首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunologic activation of purified human lung mast cells (HLMC) and basophils with anti-IgE induced histamine release but failed to elicit any changes in cAMP levels. In contrast, histamine release and monophasic rises in cAMP were observed in both rat peritoneal mast cells (RPMC) challenged with concanavalin A (73% enhancement over basal cAMP 20 sec after activation) and a cultured mouse bone marrow-derived mast cell (PT18 cell line) passively sensitized with dinitrophenol-specific IgE and stimulated with antigen (39% increase above basal at 15 sec). The adenylate cyclase activators isoprenaline, prostaglandin E2 (PGE2), and forskolin and the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) all induced elevations in cAMP levels in both basophils and HLMC. In basophils, PGE2 and isoprenaline produced approximately twofold increases in cAMP that were maximal at 1 min and decayed thereafter. Forskolin and IBMX produced threefold increases in cAMP that peaked 10 min after activation and persisted for up to 20 min. In HLMC, isoprenaline provoked a rapid monophasic fourfold increase in cAMP that was maximal at 1 min after addition. Levels of cAMP subsequently declined but remained significantly elevated over resting levels for up to 30 min. PGE2, forskolin, and IBMX all produced approximately threefold rises in HLMC cAMP that peaked around 5 min and persisted for 30 min. In both the basophil and HLMC, agonist-induced elevations in cAMP correlated well with the inhibition of mediator release. In basophils, the order IBMX greater than forskolin greater than PGE2 greater than isoprenaline held for both the inhibition of histamine and leukotriene C4 release and the augmentation of cAMP levels. In HLMC, individual agonists elevated cAMP levels to similar degrees and inhibited the release of histamine, leukotriene C4, and PGD2 to comparable extents, although the release of the arachidonate metabolites was generally more sensitive to the inhibitory actions of these agonists. These results suggest that elevations in cAMP, in both the basophil and HLMC, are associated with the inhibition of mediator release but not the initiation of the secretory process.  相似文献   

2.
Airway damage secondary to eosinophil activation is thought to contribute to the development of asthma. Using the fluorescent dye FURA-2 to measure the concentration of cytosolic calcium, we found that supernatants from anti-IgE-stimulated human lung mast cells increased cytosolic calcium in human eosinophils. We then examined the major mast cell mediators (histamine, PGD2, platelet-activating factor (PAF), eosinophil chemotactic factor of anaphylaxis (ECF-A), leukotriene (LT)C4 and LTB4) for their ability to increase cytosolic calcium in eosinophils. We found that both PAF (5 x 10(-9) to 5 x 10(-6) M) and PGD2 (two of five donors responsive at 1 x 10(-9) M) were potent stimuli for calcium mobilization. LTB4 (10(-8), 10(-7) M) and histamine were also active, although higher concentrations of histamine were required to see a response (3 x 10(-7) to 10(-5) M). LTC4, val-ECF-A, and ala-ECF-A were inactive. The effects of PGD2 and histamine were specific for eosinophils, although LTB4 and PAF increased calcium in both neutrophils and eosinophils. The histamine-induced increase in intracellular calcium was not blocked by the H1 or H2 antagonists pyrilamine or cimetidine (10(-4) M), respectively; however, the response to 10(-6) M histamine was completely blocked by the specific H3 antagonist thioperamide (10(-6) M). To evaluate the relative contribution of these stimulatory mast cell mediators on the calcium mobilizing activity in supernatants from anti-IgE-stimulated human lung mast cell (HLMC), we examined the effect of supernatants from HLMC pretreated with indomethacin and/or the 5-lipoxygenase pathway inhibitor MK886. These supernatants were added to FURA-2-loaded eosinophils that had been preincubated with thioperamide and/or the PAF antagonist WEB-2086. We found that the increase in eosinophil calcium in response to supernatants from anti-IgE-stimulated-HLMC was totally inhibited only when the mast cells were challenged in the presence of indomethacin and MK886, and the eosinophils were preincubated with thioperamide. WEB-2086 had little effect. When we examined the effect of these mediators on eosinophil secretory function, we found that PGD2 (not histamine) primed eosinophils for enhanced release of LTC4 in response to the calcium ionophore A23187. We conclude that the activation of eosinophils by PGD2 and other mast cell products may contribute to airways inflammation that is characteristic of asthma.  相似文献   

