首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Occupancy-induced down-regulation of cell surface epidermal growth factor (EGF) receptors attenuates signal transduction. To define mechanisms through which down-regulation of this class of growth factor receptors occurs, we have investigated the relative roles of ligand-induced internalization and recycling in this process. Occupied, kinase-active EGF receptors were internalized through a high affinity, saturable endocytic system at rates up to 10-fold faster than empty receptors. In contrast, full length EGF receptors lacking tyrosine kinase activity underwent internalization at a rate independent of occupancy. This "kinase-independent" internalization rate appeared to reflect constitutive receptor internalization since it was similar to the internalization rate of both receptors lacking a cytoplasmic domain and of antibodies bound to empty receptors. EGF internalized by either kinase-active or kinase-inactive receptors was efficiently recycled and was found within endosomes containing recycling transferrin receptors. However, targeting of internalized receptors to lysosomes did not require receptor kinase activity. All receptors that displayed ligand-induced internalization also underwent down-regulation, indicating that the proximal cause of down-regulation is occupancy-induced endocytosis. Tyrosine kinase activity greatly enhances this process by stabilizing receptor association with the endocytic apparatus.  相似文献   

2.
3.
The receptor (Fms) for macrophage colony-stimulating factor (M-CSF) is a member of the tyrosine kinase class of growth factor receptors. It maintains survival, stimulates growth, and drives differentiation of the macrophage lineage of hematopoietic cells. Fms accumulates on the cell surface and becomes activated for signal transduction after M-CSF binding and is then internalized via endocytosis for eventual degradation in lysosomes. We have investigated the mechanism of endocytosis as part of the overall signaling process of this receptor and have identified an amino acid segment near the cytoplasmic juxtamembrane region surrounding tyrosine 569 that is important for internalization. Mutation of tyrosine 569 to alanine (Y569A) eliminates ligand-induced rapid endocytosis of receptor molecules. The mutant Fms Y569A also lacks tyrosine kinase activity; however, tyrosine kinase activity is not essential for endocytosis because the kinase inactive receptor Fms K614A does undergo ligand-induced endocytosis, albeit at a reduced rate. Mutation of tyrosine 569 to phenylalanine had no effect on the M-CSF-induced endocytosis of Fms, and a four-amino-acid sequence containing Y-569 could support endocytosis when transferred into the cytoplasmic juxtamembrane region of a glycophorin A construct. These results indicate that tyrosine 569 within the juxtamembrane region of Fms is part of a signal recognition sequence for endocytosis that does not require tyrosine phosphorylation at this site and that this domain also influences the kinase activity of the receptor. These results are consistent with a ligand-dependent step in recognition of the potential cryptic internalization signal.  相似文献   

4.
To assess the functional significance of phosphorylation of the epidermal growth factor (EGF) receptor at Thr654, we compared the effects of 12-O-tetradecanoyl-13-acetate (TPA) on ligand-induced internalization and down-regulation between wild-type and mutant receptors that contain an alanine substitution at position 654. Activation of protein kinase C with TPA blocked EGF-induced internalization and down-regulation of Thr654 receptors and inhibited in vivo tyrosine kinase activity by 80%. TPA did not inhibit transferrin receptor internalization or constitutive EGF receptor internalization, suggesting that protein kinase C activation inhibits only the ligand-induced process. Inhibition by TPA of induced internalization, down-regulation, and kinase activity required threonine at position 654 since full-length Ala654 EGF receptors were significantly resistant to TPA inhibition of these ligand-induced activities. However, C'-terminal truncation further enhanced this resistance to TPA inhibition. The EGF-dependent internalization of kinase-inactive receptors truncated at residue 1022 was also impaired by TPA in Thr654 receptors, but not in Ala654 receptors, indicating that phosphorylation at Thr654 also interferes with tyrosine kinase-independent receptor activities. We conclude that the dominant regulatory effect of protein kinase C on the EGF receptor is mediated through phosphorylation at Thr654 which effectively inactivates the receptor. The submembrane region of the EGF receptor appears to regulate transmission of conformational information from the extracellular ligand-binding site to the cytoplasmic kinase and regulatory domains.  相似文献   

