

2.
Normal rat liver lysosomal membranes in the form of membrane vesicles have been purified using Percoll density gradient centrifugation. Lysosomes (density = 1.111) were purified approximately 63 +/- 12-fold (mean +/- standard deviation, n = 5) using a gradient of Percoll made isotonic with sucrose and buffered to pH 7.0. These lysosomes were then exposed to 10 mM methionine methyl ester, pH 7.0, the uptake of which resulted in swelling and breakage of the lysosomes with subsequent vesicle formation. These vesicles (density = 1.056) were further separated from residual mitochondrial and plasma membrane enzyme activities using a second Percoll density gradient. Marker enzyme analysis and electron microscopy indicated that the lysosomal membranes were essentially free of both beta-hexosaminidase, a soluble lysosomal enzyme, and contaminating organelles. The specific activity of lysosomal ATPase in the lysosomal membranes was fourfold greater than in the intact lysosomes.  相似文献   

3.
Open thyroid follicles were prepared by mechanical disruption of pig thyroid fragments through a metal sieve. This procedure allowed preparation of thyroid-cell material depleted of colloid thyroglobulin. Open thyroid follicles were used to prepared a crude particulate fraction, which contained lysosomes, mitochondria and endoplasmic reticulum. These organelles were subfractionated by isopycnic centrifugation on iso-osmotic Percoll gradients. A lysosomal peak was identified by its content of acid hydrolases: acid phosphatase, cathepsin D, beta-galactosidase and beta-glucuronidase. The lysosomal peak was well separated from mitochondria and endoplasmic reticulum. The lysosomal peak, from which Percoll was removed by centrifugation, was taken as the purified lysosome fraction (L). Lysosomes of fraction L were purified 45-55-fold (as compared with the homogenate) and contained about 5% of the total thyroid acid hydrolase activities. Electron microscopy showed that fraction L was composed of an approx. 90% pure population of lysosomes, with an average diameter of 220 nm. Acid hydrolase activities were almost completely (80-90%) released by an osmotic-pressure-dependent lysis. Thyroglobulin was identified by polyacrylamide-gel electrophoresis as a soluble component of the lysosome fraction. In conclusion, a 50-fold purification of pig thyroid lysosomes was achieved by using a new tissue-disruption procedure and isopycnic centrifugation on Percoll gradient. The presence of thyroglobulin indicates that the lysosome population is probably composed of primary and secondary lysosomes. Isolated thyroid lysosomes should serve as an interesting model to study the reactions whereby thyroid hormones are generated from thyroglobulin and released into the thyroid cells.  相似文献   

4.
A procedure for the isolation of highly purified lysosomes from normal rat liver is described. The method depends on the swelling of mitochondria when the postnuclear supernatant fraction is incubated with 1 mM Ca2+. The lysosomes can then be separated from the swollen mitochondria by Percoll density gradient centrifugation. The lysosomal fraction obtained by our method was enriched more than 120-fold in terms of the marker enzymes with a yield of 25%. The electron microscopic examination and the measurement of the activities of marker enzymes for various subcellular organelles indicated that our lysosomal preparation was essentially free from contamination by other organelles.  相似文献   

5.
Newly-synthesized soluble lysosomal enzymes are transported from the trans-Golgi network to lysosomes by a mannose 6-phosphate receptor-mediated pathway. Lysosomal storage of indigestible material has been reported to perturb the biosynthesis and the fate of lysosomal hydrolases. In this study, we have focused our attention on the last steps in the transport of newly-synthesized cathepsin D to lysosomes in sucrose-treated WI-38 fibroblasts. Pulse-chase experiments indicate that, in sucrose-treated cells, cathepsin D maturation is delayed by 2 to 4 h. By subcellular fractionation, we show that newly-synthesized cathepsin D precursors transit through organelles endowed with a high sedimentation coefficient. These organelles are recovered in the dense region of a self-forming Percoll density gradient while the bulk of hydrolytic activities is redistributed to the low density region. Only later, are the precursors delivered to organelles containing the bulk of active hydrolases. There, procathepsin D is proteolytically processed into its 31 kDa-mature form. Our results suggest that when sucrose is present, the delayed maturation of procathepsin D is related to the delivery of the polypeptides into an organelle behaving in centrifugation like lysosomes but which is poorly efficient in proteolytic processing of procathepsin D. This low proteolytic activity of this organelle could be due to its poor ability to interact with hydrolase-containing structures.  相似文献   