3.
Large numbers of functional mast cells were obtained by bronchoalveolar lavage (BAL) of Macaca arctoides monkeys that had been infected with the nematode Ascaris suum. These lavage cells, of which 21% were mast cells, released histamine, LTC4, and PGD2 in a concentration-dependent fashion when challenged with ascaris antigen or antibody to human IgE. However, there was no release of histamine when these cells were challenged with compound 48/80. The amount of mediator released was highly dependent on the sensitivity of the cells to immunologic challenge, but was generally in the range of 2 to 5 micrograms histamine (30 to 70% of total), 20 to 80 ng LTC4, and 100 to 300 ng PGD2 per 10(6) mast cells when maximally challenged. Other eicosanoids measured were released only in much smaller quantities. Maximal values were 4 ng LTB4, 2 ng PGE2, and approximately 10 to 20 ng PGF2 alpha per 10(6) mast cells. The amount of LTC4 and PGD2 released correlated with the release of histamine, the calculated regression line indicating that 18 ng LTC4 and 50 ng PGD2 were released per microgram of histamine released. This correlation suggests that the majority of the LTC4 and PGD2 released was probably mast cell-derived. Further support for this conclusion was given by the observation that when lavage cells were fractioned on continuous Percoll gradients, the ability to release LTC4 and PGD2 on immunologic challenge coincided with the peak of mast cells.  相似文献   

4.
The releases of beta-hexosaminidase, LTC4, LTB4, and PGD2 after the bridging of Fc gamma R3 were assessed in mouse IL-3-dependent bone marrow-derived progenitor mast cells (BMMC), BMMC maintained in coculture with 3T3 fibroblasts separated by a filter to achieve maturation of the granules toward those of a serosal mast cell (SMC), and SMC that are the prototype of a mouse connective tissue mast cell. Bridging of Fc gamma R on BMMC with the 2.4G2 rat anti-Fc gamma RII/III mAb and anti-rat IgG elicited only 4% net release of beta-hexosaminidase and 4, 2, and 1 ng/10(6) cells of immunoreactive LTC4, LTB4, and PGD2, respectively. Bridging of Fc-IgE receptors (Fc epsilon R) on BMMC yielded 35% net release of beta-hexosaminidase and 9, 4, and 3 ng/10(6) cells of immunoreactive LTC4, LTB4, and PGD2, respectively. BMMC maintained in coculture responded to the bridging of Fc gamma R with statistically significant increases in the net percent release of beta-hexosaminidase to 16% and in the generation of immunoreactive LTC4 to 11 ng/10(6) cells, but without a significant change in the production of either LTB4 or PGD2. Bridging of Fc epsilon R on cocultured mast cells yielded a net percent release of beta-hexosaminidase and lipid mediator amounts and profile similar to those for BMMC. Bridging of Fc gamma R on purified mouse SMC resulted in a maximal net percent release of beta-hexosaminidase of 10% and the generation of 4, 1, and 17 ng/10(6) cells of immunoreactive LTC4, LTB4, and PGD2, respectively; the net percent release of beta-hexosaminidase and PGD2 generation were significantly greater than those obtained from BMMC. The Fc epsilon R-mediated net percent release of beta-hexosaminidase from purified SMC was 34%, with PGD2 being the predominant metabolite of arachidonic acid. That the predominant lipid mediator generated with activation by either Fc gamma R or Fc epsilon R is LTC4 for cocultured mast cells and PGD2 for SMC suggests that the mast cell phenotype rather than the receptor class being bridged determines the lipid mediator profile. The responsiveness to Fc gamma R bridging elicited by coculture of BMMC with fibroblasts in vitro and present in SMC derived in vivo relative to BMMC may relate to the previously measured increases in receptor number per cell, but may also involve the acquisition of an enhanced signal transduction capability, possibly through the increased expression of Fc gamma RIII.  相似文献   

5.
5'-N-ethylcarboxamideadenosine (NECA) greater than 2-chloroadenosine greater than adenosine greater than N6-(R-phenyl-isopropyl)-adenosine (R-PIA) inhibited in vitro anti-IgE-induced histamine and peptide leukotriene C4 (LTC4) release from human basophils in a concentration-dependent fashion. Micromolar concentrations of adenosine, NECA and R-PIA potentiated the anti-IgE-stimulated release of histamine and LTC4 from human lung parenchymal mast cells. Submillimolar concentrations of adenosine, NECA and R-PIA inhibited in a concentration dependent manner the release of histamine and prostaglandin D2 (PGD2) from skin mast cells challenged with anti-IgE. These results demonstrate marked heterogeneity of the modulatory effect exerted by adenosine on mediator release from human basophils and mast cells.  相似文献   

