首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Little is known about how protocadherins function in cell adhesion and tissue development. Paraxial protocadherin (PAPC) controls cell sorting and morphogenetic movements in the Xenopus laevis embryo. We find that PAPC mediates these functions by down-regulating the adhesion activity of C-cadherin. Expression of exogenous C-cadherin reverses PAPC-induced cell sorting and gastrulation defects. Moreover, loss of endogenous PAPC results in elevated C-cadherin adhesion activity in the dorsal mesoderm and interferes with the normal blastopore closure, a defect that can be rescued by a dominant-negative C-cadherin mutant. Importantly, activin induces PAPC expression, and PAPC is required for activin-induced regulation of C-cadherin adhesion activity and explant morphogenesis. Signaling through Frizzled-7 is not required for PAPC regulation of C-cadherin, suggesting that C-cadherin regulation and Frizzled-7 signaling are two distinct branches of the PAPC pathway that induce morphogenetic movements. Thus, spatial regulation of classical cadherin adhesive function by local expression of a protocadherin is a novel mechanism for controlling cell sorting and tissue morphogenesis.  相似文献   

2.

Background

Paraxial protocadherin (PAPC) and fibronectin leucine-rich domain transmembrane protein-3 (FLRT3) are induced by TGFβ signaling in Xenopus embryos and both regulate morphogenesis by inhibiting C-cadherin mediated cell adhesion.

Principal Findings

We have investigated the functional and physical relationships between PAPC, FLRT3, and C-cadherin. Although neither PAPC nor FLRT3 are required for each other to regulate C-cadherin adhesion, they do interact functionally and physically, and they form a complex with cadherins. By itself PAPC reduces cell adhesion physiologically to induce cell sorting, while FLRT3 disrupts adhesion excessively to cause cell dissociation. However, when expressed together PAPC limits the cell dissociating and tissue disrupting activity of FLRT3 to make it effective in physiological cell sorting. PAPC counteracts FLRT3 function by inhibiting the recruitment of the GTPase RND1 to the FLRT3 cytoplasmic domain.

Conclusions/Significance

PAPC and FLRT3 form a functional complex with cadherins and PAPC functions as a molecular “governor” to maintain FLRT3 activity at the optimal level for physiological regulation of C-cadherin adhesion, cell sorting, and morphogenesis.  相似文献   

3.
Protocadherins have homophilic adhesion properties and mediate selective cell-cell adhesion and cell sorting. Knockdown of paraxial protocadherin (PAPC) function in the Xenopus embryo impairs tissue separation, a process that regulates separation of cells of ectodermal and mesodermal origin during gastrulation. We show that PAPC can modulate the activity of the Rho GTPase and c-jun N-terminal kinase, two regulators of the cytoskeletal architecture and effectors of the planar cell polarity pathway. This novel signaling function of PAPC is essential for the regulation of tissue separation. In addition, PAPC can interact with the Xenopus Frizzled 7 receptor, and both proteins contribute to the development of separation behavior by activating Rho and protein kinase Calpha.  相似文献   

4.
Neuroligins (NLs) are a family of transmembrane proteins that function in synapse formation and/or remodeling by interacting with beta-neurexins (beta-NXs) to form heterophilic cell adhesions. The large N-terminal extracellular domain of NLs, required for beta-NX interactions, has sequence homology to the alpha/beta hydrolase fold superfamily of proteins. By peptide mapping and mass spectrometric analysis of a soluble recombinant form of NL1, several structural features of the extracellular domain have been established. Of the nine cysteine residues in NL1, eight are shown to form intramolecular disulfide bonds. Disulfide pairings of Cys 117 to Cys 153 and Cys 342 to Cys 353 are consistent with disulfide linkages that are conserved among the family of alpha/beta hydrolase proteins. The disulfide bond between Cys 172 and Cys 181 occurs within a region of the protein encoded by an alternatively spliced exon. The disulfide pairing of Cys 512 and Cys 546 in NL1 yields a structural motif unique to the NLs, since these residues are highly conserved. The potential N-glycosylation sequons in NL1 at Asn 109, Asn 303, Asn 343, and Asn 547 are shown occupied by carbohydrate. An additional consensus sequence for N-glycosylation at Asn 662 is likely occupied. Analysis of N-linked oligosaccharide content by mass matching paradigms reveals significant microheterogeneous populations of complex glycosyl moieties. In addition, O-linked glycosylation is observed in the predicted stalk region of NL1, prior to the transmembrane spanning domain. From predictions based on sequence homology of NL1 to acetylcholinesterase and the molecular features of NL1 established from mass spectrometric analysis, a novel topology model for NL three-dimensional structure has been constructed.  相似文献   