5.
Regulation of EGF receptor expression and function   总被引:5,自引:0,他引:5  
From the results of these studies of the activities of the various EGF receptor mutants we were able to disassociate the ability of EGF to increase intracellular calcium from its ability to induce genes and to cause morphological transformation and growth. These results lead us to the following concept. The kinase domain has a C-terminal border at about residue 957. The remainder of the C-terminus is regulatory. The 164 amino acids from residue 1022 to 1186 constitute an inhibitory region for the kinase. It contributes to ligand-induced internalization because this is reduced in a mutant receptor truncated to residue 1052. Proximally within the C-terminus kinase inhibitory domain is a domain that is required for endocytosis and for raising intracellular calcium that we call the calcium internalization (CAIN) domain. In summary, we have found that the kinase activity of the EGF receptor is required for its function even when all of the self-phosphorylation sites have been removed. The EGF receptor has several distinct cytoplasmic domains that are important for its activity to regulate gene expression, DNA synthesis, and the intracellular calcium level. Biological signaling occurs from the cell surface via essential protein tyrosine kinase activity with ligand-induced internalization serving to abbrogate the biological signal.  相似文献   

6.
Activated epidermal growth factor receptors recruit various intracellular proteins leading to signal generation and endocytic trafficking. Although activated receptors are rapidly internalized into the endocytic compartment and subsequently degraded in lysosomes, the linkage between signaling and endocytosis is not well understood. Here we show that EGF stimulation of NR6 cells induces a specific, rapid and transient activation of Rab5a. EGF also enhanced translocation of the Rab5 effector, early endosomal autoantigen 1 (EEA1), from cytosol to membrane. The activation of endocytosis, fluid phase and receptor mediated, by EGF was enhanced by Rab5a expression, but not by Rab5b, Rab5c, or Rab5a truncated at the NH(2) and/or COOH terminus. Dominant negative Rab5a (Rab5:N34) blocked EGF-stimulated receptor-mediated and fluid-phase endocytosis. EGF activation of Rab5a function was dependent on tyrosine residues in the COOH-terminal domain of the EGF receptor (EGFR). Removal of the entire COOH terminus by truncation (c'973 and c'991) abrogated ligand-induced Rab5a activation of endocytosis. A "kinase-dead" EGFR failed to stimulate Rab5a function. However, another EGF receptor mutant (c'1000), with the kinase domain intact and a single autophosphorylation site effectively signaled Rab5 activation. These results indicate that EGFR and Rab5a are linked via a cascade that results in the activation of Rab5a and that appears essential for internalization. The results point to an interdependent relationship between receptor activation, signal generation and endocytosis.  相似文献   

7.
To identify proteins that participate in clathrin-mediated endocytosis of the epidermal growth factor receptor (EGFR), 13 endocytic proteins were depleted in HeLa cells using highly efficient small interfering RNAs that were designed using a novel selection algorithm. The effects of small interfering RNAs on the ligand-induced endocytosis of EGFR were compared with those effects on the constitutive internalization of the transferrin receptor. The knock-downs of clathrin heavy chain and dynamin produced maximal inhibitory effects on the internalization of both receptors. Depletion of alpha, beta2, or micro2 subunits of AP-2 reduced EGF and transferrin internalization rates by 40-60%. Down-regulation of several accessory proteins individually had no effect on endocytosis but caused significant inhibition of EGF and transferrin endocytosis when the homologous proteins were depleted simultaneously. Surprisingly, knockdown of clathrin-assembly lymphoid myeloid leukemia protein, CALM, did not influence transferrin endocytosis but considerably affected EGFR internalization. Thus, CALM is the second protein besides Grb2 that appears to play a specific role in EGFR endocytosis. This study demonstrates that the efficient gene silencing by rationally designed small interfering RNA can be used as an approach to functionally analyze the entire cellular machineries, such as the clathrin-coated pits and vesicles.  相似文献   