6.
Effect on lysosomes of invertase endocytosed by rat-liver   总被引:1,自引:0,他引:1  
The intracellular localization of invertase endocytosed by rat liver was investigated by analytical centrifugation in sucrose and Percoll gradients of mitochondrial fractions originating from rats killed 15 h after injection. After isopycnic centrifugation in a sucrose gradient, invertase is located in higher density zones than acid hydrolases. The difference between the distribution of invertase and that of acid hydrolases increases with the amount of invertase injected. When the invertase dose is sufficiently high, a change of lysosomal enzyme distribution is clearly visible. It consists in the shift of a proportion of these enzymes to higher density regions where invertase is located. The proportion of hydrolase activity affected by invertase is different for each enzyme measured; it is the least pronounced for acid phosphatase, and most for acid deoxyribonuclease and arylsulfatase. A pretreatment of the rat with Triton WR 1339 considerably decreases the equilibrium density of structures bearing invertase. Nevertheless invertase distribution is quite distinct from that of the bulk of lysosomal enzymes that are recovered in lower density zones of the gradient; on the other hand the invertase injection to rats treated with Triton WR 1339 causes a spreading of the acid hydrolase distribution towards higher density zones. The distribution of acid hydrolases and invertase in a Percoll gradient depends on the sucrose concentration of the solvent. It is shifted towards higher densities when the sucrose concentration increases. The phenomenon is more important for invertase. These results are best explained by supposing that invertase accumulates in a distinct population of lysosomes that can be individualized as a result of the density increase they are subjected to by the invertase they accumulate. It is proposed that these lysosomes mainly originate from non-parenchymal cells of the liver.  相似文献   

7.
Tetrahymena pyriformis were grown in proteose-peptone medium and then washed and incubated in a dilute salt solution for one hour. The cells were then discarded and the lysosomal hydrolases that had been secreted were subjected to DEAE cellulose column chromatography. At least three isoenzymes of acid phosphatase, three of acid protease, and two of beta-N-acetylhexoseaminidase were found, as well as single peaks of alpha-mannosidase, beta-galactosidase, and beta-fucosidase. The latter two activities were not resolved by the DEAE column and could not be separated in a second chromatographic step on CM-cellulose. Cells were also grown under identical conditions and homogenized in 0.25 M sucrose in order to allow comparison of some of the intracellular lysosomal hydrolases with their secreted counterparts. Two lysosomal populations were resolved by sucrose density gradient sedimentation, a heavy lysosomal fraction, contered at a density of about 1.25 gm/cm3, and a light lysosomal fraction, centered at a density of about 1.16 gm/cm3. These two populations differed in that the light lysosomes did not appear to contain significant amounts of beta-fucosidase, beta-galactosidase, or acid protease, whereas all six of the hydrolase activities studied were present in the heavy lysosomes. The light lysosomal peak occurred in cells grown to transition phase, but was markedly reduced in cells from cultures grown to stationary phase. In addition to these two fractions a third very light particle, containing only alpha-mannosidase activity, was detected just inside the gradient. Measurements were made of the effect of heat (10 minutes at 66 degrees) and of a change in pH from 4.5 (standard assay condition) to 6.0 on the three acid phosphatases and two beta-N-acetylhexoseaminidase isoenzymes resolved by DEAE column chromatography of the secreted hydrolases and on these hydrolyases in the heavy and light lysosomal fractions on the sucrose gradient. Use of the thermostability and pH criteria permitted computation of the expected properties of the intralysosomal acid phosphatase and hexoseaminidase activities if these consisted of the respective isoenzymes in the proportions secreted. It was found that neither the intralysosomal acid phosphatase nor the intralysosomal hexoseaminidase had the properties expected if they consisted of the secreted mixture of the respective isoenzymes, indicating that modification of some of these isoenzymes may have occurred during the 1-hour starvation period or after secretion.  相似文献   