5.
Paraxial protocadherin (PAPC) has been shown to be involved in gastrulation cell movements during early embryogenesis. It is first expressed in the dorsal marginal zone at the early gastrula stage and subsequently restricted to the paraxial mesoderm in Xenopus and zebrafish. Using Xenopus embryos, we found that PAPC is also regulated at the protein level and is degraded and excluded from the plasma membrane in the axial mesoderm by the late gastrula stage. Regulation of PAPC requires poly-ubiquitination that is dependent on phosphorylation. PAPC is phosphorylated by GKS3 in the evolutionarily conserved cytoplasmic domain, and this in turn is necessary for poly-ubiquitination by an E3 ubiquitin ligase β-TrCP. We also show that precise control of PAPC by phosphorylation/ubiquitination is essential for normal Xenopus gastrulation cell movements. Taken together, our findings unveil a novel mechanism of regulation of a cell adhesion protein and show that this system plays a crucial role in vertebrate embryogenesis.  相似文献   

6.
Protocadherins (Pcdhs), a major subfamily of cadherins, play an important role in specific intercellular interactions in development. These molecules are characterized by their unique extracellular domain (EC) with more than 5 cadherin-like repeats, a transmembrane domain (TM) and a variable cytoplasmic domain. PCNS (Protocadherin in Neural crest and Somites), a novel Pcdh in Xenopus, is initially expressed in the mesoderm during gastrulation, followed by expression in the cranial neural crest (CNC) and somites. PCNS has 65% amino acid identity to Xenopus paraxial protocadherin (PAPC) and 42-49% amino acid identity to Pcdh 8 in human, mouse, and zebrafish genomes. Overexpression of PCNS resulted in gastrulation failure but conferred little if any specific adhesion on ectodermal cells. Loss of function accomplished independently with two non-overlapping antisense morpholino oligonucleotides resulted in failure of CNC migration, leading to severe defects in the craniofacial skeleton. Somites and axial muscles also failed to undergo normal morphogenesis in these embryos. Thus, PCNS has essential functions in these two important developmental processes in Xenopus.  相似文献   

7.
Xenopus paraxial protocadherin (PAPC) regulates cadherin-mediated cell adhesion and promotes the planar cell polarity (PCP) pathway. Here we report that PAPC functions in the Xenopus gastrula as an inhibitor of the Wnt/β-catenin pathway. The intracellular domain of PAPC interacts with casein kinase 2 beta (CK2β), which is part of the CK2 holoenzyme. The CK2α/β complex stimulates Wnt/β-catenin signalling, and the physical interaction of CK2β with PAPC antagonizes this activity. By this mechanism, PAPC restricts the expression of Wnt target genes during gastrulation. These experiments identify a novel function of protocadherins as regulators of the Wnt pathway.  相似文献   