8.
We have developed a quantitative method to evaluate the interaction between cell surface receptors and the endocytic apparatus. This method exploits occupancy-dependent changes in internalization rates that occur in cells expressing high numbers of receptors. We found that constitutive internalization of the transferrin receptor behaves as a simple, first order process that is unaltered by ligand. Internalization of the epidermal growth factor (EGF) receptor, however, behaves as a saturable, second order process that is induced by receptor occupancy. Internalization of EGF receptors occurs through at least two distinct pathways: a low capacity pathway that has a relatively high affinity for occupied receptors, and a low affinity pathway that has a much higher capacity. The high affinity pathway was observed in all cells having receptors with intrinsic tyrosine kinase activity. Mutant EGF receptors lacking kinase activity could not utilize the high affinity pathway and were internalized only through the low affinity one. Mutated receptors with decreased affinity for kinase substrates were also internalized at decreased rates through the high affinity, inducible pathway. In the case of vitellogenin receptors in Xenopus oocytes, occupied receptors competed more efficiently for internalization than empty ones. Insulin increased the endocytic capacity of oocytes for vitellogenin receptors. Similarly, serum increased the capacity of the inducible pathway for EGF receptors in mammalian cells. These data are consistent with a model of internalization in which occupied receptors bind to specific cellular components that mediate rapid internalization. Ligand-induced internalization results from an increase in the affinity of occupied receptors for the endocytic apparatus. Hormones can also indirectly regulate endocytosis by increasing the number of coated pits or their rate of internalization. The ability to dissect receptor-specific effects from cell-specific ones should be very useful in investigating the molecular mechanisms of receptor mediated endocytosis.  相似文献   

9.
We have utilized site-directed mutants to study the role of autophosphorylation of the epidermal growth factor (EGF) receptor in the regulation of receptor kinase activity and ligand-induced endocytosis. A single mutation of the major autophosphorylation site, Y1173, and a double mutation of two autophosphorylation sites, Y1173 and Y1148, did not inhibit kinase activity in vivo, using PLC gamma 1 as a specific substrate for the EGF receptor kinase. The simultaneous mutation of three major autophosphorylation sites (Y1173, Y1148, Y1068), however, caused more than a 50% decrease in EGF-induced tyrosine phosphorylation of PLC gamma 1. The triple mutation also resulted in a substantial inhibition of the EGF-receptor endocytic system. We have used three types of experiments to analyze internalization, recycling, and degradation of EGF in cells with these mutants or the wild-type receptor. Using a simple mathematical model we have shown that the internalization rate constant is 2-fold lower in cells expressing the triple mutation receptor (F3 cells) than in cells expressing wild-type EGF receptor (wild-type cells). However, the rate constant for recycling was similar in both cell types. The EGF degradation rate constant was also lower in F3 cells. EGF-induced EGF receptor degradation was slower in F3 cells (t1/2 = 4 h) than in wild-type cells (t1/2 = 1 h). Therefore, our results suggest that multiple autophosphorylations of the carboxyl terminus of the EGF receptor are required for EGF receptor kinase activation, and for the internalization and intracellular processing of the EGF.receptor complex.  相似文献   

10.
Current models put forward that the epidermal growth factor receptor (EGFR) is efficiently internalized via clathrin-coated pits only in response to ligand-induced activation of its intrinsic tyrosine kinase and is subsequently directed into a lysosomal-proteasomal degradation pathway by mechanisms that include receptor tyrosine phosphorylation and ubiquitylation. Herein, we report a novel mechanism of EGFR internalization that does not require ligand binding, receptor kinase activity, or ubiquitylation and does not direct the receptor into a degradative pathway. Inhibition of basal protein kinase A (PKA) activity by H89 and the cell-permeable substrate peptide Myr-PKI induced internalization of 40-60% unoccupied, inactive EGFR, and its accumulation into early endosomes without affecting endocytosis of transferrin and mu-opioid receptors. This effect was abrogated by interfering with clathrin function. Thus, the predominant distribution of inactive EGFR at the plasma membrane is not simply by default but involves a PKA-dependent restrictive condition resulting in receptor avoidance of endocytosis until it is stimulated by ligand. Furthermore, PKA inhibition may contribute to ligand-induced EGFR endocytosis because epidermal growth factor inhibited 26% of PKA basal activity. On the other hand, H89 did not alter ligand-induced internalization of EGFR but doubled its half-time of down-regulation by retarding its segregation into degradative compartments, seemingly due to a delay in the receptor tyrosine phosphorylation and ubiquitylation. Our results reveal that PKA basal activity controls EGFR function at two levels: 1) residence time of inactive EGFR at the cell surface by a process of "endocytic evasion," modulating the accessibility of receptors to stimuli; and 2) sorting events leading to the down-regulation pathway of ligand-activated EGFR, determining the length of its intracellular signaling. They add a new dimension to the fine-tuning of EGFR function in response to cellular demands and cross talk with other signaling receptors.  相似文献   