8.
Using a combination of differential centrifugation and isopycnic centrifugation in Percoll gradients, we obtained a highly purified preparation of thyroid lysosomes [Alquier, Guenin, Munari-Silem, Audebet & Rousset (1985) Biochem. J. 232, 529-537] in which we identified thyroglobulin. From this observation, we postulated that the isolated lysosome population could be composed of primary lysosomes and of secondary lysosomes resulting from the fusion of lysosomes with thyroglobulin-containing vesicles. In the present study, we have tried to characterize these lysosome populations by (a) subfractionation of purified lysosomes using iterative centrifugation on Percoll gradients and (b) by functional studies on cultured thyroid cells. Thyroglobulin analysed by soluble phase radioimmunoassay, Western blotting or immunoprecipitation was used as a marker of secondary lysosomes. The total lysosome population separated from other cell organelles on a first gradient was centrifuged on a second Percoll gradient. Resedimented lysosomes were recovered as a slightly asymmetrical peak under which the distribution patterns of acid hydrolase activities and immunoreactive thyroglobulin did not superimpose. This lysosomal material (L) was separated into two fractions: a light (thyroglobulin-enriched) fraction (L2) and a dense fraction (L1). L1 and L2 subfractions centrifuged on a third series of Percoll gradients were recovered as symmetrical peaks at buoyant densities of 1.12-1.13 and 1.08 g/ml, respectively. In each case, protein and acid hydrolase activities were superimposable. The specific activity of acid phosphatase was slightly lower in L2 than in L1. In contrast, the immunoassayable thyroglobulin content of L2 was about 4-fold higher than that of L1. The overall polypeptide composition of L, L1 and L2 analysed by polyacrylamide-gel electrophoresis was very similar, except for thyroglobulin which was more abundant in L2 than in either L or L1. The functional relationship between L1 and L2 lysosome subpopulations has been studied in cultured thyroid cells reassociated into follicles. Thyroid cells, prelabelled with 125I-iodide to generate 125I-thyroglobulin, were incubated in the absence of in the presence of inhibitors of intralysosomal proteolysis. The fate of 125I-thyroglobulin, and especially its appearance in the lysosomal compartment, was studied by Percoll gradient fractionation and immunoprecipitation. Treatment of prelabelled thyroid cells with chloroquine and leupeptin induced the accumulation of immunoprecipitable 125I-thyroglobulin into a lysosome fraction corresponding to the L2 subpopulation. In control cells, in which intralysosomal proteolysis was n  相似文献   

9.
Summary A Percoll density gradient was employed for selecting large numbers of viable insulin-producing RINm5F cells. Homogenates of these cells were then subjected to gradient centrifugation and two clearly visible bands were obtained. The light fraction was essentially composed of mitochondria banded at a density of about 1.06 g/ml. The heavier fraction banded at 1.09 to 1.10 g/ml and contained lysosomes and a small number of secretory granules. The distribution of Percoll particles was restricted to the extracellular space and there was no adsorption to any membrane structures. The distribution pattern of marker enzymes for the mitochondria and lysosomes was similar to that of normal pancreatic β-cells. With the use of a Percoll density gradient it was thus possible to isolate a purified mitochondrial fraction from viable RINm5F cells. This work was supported by the Swedish Medical Research Council (03x-4, 12x-562, 12x-6240), the Swedish Diabetes Association, the Nordic Insulin Foundation, Syskonen Svenssons Foundation, and ?ke Wiberg’s Foundation. Per-Olof Berggren is a recipient of a postdoctoral fellowship from the Swedish Medical Research Council.  相似文献   

10.
1. A crude lysosomal fraction obtained by differential centrifugation of a rat liver homogenate was subjected to zonal centrifugation in iso-osmotic self-generating gradients composed of modified colloidal silica (Percoll). Analysis of relevant marker-enzyme activities shows a continuous band of considerably purified lysosomal particles in the density range 1.04--1.11 g/ml. 2. A relationship between age and buoyant density of the parenchymal lysosomal subpopulations is indicated by the distribution of 125I-labelled asialoglycoproteins in the heterogeneous lysosomes during the catabolism of the glycoprotein. The labelled asialoglycoprotein first appeared in lysosomal particles of low density, which with time progressively acquired a higher density. Furthermore, 30 min after administration the 125I-labelled asialocaeruloplasmin recovered in the light lysosomes was less degraded than the material recovered in the heavy lysosomes. 3. A lysosomal enzyme (arylsulphatase) was found to possess considerably higher isoelectric points in the heavy lysosomes than in the light lysosomes, which is consistent with a relationship between age and density of the lysosomes.  相似文献   