8.
NELL1 is a large oligomeric secretory glycoprotein that functions as an osteoinductive factor. NELL1 contains several conserved domains, has structural similarities to thrombospondin 1, and supports osteoblastic cell adhesion through integrins. To define the structural requirements for NELL1-mediated cell adhesion, we prepared a series of recombinant NELL1 proteins (intact, deleted, and cysteine-mutant) from a mammalian expression system and tested their activities. A deletion analysis demonstrated that the C-terminal cysteine-rich region of NELL1 is critical for the cell adhesion activity of NELL1. Reducing agent treatment decreased the cell adhesion activity of full-length NELL1 but not of its C-terminal fragments, suggesting that the intramolecular disulfide bonds within this region are not functionally necessary but that other disulfide linkages in the N-terminal region of NELL1 may be involved in cell adhesion activity. By replacing cysteine residues with serines around the coiled-coil domain of NELL1, which is responsible for oligomerization, we created a mutant NELL1 protein that was unable to form homo-oligomers, and this monomeric mutant showed substantially lower cell adhesion activity than intact NELL1. These results suggest that an oligomerization-induced conformational change in the C-terminal region of NELL1 is important for the efficient mediation of cell adhesion and spreading by NELL1.  相似文献   

9.
Chromogranins are a family of regulated secretory proteins that are stored in secretory granules in endocrine and neuroendocrine cells and released in response to extracellular stimulation (regulated secretion). A conserved N-terminal disulfide bond is necessary for sorting of chromogranins in neuroendocrine PC12 cells. Surprisingly, this disulfide bond is not necessary for sorting of chromogranins in endocrine GH4C1 cells. To investigate the sorting mechanism in GH4C1 cells, we made several mutant forms removing highly conserved N- and C-terminal regions of bovine chromogranin A. Removing the conserved N-terminal disulfide bond and the conserved C-terminal dimerization and tetramerization domain did not affect the sorting of chromogranin A to the regulated secretory pathway. In contrast, removing the C-terminal 90 amino acids of chromogranin A caused rerouting to the constitutive secretory pathway and impaired aggregation properties as compared with wild-type chromogranin A. Since this mutant was sorted to the regulated secretory pathway in PC12 cells, these results demonstrate that chromogranins contain independent N- and C-terminal sorting domains that function in a cell type-specific manner. Moreover, this is the first evidence that low pH/calcium-induced aggregation is necessary for sorting of a chromogranin to the regulated secretory pathway of endocrine cells.  相似文献   

10.
BACKGROUND: One prominent example of segmentation in vertebrate embryos is the subdivision of the paraxial mesoderm into repeating, metameric structures called somites. During this process, cells in the presomitic mesoderm (PSM) are first patterned into segments leading secondarily to differences required for somite morphogenesis such as the formation of segmental boundaries. Recent studies have shown that a segmental pattern is generated in the PSM of Xenopus embryos by genes encoding a Mesp-like bHLH protein called Thylacine 1 and components of the Notch signaling pathway. These genes establish a repeating pattern of gene expression that subdivides cells in the PSM into anterior and posterior half segments, but how this pattern of gene expression leads to segmental boundaries is unknown. Recently, a member of the protocadherin family of cell adhesion molecules, called PAPC, has been shown to be expressed in the PSM of Xenopus embryos in a half segment pattern, suggesting that it could play a role in restricting cell mixing at the anterior segmental boundary. RESULTS: Here, we examine the expression and function of PAPC during segmentation of the paraxial mesoderm in Xenopus embryos. We show that Thylacine 1 and the Notch pathway establish segment identity one segment prior to the segmental expression of PAPC. Altering segmental identity in embryos by perturbing the activity of Thylacine 1 and the Notch pathway, or by treatment with a protein synthesis inhibitor, cycloheximide, leads to the predicted changes in the segmental expression of PAPC. By disrupting PAPC function in embryos using a putative dominant-negative or an activated form of PAPC, we show that segmental PAPC activity is required for proper somite formation as well as for maintaining segmental gene expression within the PSM. CONCLUSIONS: Segmental expression of PAPC is established in the PSM as a downstream consequence of segmental patterning by Thylacine 1 and the Notch pathway. We propose that PAPC is part of the mechanism that establishes the segmental boundaries between posterior and anterior cells in adjacent segments.  相似文献   