6.
Mucosal mast cells (MMC) were isolated from the intestine of Nippostrongylus brasiliensis-infected rats and then activated with Ag or with anti-IgE in order to assess their metabolism of arachidonic acid to leukotriene (LT) C4, LTB4, and prostaglandin D2 (PGD2). After challenge of MMC preparations of 19 +/- 1% purity with five worm equivalents of N. brasiliensis Ag, the net formation of immunoreactive equivalents of LTC4, LTB4, and PGD2 was 58 +/- 8.3, 22 +/- 4.5, and 22 +/- 3.4 ng/10(6) mast cells, respectively (mean +/- SE, n = 7). When MMC preparations of 56 +/- 9% purity were activated by Ag, the net generation of immunoreactive equivalents of LTC4, LTB4, and PGD2/10(6) MMC was 107 +/- 15, 17 +/- 5.4, and 35 +/- 18 ng, respectively. These data indicate that the three eicosanoids originated from the MMC rather than from a contaminating cell. Analysis by reverse phase HPLC of the C-6 sulfidopeptide leukotrienes present in the supernatants of the activated MMC preparations of lower purity revealed LTC4, LTD4, and LTE4. In a higher purity MMC preparation only LTC4 was present, suggesting that other cell types in the mucosa are able to metabolize LTC4 to LTD4 and LTE4. The release of histamine and the generation of eicosanoids from intestinal MMC and from peritoneal cavity-derived connective tissue-type mast cells (CTMC) isolated from the same N. brasiliensis-infected rats were compared. When challenged with anti-IgE, these MMC released 165 +/- 41 ng of histamine/10(6) mast cells, and generated 29 +/- 3.6, 12 +/- 4.2, and 4.7 +/- 1.0 ng (mean +/- SE, n = 3) of immunoreactive equivalents of LTC4, LTB4, and PGD2/10(6) mast cells, respectively. In contrast, CTMC isolated from the same animals and activated with the same dose of anti-IgE released approximately 35 times more histamine (5700 +/- 650 ng/10(6) CTMC), generated 7.5 +/- 2.3 ng of PGD2/10(6) mast cells, and failed to release LTC4 or LTB4. These studies establish, that upon immunologic activation, rat MMC and CTMC differ in their quantitative release of histamine and in their metabolism of arachidonic acid to LTC4 and LTB4.  相似文献   

7.
The generation of leukotrienes and histamine release by the mouse mastocytoma cell line MMC-16 was investigated. These cells produced leukotriene C4 (LTC4) and released histamine upon calcium ionophore A23187 and antigen stimulation. The ionophore also stimulated the biosynthesis of leukotriene B4 (LTB4) by MMC-16. Generation of LTC4 was confirmed by its characteristic UV absorption spectrum, fast atom bombardment-MS, equivalent HPLC retention time with an authentic standard and radioimmunoassay. Leukotriene B4 was characterized by its distinctive UV spectrum and HPLC retention time compared with synthetic material. IgE-mediated LTC4 generation was also observed in a dose dependent fashion with MMC-16 cells passively sensitized with monoclonal IgE specific for ovalbumin. LTC4 biosynthesis was effectively inhibited by the lipoxygenase inhibitor NDGA.  相似文献   

8.
Human mast cells (MCs) contain TG-rich cytoplasmic lipid droplets (LDs) with high arachidonic acid (AA) content. Here, we investigated the functional role of adipose TG lipase (ATGL) in TG hydrolysis and the ensuing release of AA as substrate for eicosanoid generation by activated human primary MCs in culture. Silencing of ATGL in MCs by siRNAs induced the accumulation of neutral lipids in LDs. IgE-dependent activation of MCs triggered the secretion of the two major eicosanoids, prostaglandin D2 (PGD2) and leukotriene C4 (LTC4). The immediate release of PGD2 from the activated MCs was solely dependent on cyclooxygenase (COX) 1, while during the delayed phase of lipid mediator production, the inducible COX-2 also contributed to its release. Importantly, when ATGL-silenced MCs were activated, the secretion of both PGD2 and LTC4 was significantly reduced. Interestingly, the inhibitory effect on the release of LTC4 was even more pronounced in ATGL-silenced MCs than in cytosolic phospholipase A2-silenced MCs. These data show that ATGL hydrolyzes AA-containing TGs present in human MC LDs and define ATGL as a novel regulator of the substrate availability of AA for eicosanoid generation upon MC activation.  相似文献   