11.
It has been reported that the urinary excretion of N-acetyl-beta-D-glucosaminidase (NAG), a lysosomal enzyme, transiently increases in human after treatment with human parathyroid hormone (hPTH)(1-34). We report here that hPTH(1-34) caused transient changes in the size and density of rat renal lysosomes following urinary excretion of NAG and other lysosomal enzymes tested. Percoll density gradient centrifugation revealed that hPTH(1-34) slightly but significantly increased the fraction of high density lysosomes (around 1.12 g/ml) 5-10 min after the treatment with hPTH(1-34), with a concomitant decrease in the fraction of intermediate density lysosomes (1.07-1.08 g/ml). On electron micrographs, some lysosomes in proximal tubules but not in distal tubules showed a change in morphology from circular to oval, and became enlarged and electron-dense 5-10 min after the treatment with hPTH(1-34). These responses to hPTH(1-34) were also reversible and transient. NAG excreted in urine after treatment with hPTH(1-34) had the molecular mass of a mature form in lysosomes and/or endosomes and was not a prepro-and/or pro-form of the enzyme. Thus, the changes in the density and size of renal lysosomes appear to be associated with the exocytosis of lysosomal enzymes by hPTH(1-34).  相似文献   

12.
The lysosomes present in homogenates of porcine endometrium epithelium equilibrate in two density regions of Percoll gradients. Patterns with varying proportions between high and low density peaks are observed, when aliquots of a tissue sample are processed with different all-glass Potter-Elvejhem homogenizers. The described constant-tolerance shearing device (CTSD), in contrast, provides homogenate fractions with higher latencies and steady distribution patterns. They are characteristic for each of the six lysosomal markers and the six other structure-bound enzymes measured in gradient fractions of the particulate matter harvested between 600g and 17,000g. The 17,000g sediments of CTSD homogenates contain more than 40% of the total lysosomal enzymatic activities. Recoveries from Percoll gradients are between 93 and 101%. Enrichments in the high density region range from 35-fold (beta-glucosidase) to 82-fold (acid ribonuclease). Both lysosomal populations exhibit latencies between 89 and 94%. Our results indicate that light lysosomes can be artificially generated by inappropriate homogenization, which should be considered in experiments on the formation and maturation of lysosomes.  相似文献   

13.
Using Percoll density gradient centrifugation after treatment of the postnuclear supernatant (PNS) with 1 mM Ca2+ to swell and lighten mitochondria, we isolated highly purified lysosomes (dextranosomes) in high yield (25%) from the livers of rats to which dextran had been administered. The lysosomal fraction obtained by this method was enriched more than 100-fold in N-acetyl-beta-glucosaminidase and arylsulfatase and 40-fold in acid phosphatase and beta-glucosidase. Electron microscopic examination and measurement of marker enzyme activity for various subcellular organella indicated that the lysosomal fraction was essentially free from contamination by other organella. Flavins, ubiquinones, and hemochromes were found on lysosomal membranes and investigated. The FAD and ubiquinone-9 contents of the purified lysosomal membranes were 0.118 and 6.93 nmol/mg of protein, respectively. Hemochromes in lysosomes showed spectra similar to that of a b-type cytochrome, with the alpha-peak at 562 nm and the gamma-peak at 436 nm.  相似文献   

14.
Lysosomal enzymes were detected in a highly purified preparation of frog erythrocytes. Pretreatment of intact erythrocytes with lysosomotropic drugs reduced the number of soluble β-receptors in isoproterenol-treated cells, whereas the level of membrane-bound receptors in these cells was unaffected. Subcellular fractionation by Percoll gradient centrifugation revealed that one species of lysosomes (density: 1.15 g/ml), contained a fraction of membrane-bound β-adrenergic receptors. This fraction of membrane-bound receptors was markedly increased when desensitized cells were pretreated with chloroquine. Thus the internalized receptors appear to be delivered to lysosomes and released from the endocytic vesicles by the lysosomal enzymes.  相似文献   