11.
Phosphorylation of the RAF-1 protooncogene product and activation of its associated serine/threonine kinase are common features of the response of cells to peptide growth factors. We have used wild-type and mutant epidermal growth factor (EGF) receptors to investigate mechanisms of RAF-1 phosphorylation. In vivo EGF treatment rapidly stimulated phosphorylation of RAF-1 exclusively on serine residues. Stimulation of RAF-1 phosphorylation occurred at 37 degrees C but not at 4 degrees C and persisted after dissociation of EGF from its receptor. EGF-induced RAF-1 serine phosphorylation required the intrinsic tyrosine kinase activity of the EGF receptor but was independent of EGF receptor self-phosphorylation and of ligand-induced receptor internalization. Down-regulation of protein kinase C did not affect the EGF-induced increase in RAF-1 phosphorylation. These data suggest that the activated tyrosine kinase activity of the EGF receptor enhances serine phosphorylation of RAF-1 via an intermediary molecule(s).  相似文献   

12.
The internalization of 125I-epidermal growth factor (EGF) by A431 cells was investigated. Control cells were able to internalize over 80% of receptor-bound 125I-EGF. By contrast, cells treated with EGF before incubation with 125I-EGF internalized only 50% of the surface-bound radioligand. The ligand-induced decrease in 125I-EGF internalization showed a dose response to EGF with half-maximal effect occurring at 3 nM. The alteration in the extent of 125I-EGF internalization did not require extended treatment with high concentrations of the hormone. When the internalization of picomolar versus nanomolar concentrations of EGF were compared, the lower concentrations of 125I-EGF were more completely internalized than the higher concentrations of radioligand. These data are consistent with the hypothesis that occupation of the EGF receptor by hormone rapidly leads to the activation of cellular processes which effectively desensitize the system to further ligand-induced internalization. The decrease in the extent of ligand internalization occurred in cells in which the protein kinase C (Ca2+/phospholipid-dependent enzyme) activity had been down-regulated by prolonged treatment with 12-O-tetradecanoyl-phorbol-13-acetate implying that the desensitization process is independent of protein kinase C. However, the effects of EGF on the extent of hormone internalization could be mimicked by the addition of A23187 and could be prevented by pretreatment of the cells with calmodulin antagonists suggesting the possibility that Ca2+-calmodulin is involved in the regulation of EGF receptor internalization in A431 cells.  相似文献   

13.
Regulation of transmembrane signaling by receptor phosphorylation   总被引:65,自引:0,他引:65  
At least two major effects of receptor phosphorylation have been identified--regulation of receptor function, and regulation of receptor distribution. In many cases where phosphorylation directly alters the functions of receptors, this appears to be in a negative direction. Such decreases in receptor activity may reflect reduced ability to interact with biochemical effectors (e.g., the beta-adrenergic receptor, rhodopsin), reduced affinity for binding agonist ligands (EGF,IGF-I, insulin receptors) or reduced enzymatic activity (e.g., tyrosine kinase activity of the insulin or EGF receptor). In all instances, these negative modulations are associated with phosphorylation of serine and/or threonine residues of the receptor proteins. In contrast, the tyrosine kinase receptors also appear to be susceptible to positive modulation by phosphorylation. With these receptors, autophosphorylation of tyrosine residues may lead to enhanced protein-tyrosine kinase activity of the receptors and increased receptor function. In addition, the subcellular distribution of a receptor may be regulated by its phosphorylation status (e.g., the beta-adrenergic receptor, receptors for insulin, EGF, IGF-II, and transferrin). The emerging paradigm is that receptor phosphorylation may in some way promote receptor internalization into sequestered compartments where dephosphorylation occurs. The molecular and cellular mechanisms involved in translating changes in receptor phosphorylation into changes in receptor distribution remain to be elucidated. Moreover, the biological role of receptor internalization may be quite varied. Thus, in the case of the beta-adrenergic receptor, it may serve primarily as a mechanism for bringing the phosphorylated receptors into contact with intracellular phosphatases that dephosphorylate and resensitize it. By contrast, for the transferrin receptor and other receptors involved in receptor-mediated endocytosis, the internalization presumably functions to carry some specific ligand or metabolite into the cell. The role of phosphorylation in regulating receptor function dramatically extends the range of regulatory control of this important covalent modification.  相似文献   