9.
The digitalic glicoside ouabain induces potentiation of rat mast cell histamine release in response to several stimuli, which is mediated by Na+/Ca2+ exchanger. In this work, we studied the effect of ouabain on cytosolic calcium, intracellular pH and histamine release with Ca2+ ionophore A23187 in conditions designed to maximize ouabain-induced potentiation of rat mast cells response. The effect of protein kinase C (PKC), cAMP and phosphatase inhibition was also tested. Ouabain induced an enhancement in histamine release, cytosolic calcium and intracellular pH. The adenylate cyclase activator forskolin reduced the effect of ouabain on histamine release and intracellular pH, but enhanced the effect on cytosolic calcium. PKC activator PMA enhanced the effect of ouabain on histamine release and cytosolic calcium, without affecting intracellular pH. A PKC inhibitor, GF-109203X, reduced ouabain-induced enhancement of histamine release and intracellular pH, but increased the enhancement on cytosolic calcium. Finally, inhibition of protein phosphatases 1 and 2A with okadaic acid, increased the effect of ouabain on histamine release and intracellular pH, but reduced cytosolic calcium in presence of ouabain. This result suggest that ouabain-induced potentiation of rat mast cell histamine release with A23187 is modulated by kinases, and this modulation may be carried out by changes in intracellular alkalinization. However, the mechanism underlying cellular alkalinization remains to be elucidated.  相似文献   

10.
We attempted to identify and establish the role of cyclic nucleotide phosphodiesterase (PDE) isozymes in human basophils by using standard biochemical techniques as well as describing the effects of isozyme-selective and nonselective inhibitors of PDE. The nonselective PDE inhibitors, theophylline and 3-isobutyl-1-methylxanthine, inhibited anti-IgE-induced release of histamine and leukotriene C4 (LTC4) from basophils. This inhibition was accompanied by elevations in cAMP levels. Rolipram, an inhibitor of the low Km cAMP-specific PDE (PDE IV), inhibited the release of both histamine and LTC4 from activated basophils and increased cAMP levels in these cells. In contrast, mediator release from basophils was not inhibited by either siguazodan or SK&F 95654, inhibitors of the cGMP-inhibited PDE (PDE III) or zaprinast, an inhibitor of the cGMP-specific PDE (PDE V). SK&F 95654 failed to elevate basophil cAMP in these experiments whereas zaprinast induced significant increases in cAMP content. The inhibitory effect of rolipram on mediator release was potentiated by siguazodan or SK&F 95654, but not by zaprinast. SK&F 95654 also enhanced the ability of rolipram to increase cAMP content. Forskolin, a direct activator of adenylate cyclase, inhibited IgE-dependent release of mediators from basophils and increased cAMP levels in these cells. These effects were enhanced by rolipram, but not by SK&F 95654 or zaprinast. The cell permeant analog of cAMP, dibutyryl cAMP, inhibited mediator release from these cells, a property not shared by either dibutyryl-cGMP or sodium nitroprusside, an activator of soluble guanylate cyclase. The presence of both PDE III and PDE IV was confirmed by partially purifying and characterizing PDE activity in broken cell preparations. Overall, these data lend support to the hypothesis that cAMP inhibits mediator release from basophils and suggest that the major PDE isozyme responsible for regulating cyclic AMP content in these cells is PDE IV, with a minor contribution from PDE III. However, the finding that zaprinast caused increases in cAMP without inhibiting mediator release indicates that cAMP accumulation is not invariably linked to an inhibition of basophil activation.  相似文献   