15.
The purpose of the present investigation was twofold: The isolation of Kupffer cell lysosomes by changing their density in vivo through uptake of colloidal silver iodide (NeosilvolR), and the characterization of the isolated fraction. No significant changes in the activities or distribution of acid phosphatase, aryl sulphatase, and cathepsin D were found after the injection of NeosilvolR. A method is presented for the isolation of silver-loaded lysosomes from rat liver Kupffer cells by means of ultracentrifugation in sucrose gradients. Morphological and biochemical data indicate that the lysosomal fraction was contaminated with other subcellular organelles only to a minor degree. The lysosomal fraction showed non-parallel enrichment of various acid hydrolases, with the highest degree of purification found for aryl sulphatase and the lowest for acid phosphatase. The lysosomal enzyme activity pattern was similar to that found in Kupffer cell preparations.  相似文献   

16.
D. Pitt 《Planta》1978,138(1):79-83
Density-gradient ultracentrifugation techniques showed that freezing and thawing of potato leaves resulted in a change in the density of subcellular particles containing acid phosphatase and acid ribonuclease (RNase). Gel filtration experiments were used to characterise the molecular forms of the hydrolases associated with the various cell fractions. Freezing and thawing promoted a release of a portion of the complement of acid phosphatase and RNase from the lysosomes to the supernatant fluid fraction of cell homogenates. The freezing treatment appeared to activate latent lysosomal RNase.  相似文献   

17.
We have recently shown that lamellar body fractions purified from human lung contain a distinct acid alpha-glucosidase distinguishable from lysosomal acid alpha-glucosidase in that it does not cross-react with antibodies raised against the lysosomal enzyme and does not bind to concanavalin A (De Vries, A.C.J., Schram, A.W., Tager, J.M., Batenburg, J.J. and Van Golde, L.M.G. (1985) Biochim. Biophys. Acta 837, 230-238). In order to study the relationship between the non-concanavalin A-binding alpha-glucosidase and lamellar bodies more closely a method was developed for the further purification of the organelles. A purified lamellar body preparation isolated from human lung homogenate by discontinuous sucrose density centrifugation was subjected to gel filtration with Sepharose 4B followed by Percoll density gradient centrifugation, which yielded a lamellar body preparation with a phospholipid phosphorus/protein ratio of 12.57 +/- 0.38 (mumol/mg) (n = 3) as compared to a ratio of 3.34 +/- 0.16 (mumol/mg) (n = 3) in the sucrose density gradient preparation. Concomitantly there was a 3.3 +/- 0.1 (n = 3)-fold enrichment in the content of total acid alpha-glucosidase and a 3.2 +/- 0.1 (n = 3) -fold enrichment of non-concanavalin A-binding acid alpha-glucosidase. The new purification method removes adhering proteins without changing the phospholipid composition. During the successive purification steps the concanavalin A-sensitive and -insensitive alpha-glucosidases remained fully lamellar body fraction associated. Differences between a lysosome-enriched fraction and a lamellar body preparation at varying stages of purification with respect to the ratio between soluble acid hydrolases and the membrane-associated lysosomal enzyme glucocerebrosidase indicate that the purified lamellar bodies were not contaminated with lysosomes. The absence of lysosomes in the purified lamellar body fraction was confirmed by experiments with the weak base glycyl-L-phenylalanine-beta-naphthylamide, which is an artificial substrate for the lysosomal enzyme cathepsin C and brings about lysis of lysosomes. Morphological examination by electron microscopy endorses the absence of contaminating vesicles and organelles and showed a structural integrity of the lamellar bodies in the final preparation. The improved isolation procedure strongly suggests that the concanavalin A-insensitive acid alpha-glucosidase is endogenous to lamellar bodies and supports our earlier idea that it can be used as a lamellar body-specific marker enzyme. In addition, the experiments show that lamellar bodies free of lysosomes contain a spectrum of lysosomal-type enzymes.  相似文献   