11.
The gastric proton pump, H(+),K(+)-ATPase, consists of the catalytic alpha-subunit and the non-catalytic beta-subunit. Correct assembly between the alpha- and beta-subunits is essential for the functional expression of H(+),K(+)-ATPase. The beta-subunit contains nine conserved cysteine residues; two are in the cytoplasmic domain, one in the transmembrane domain, and six in the ectodomain. The six cysteine residues in the ectodomain form three disulfide bonds. In this study, we replaced each of the cysteine residues of the beta-subunit with serine individually and in several combinations. The mutant beta-subunits were co-expressed with the alpha-subunit in human embryonic kidney 293 cells, and the role of each cysteine residue or disulfide bond in the alpha/beta assembly, stability, and cell surface delivery of the alpha- and beta-subunits and H(+),K(+)-ATPase activity was studied. Mutant beta-subunits with a replacement of the cytoplasmic and transmembrane cysteines preserved H(+),K(+)-ATPase activity. All the mutant beta-subunits with replacement(s) of the extracellular cysteines did not assemble with the alpha-subunit, resulting in loss of H(+),K(+)-ATPase activity. These mutants did not permit delivery of the alpha-subunit to the cell surface. Therefore, each of these disulfide bonds of the beta-subunit is essential for assembly with the alpha-subunit and expression of H(+),K(+)-ATPase activity as well as for cell surface delivery of the alpha-subunit.  相似文献   

12.
Wnt-11/planar cell polarity signaling polarizes mesodermal cells undergoing convergent extension during Xenopus laevis gastrulation. These shape changes associated with lateral intercalation behavior require a dynamic modulation of cell adhesion. In this paper, we report that Wnt-11/frizzled-7 (Fz7) controls cell adhesion by forming separate adhesion-modulating complexes (AMCs) with the paraxial protocadherin (PAPC; denoted as AMCP) and C-cadherin (denoted as AMCC) via distinct Fz7 interaction domains. When PAPC was part of a Wnt-11-Fz7 complex, its Dynamin1- and clathrin-dependent internalization was blocked. This membrane stabilization of AMCP (Fz7/PAPC) by Wnt-11 prevented C-cadherin clustering, resulting in reduced cell adhesion and modified cell sorting activity. Importantly, Wnt-11 did not influence C-cadherin internalization; instead, it promoted the formation of AMCC (Fz7/Cadherin), which competed with cis-dimerization of C-cadherin. Because PAPC and C-cadherin did not directly interact and did not form a joint complex with Fz7, we suggest that Wnt-11 triggers the formation of two distinct complexes, AMCC and AMCP, that act in parallel to reduce cell adhesion by hampering lateral clustering of C-cadherin.  相似文献   

13.
14.
The composition of the plasma membrane domains of epithelial cells is maintained by biosynthetic pathways that can sort both proteins and lipids into transport vesicles destined for either the apical or basolateral surface. In MDCK cells, the influenza virus hemagglutinin is sorted in the trans-Golgi network into detergent-insoluble, glycosphingolipid-enriched membrane domains that are proposed to be necessary for sorting hemagglutinin to the apical cell surface. Site- directed mutagenesis of the hemagglutinin transmembrane domain was used to test this proposal. The region of the transmembrane domain required for apical transport included the residues most conserved among hemagglutinin subtypes. Several mutants were found to enter detergent-insoluble membranes but were not properly sorted. Replacement of transmembrane residues 520 and 521 with alanines converted the 2A520 mutant hemagglutinin into a basolateral protein. Depleting cell cholesterol reduced the ability of wild-type hemagglutinin to partition into detergent-insoluble membranes but had no effect on apical or basolateral sorting. In contrast, cholesterol depletion allowed random transport of the 2A520 mutant. The mutant appeared to lack sorting information but was prevented from reaching the apical surface when detergent-insoluble membranes were present. Apical sorting of hemagglutinin may require binding of either protein or lipids at the middle of the transmembrane domain and this normally occurs in detergent-insoluble membrane domains. Entry into these domains appears necessary, but not sufficient, for apical sorting.  相似文献   