14.
Signals that can mediate ligand-induced receptor internalization and calcium regulation are present in a 48-amino acid "calcium-internalization" domain in the C' terminus of the epidermal growth factor (EGF) receptor. The basis of calcium and internalization regulation signalled by this 48-amino acid sequence was analyzed using deletion and substitution mutant receptors. Cells expressing truncated receptors containing either the NH2- or COOH-terminal portion of the 48-residue domain displayed high affinity EGF-dependent endocytosis and receptor down-regulation. These endocytosis-competent EGF receptor mutants that lacked any autophosphorylation site were unable to increase the concentration of intracellular calcium. To investigate the role of self-phosphorylation in EGF-induced calcium mobilization, phenylalanine was substituted for the single autophosphorylated tyrosine residue in this region of an internalization-competent truncated receptor. The receptor-mediated calcium response was abolished, while ligand-dependent receptor internalization was unimpaired. These results demonstrate that EGF-dependent receptor endocytosis and calcium mobilization are separate events. Tyrosine self-phosphorylation is required for increased [Ca2+]i, while structural features distinct from autophosphorylation are required for receptor internalization.  相似文献   

15.
Kim J  Ahn S  Guo R  Daaka Y 《Biochemistry》2003,42(10):2887-2894
The epidermal growth factor (EGF) receptor (EGFR) plays a central role in regulating cell proliferation, differentiation, and migration. Cellular responses to EGF are dependent upon the amount of EGFR present on the cell surface. Stimulation with EGF induces sequestration of the receptor from the plasma membrane and its subsequent downregulation. Recently, internalization of the EGFR was also shown to be required for mitogenic signaling via the activation of MAP kinases. Therefore, mechanisms regulating internalization of the EGFR represent an important facet for the control of cellular response. Here, we demonstrate that EGFR is removed from the cell surface not only following stimulation with EGF, but also in response to stimulation of G protein-coupled lysophosphatidic acid (LPA) and beta2 adrenergic (beta2AR) receptors. Using a FLAG epitope-tagged EGFR to quantitate receptor internalization, we show that incubation with EGF, LPA, or isoproterenol (ISO) causes the time-dependent loss of cell surface EGFR. Internalization of EGFR by these ligands involves the tyrosine kinase activity of the receptor itself and c-Src, as well as the GTPase activity of dynamin. Unexpectedly, we find that internalization of the EGFR by EGF is dependent upon Gbetagamma and beta-arrestin proteins; expression of minigenes encoding the carboxyl terminii of the G protein-coupled receptor kinase 2, or beta-arrestin1, attenuates LPA-, ISO-, and EGF-mediated internalization of EGFR. Thus, G protein-coupled receptors can control the function of the EGFR by regulating its endocytosis.  相似文献   

16.
Binding of murine epidermal growth factor (EGF) to its high-affinity receptor can be modulated by a variety of structurally unrelated mitogens. The transmodulation, however, is temperature-dependent and has not been observed in isolated membranes. We report here the transmodulation of high-affinity EGF receptors by platelet-derived growth factors (PDGF) and tumour-promoting phorbol esters in 3T3 cells even when they are rendered incapable of fluid-phase endocytosis by treatment with phenylarsine oxide or by permeabilization with lysophosphatidylcholine. The relative affinity of the EGF receptors in the absence of modulating agents is not significantly altered by phenylarsine oxide treatment. Thus the difference in affinity between the two classes of EGF receptors seems to be unrelated to dynamic membrane changes or to differential rates of internalization. In permeabilized cells, non-hydrolysable GTP analogues transmodulate the high-affinity EGF receptor; however, the effects of these analogues are blocked by the protein kinase C inhibitor chlorpromazine. In contrast, transmodulation by PDGF is not blocked by chloropromazine. Thus the high-affinity EGF receptor can be transmodulated by both protein kinase C-dependent or -independent pathways, and the transmodulation processes do not require fluid-phase endocytosis.  相似文献   