18.
1. A special population of rough microsomal material (microsomes) rich in lysosomal acid hydrolases was separated by isopycnic centrifugation as a discrete fraction (RM(2)) from the bulk of rough microsomal material in rat kidney because of its greater density. 2. The specific activities of five acid hydrolases in the RM(2) fraction were approximately one-half those of a purified lysosomal (L) fraction and 10- to 30-fold greater than those of an ordinary rough microsomal (RM(1)) fraction. 3. These special rough microsomes have a distinctive ultrastructure and electron-cytochemical properties. Their cisternal content resembles the matrix of lysosomes in that it is electron-dense, osmiophilic and plumbophilic and gives a positive reaction for acid phosphatase activity. 4. Polyacrylamide-gel electrophoresis of soluble proteins from the L fraction resolved nine anionic glycoproteins, most of which exhibit acid hydrolase activities (Goldstone & Koenig, 1970, 1973; Goldstone et al., 1971a). The most anionic glycoprotein is the acidic lipoglycoprotein of the lysosomal matrix (Goldstone et al., 1970). 5. Polyacrylamide-gel electrophoresis of soluble proteins from the RM(2) fraction resolved two cationic glycoproteins with acid hydrolase activities (Goldstone & Koenig, 1973) and an anionic glycoprotein with the same electrophoretic mobility as the lysosomal lipoglycoprotein, but without its lipid constituents or capacity to bind the basic fluorochrome Acridine Orange. These constituents are considered to be the precursors of the lysosomal glycoproteins.  相似文献   

19.
—The properties and subcellular localization of type I (nitrophenyl) and type II (nitrocatechol) arylsulphatases were investigated in brain tissue of the rat, and optimal assay conditions were established. Sulphate, phosphate and sulphite ions inhibited the nitrocatechol sulphatases; nitrophenyl sulphatase was inhibited only by sulphite. The presence of latent enzyme activity was demonstrated for the nitrocatechol sulphatases, beta-glucuronidase, and beta-glycerophosphatase in rat and mouse brain homogenates. These hydrolases were highly sensitive to mechanical and osmotic damage; and Triton X-100 was very effective in releasing their latent (bound) activities, a finding suggestive of a lysosomal localization. Activity of nitrophenyl sulphatase was unaffected by osmotic changes or Triton X-100, characteristics suggesting a membranous association for this enzyme. Total activity of nitrophenyl sulphatase was approximately twice as great in canine gray matter as in canine white matter; the converse obtained for beta-glucuronidase activity. Values for total enzymic activity of the nitrocatechol sulphatases in canine white and gray matter were similar. Fractionation of homogenates from rat brain by differential centrifugations and separation of crude mitochondrial fractions by sucrose density gradient centrifugations revealed the following: (1) most of the nitrocatechol sulphatase activity (93 per cent) and all of the nitrophenyl sulphatase activity were sedimentable; (2) crude mitochondrial fractions exhibited the highest relative specific activity (RSA = 1·38) for the nitrocatechol sulphatases, whereas microsomal fractions displayed the highest RSA for nitrophenyl sulphatase (1·89); (3) the lightest fraction (A + B) and the densest fraction (E) from the sucrose density gradient contained most of the activity for both the type I and type II arylsulphatases, whereas the RSA of cytochrome oxidase was greatest in the intermediate density regions (fractions C and D); (4) the highest RSA for beta-glucuronidase and beta-glycerophosphatase occurred in gradient fraction C; (5) appreciable activity of beta-glycerophosphatase was found in a nerve ending fraction (M3). It is suggested that the hydrolases in heterogeneous tissue like brain might be associated with lysosomal particles of differing enzyme compositions and varying populations, and that the data on distribution lend credence to the concept of bimodal and possible trimodal particle affinity for the hydrolases of brain tissues.  相似文献   

20.
A cell fractionation scheme was developed for studying the distribution of certain hydrolases, especially phosphohydrolases in a Crithidia sp. (Trypanosomatidae). Whilst between 26-56% of the total cellular hydrolase activities were soluble (probably of flagellar pocket origin), a certain percentage, 5-40%, was sedimentable. A particulate fraction obtained after isopycnic density gradient centrifugation (p = 1.187-1.241), designated fraction FA/FB, was enriched in various acid hydrolases (relative specific activities 1.33-6.24) and displayed latent phosphohydrolase activities. The density gradient distributions of this hydrolytic enzymes were compared with reference to one another and malate dehydrogenase (mitochondrial marker). From the results obtained it appears that the sedimentable acid hydrolases of Crithidia are associated with a heterogeneous population of subcellular particles. Cytochemical observations on the FA/FB fraction supported this finding and revealed the association of acid phosphatase reaction product with subcellular elements resembling multivesicular bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号