15.
Chiang WC  Knowles AF 《Biochemistry》2008,47(33):8775-8785
Human NTPDase 2 is a cell surface integral membrane glycoprotein that is anchored to the membranes by two transmembrane domains while the bulk of the protein containing the active site faces the extracellular milieu. It contains 10 conserved cysteine residues in the extracellular domain that are involved in disulfide bond formation and one free cysteine residue, C26, which is located in the N-terminal transmembrane domain. The human NTPDase 2 activity is inactivated by membrane perturbation that disrupts interaction of the transmembrane domains and is inhibited by p-chloromercuriphenylsulfonate (pCMPS), a sulfhydryl reagent. In this report, we show that C26 is the target of pCMPS modification, since a mutant in which C26 was replaced with a serine was no longer inhibited by pCMPS. Mutants in which cysteine residues are placed in the C-terminal transmembrane domain near the extracellular surface were still modified by pCMPS, but the degree of inhibition of their ATPase activity was lower than that of the wild-type enzyme. Thus, loss of the ATPase activity of human NTPDase 2 in the presence of pCMPS probably results from the disturbance of both transmembrane domain interaction and its active site. Inhibition of human NTPDase 2 activity by pCMPS and membrane perturbation is attenuated when the enzyme is cross-linked by glutaraldehyde. On the other hand, NTPDase 2 dimers formed from oxidative cross-linking of the wild-type enzyme and mutants containing a single cysteine residue in the C-terminal transmembrane domain displayed reduced ATPase activity. A similar reduction in activity was also obtained upon intramolecular disulfide formation in mutants that contain a cysteine residue in each of the two transmembrane domains. These results indicate that the mobility of the transmembrane helices is necessary for maximal catalysis.  相似文献   

16.
We used recombinant techniques to create a two-chain form (residues 1-345 and residues 346-758) of the vitamin K-dependent gamma-glutamyl carboxylase, a glycoprotein located in the endoplasmic reticulum containing five transmembrane domains. The two-chain carboxylase had carboxylase and epoxidase activities similar to those of one-chain carboxylase. In addition, it had normal affinity for the propeptide of factor IX. We employed this molecule to investigate formation of the one disulfide bond in carboxylase, the transmembrane structure of carboxylase, and the potential interactions among the carboxylase's transmembrane domains. Our results indicate that the two peptides of the two-chain carboxylase are joined by a disulfide bond. Proline 378 is important for the structure necessary for disulfide formation. Results with the P378L carboxylase indicate that noncovalent bonds maintain the two-chain structure even when the disulfide bond is disrupted. As we had previously proposed, the fifth transmembrane domain of carboxylase is the last and only transmembrane domain in the C-terminal peptide of the two-chain carboxylase. We show that the noncovalent association between the two chains of carboxylase involves an interaction between the fifth transmembrane domain and the second transmembrane domain. Results of a homology model of transmembrane domains 2 and 5 suggest that not only do these two domains associate but that transmembrane domain 2 may interact with another transmembrane domain. This latter interaction may be mediated at least in part by a motif of glycine residues in the second transmembrane domain.  相似文献   

17.
Since their discovery over 20 years ago, eukaryotic-like transmembrane receptor Ser/Thr protein kinases (STPKs) have been shown to play critical roles in the virulence, growth, persistence, and reactivation of many bacteria. Information regarding the signals transmitted by these proteins, however, remains scarce. To enhance understanding of the basis for STPK receptor signaling, we determined the 1.7-Å-resolution crystal structure of the extracellular sensor domain of the Mycobacterium tuberculosis receptor STPK, PknH (Rv1266c). The PknH sensor domain adopts an unanticipated fold containing two intramolecular disulfide bonds and a large hydrophobic and polar cleft. The residues lining the cleft and those surrounding the disulfide bonds are conserved. These results suggest that PknH binds a small-molecule ligand that signals by changing the location or quaternary structure of the kinase domain.  相似文献   