17.
Like many other receptor tyrosine kinases (RTKs), platelet-derived growth factor (PDGF) receptor β (PDGFR-β) is internalized and degraded in lysosomes in response to PDGF stimulation, which regulates many aspects of cell signalling. However, little is known about the regulation of PDGFR-β endocytosis. Given that ligand binding is essential for the rapid internalization of RTKs, the events induced by the ligand binding likely contribute to the regulation of ligand-induced RTK internalization. These events include receptor dimerization, activation of intrinsic tyrosine kinase activity and autophosphorylation. In this communication, we examined the role of PDGFR-β kinase activity, PDGFR-β dimerization and PDGFR-β C-terminal motifs in PDGF-induced PDGFR-β internalization. We showed that inhibition of PDGFR-β kinase activity by chemical inhibitor or mutation did not block PDGF-induced PDGFR-β endocytosis, suggesting that the kinase activity is not essential. We further showed that dimerization of PDGFR-β is essential and sufficient to drive PDGFR-β internalization independent of PDGFR-β kinase activation. Moreover, we showed that the previously reported 14 amino acid sequence 952-965 is required for PDGF-induced PDGFR-β internalization. Most importantly, we showed that this PDGFR-β internalization motif is exchangeable with the EGFR internalization motif (1005-1017) in mediating ligand-induced internalization of both PDGFR-β and EGFR. This indicates a common mechanism for the internalization of both PDGFR-β and EGFR.  相似文献   

18.
This study examines the effects of mutations at and in the vicinity of tyrosine 992 of the epidermal growth factor receptor (EGFr) on epidermal growth factor- (EGF-) stimulated internalization of the receptor. Two regions of the EGFr adjacent to this domain have been defined previously as internalization domains. The present work shows that the mutation of negatively charged amino acid residues near Tyr992 to their uncharged analogues increases the rate of EGF receptor internalization. In addition, the conversion of Tyr992, which is an EGFr ligand-induced autophosphorylation site, to phenylalanine also increases the rate of receptor internalization. However, the mutation of Tyr992 to a glutamate residue does not alter the receptor internalization rate. In addition, the truncation of the EGFr at glutamate 996 reduces the internalization rate by half. This result confirms previous reports that residues immediately C-terminal to Glu996 are necessary to allow the normal rate of ligand-induced receptor endocytosis. The data suggest that negative charge in the vicinity of Tyr992, and potentially the phosphorylation of the EGFr at Tyr992, reduces the rate of ligand-induced receptor endocytosis. This reduction in internalization rate increases the lifetime of the activated EGFr in the plasma membrane by about 70%, thus suggesting that phosphorylation of Tyr992 acts to increase the signaling capacity of the EGF receptor even as it directly acts as an SH2 binding site.  相似文献   

19.
Epidermal growth factor (EGF) binding to its receptor causes rapid phosphorylation of the clathrin heavy chain at tyrosine 1477, which lies in a domain controlling clathrin assembly. EGF-mediated clathrin phosphorylation is followed by clathrin redistribution to the cell periphery and is the product of downstream activation of SRC kinase by EGF receptor (EGFR) signaling. In cells lacking SRC kinase, or cells treated with a specific SRC family kinase inhibitor, EGF stimulation of clathrin phosphorylation and redistribution does not occur, and EGF endocytosis is delayed. These observations demonstrate a role for SRC kinase in modification and recruitment of clathrin during ligand-induced EGFR endocytosis and thereby define a novel effector mechanism for regulation of endocytosis by receptor signaling.  相似文献   

20.
This study was conducted to determine how extraordinarily high numbers of epidermal growth factor receptors (EGF-R) affected the binding and internalization of EGF in the transformed cell line A431. I found that at low EGF concentrations, the kinetics of binding behaved as a nonsaturable, first-order process showing no evidence of multiple-affinity classes of receptors. However, EGF dissociation rates were strongly dependent on the degree of receptor occupancy in both intact cells and isolated membranes. This occupancy-dependent dissociation appears to be due to diffusion-limited binding. EGF-induced receptor internalization was rapid and first order when the absolute number of occupied receptors was below 4 x 10(3) min-1. However, at higher occupancies the specific internalization rate progressively declined to a final limiting value of 20% normal. The saturation of EGF-R endocytosis was specific since internalization of transferrin receptors was not affected by high concentrations of either transferrin or EGF. Saturation of EGF-R endocytosis probably involves a specific component of the endocytic pathway since fluid phase endocytosis increased coordinately with EGF-R occupancy. I conclude that there are several aspects of EGF-R dynamics on A431 cells are neither similar to the behavior of EGF-R in other cell types nor similar to the reported behavior of other hormone receptors. Although A431 cells have an extraordinary number of EGF-R, they do not seem to have corresponding levels of at least two other crucial cell surface components: one that mediates EGF-induced rapid receptor internalization and one that attenuates EGF-induced membrane responses. These factors, in addition to the presence of diffusion-limited binding at low EGF concentrations, are probably responsible for the appearance of multiple-affinity classes of receptors in this cell type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号