18.
The syndecans are known to form homologous oligomers that may be important for their functions. We have therefore determined the role of oligomerization of syndecan-2 and syndecan-4. A series of glutathione S-transferase-syndecan-2 and syndecan-4 chimeric proteins showed that all syndecan constructs containing the transmembrane domain formed SDS-resistant dimers, but not those lacking it. SDS-resistant dimer formation was hardly seen in the syndecan chimeras where each transmembrane domain was substituted with that of platelet-derived growth factor receptor (PDGFR). Increased MAPK activity was detected in HEK293T cells transfected with syndecan/PDGFR chimeras in a syndecan transmembrane domain-dependent fashion. The chimera-induced MAPK activation was independent of both ligand and extracellular domain, implying that the transmembrane domain is sufficient to induce dimerization/oligomerization in vivo. Furthermore, the syndecan chimeras were defective in syndecan-4-mediated focal adhesion formation and protein kinase Calpha activation or in syndecan-2-mediated cell migration. Taken together, these data suggest that the transmembrane domains are sufficient for inducing dimerization and that transmembrane domain-induced oligomerization is crucial for syndecan-2 and syndecan-4 functions.  相似文献   

19.
Gastrulation is a morphogenetic process in which tightly coordinated cell and tissue movements establish the three germ layers (ectoderm, mesoderm, and endoderm) to define the anterior-to-posterior embryonic organization [1]. To elicit this movement, cells modulate membrane protrusions and undergo dynamic cell interactions. Here we report that ankyrin repeats domain protein 5 (xANR5), a novel FGF target gene product, regulates cell-protrusion formation and tissue separation, a process that develops the boundary between the ectoderm and mesoderm [2, 3], during Xenopus gastrulation. Loss of xANR5 function by antisense morpholino oligonucleotide (MO) caused a short trunk and spina bifida without affecting mesodermal gene expressions. xANR5-MO also blocked elongation of activin-treated animal caps (ACs) and tissue separation. The dorsal cells of xANR5-MO-injected embryos exhibited markedly reduced membrane protrusions, which could be restored by coinjecting active Rho. Active Rho also rescued the xANR5-MO-inhibited tissue separation. We further demonstrated that xANR5 interacted physically and functionally with paraxial protocadherin (PAPC), which has known functions in cell-sorting behavior, tissue separation, and gastrulation cell movements [4-6], to regulate early morphogenesis. Our findings reveal for the first time that xANR5 acts through Rho to regulate gastrulation and is an important cytoplasmic partner of PAPC, whose cytoplasmic partner was previously unknown.  相似文献   

20.
Cell surface receptors must specifically recognize an extracellular ligand and then trigger an appropriate response within the cell. Their general structure enables this, as it comprises an extracellular domain that can bind an extracellular ligand, a cytoplasmic domain that can transduce a signal inside the cell to produce an appropriate response, and a transmembrane domain that links the two and is responsible for accurately delivering specific information on a binding event from the extracellular domain to the cytoplasmic domain, to trigger the proper response. A vast body of research has focused on elucidating the specific mechanisms responsible for regulating extracellular binding events and the subsequent interactions of the cytoplasmic domain with intracellular signaling. In contrast, far less work has focused on examining how the transmembrane domain links these domains and delivers the necessary information. In this review, we propose the importance of the transmembrane domain as a signal regulator. We highlight the cell adhesion receptor, syndecan, as a special case, and propose that the transmembrane domain-mediated oligomerization of the syndecan cytoplasmic domain is a unique regulatory mechanism in syndecan signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号