11.
Human mast cells, dispersed from lung tissue by proteolytic treatment and enriched to a purity of 23 to 68% by density-gradient centrifugation, were maintained ex vivo for up to 13 days when co-cultured with mouse skin-derived 3T3 fibroblasts in RPMI 1640 containing 10% fetal calf serum. The human mast cells were adherent to the fibroblast cultures within 2 to 4 hr after seeding, and after 7 days of co-culture were localized between the layers of fibroblasts. The cell surfaces of the mast cells and the fibroblasts did not form tight junctions, but rather approached within 20 nm of each other. The co-cultured mast cells did not divide; they maintained their cellular content of histamine and TAMe esterase and resembled in vivo mast cells in that their secretory granules exhibited scroll patterns and their nuclei were oval. Both the freshly isolated and the co-cultured mast cells responded to activation with anti-human IgE by exocytosing histamine and generating and releasing arachidonic acid metabolites. When freshly isolated mast cells were activated immunologically, they exocytosed 38 +/- 8% of their total histamine content and released 28 +/- 1.9 ng (mean +/- range, n = 2) of immunoreactive equivalents of prostaglandin D2 (PGD2) per microgram of total cellular histamine, but did not generate significant amounts of either leukotriene C4 (LTC4) or leukotriene B4 (LTB4). The 1-wk co-cultured mast cells, on the other hand, exocytosed 43 +/- 2.4% of their total histamine content, and released 86 +/- 10, 43 +/- 20, and 5.2 +/- 5.2 ng (mean +/- SD, n = 4) of immunoreactive equivalents of PGD2, LTC4, and LTB4, respectively, per microgram of histamine. Thus, human lung-derived mast cells can be maintained ex vivo when co-cultured with fibroblasts, and, when treated with anti-IgE, they metabolize arachidonic acid via both the cyclooxygenase and the 5-lipoxygenase pathways.  相似文献   

12.
The 5-lipoxygenase (5-LO) inhibitors BI-L-239 and A-64077 were compared with the 5-LO translocation inhibitor MK-886 for the ability to inhibit leukotriene B4 (LTB4) biosynthesis by chopped (1 mm3) guinea pig lung. LTB4 synthesis by ovalbumin-sensitized chopped lung tissue was determined after stimulation with either calcium ionophore (A23187) or antigen. With A23187 stimulation, MK-886 was more potent (IC50 = 0.39 +/- 0.23 microM, mean +/- SEM, p < 0.01) than BI-L-239 (IC50 = 2.48 +/- 0.46 microM) or A-64077 (IC50 = 4.68 +/- 0.70 microM) and BI-L-239 was more potent than A64077 (p < 0.02). Thus, the order of potency was MK-886 > BI-L-239 > A-64077 for inhibition of calcium ionophore-induced LTB4 generation. There was no significant differences in potency of the compounds in chopped lung stimulated with antigen: IC50 for LTB4 synthesis by A-64077 = 3.31 +/- 1.70 microM, for BI-L-239 = 9.06 +/- 4.94 microM, and for MK-886 = 13.33 +/- 7.91 microM. The ability of these compounds to inhibit contraction of tracheal tissue from actively sensitized guinea pigs in response to antigen was also determined in the presence of indomethacin (15 micrograms/ml), mepyramine, and atropine (5 micrograms each/ml). Both 5-LO inhibitors inhibited antigen-induced contraction, with IC50 values for BI-L-239 and A-64077 of 1.58 and 4.35 microM respectively. MK-886 was ineffective at inhibiting antigen-induced tracheal contraction in vitro at concentrations up to 30 microM. In summary, these compounds inhibit antigen-induced and A23187-induced leukotriene biosynthesis in guinea pig tissue. These 5-LO inhibitors were similarly effective at inhibiting antigen-induced tracheal contraction where MK-886 was ineffective.  相似文献   

13.
Regulation of the inflammatory response in asthma by mast cell products   总被引:13,自引:0,他引:13  
In airways, mast cells lie adjacent to nerves, blood vessels and lymphatics, which highlights their pivotal importance in regulating allergic inflammatory processes. In asthma, mast cells are predominantly activated by IgE receptor cross linking. In response to activation, preformed mediators that are stored bound to proteoglycans, for example, TNF-alpha, IL-4, IL-13, histamine, tryptase and chymase, are released. New synthesis of arachidonic acid metabolites (leukotriene C4 (LTC4), leukotriene B4 (LTB4) and prostaglandin D2 (PGD2)) and further cytokines is stimulated. Mediators from degranulating mast cells are critical to the pathology of the asthmatic lung. Mast cell proteases stimulate tissue remodelling, neuropeptide inactivation and enhanced mucus secretion. Histamine stimulates smooth muscle cell contraction, vasodilatation and increased venular permeability and further mucus secretion. Histamine induces IL-16 production by CD8+ cells and airway epithelial cells; IL-16 is an important early chemotactic factor for CD4+ lymphocytes. LTC4, LTB4 and PGD2 affect venular permeability and can regulate the activation of immune cells. The best characterized mast cell cytokine in asthmatic inflammation is TNF-alpha, which induces adhesion molecules on endothelial cells and subsequent transmigration of inflammatory leucocytes. IL-13 is critical to development of allergic asthma, although its mode of action is less clear.  相似文献   

14.
We determined the ability of hydrocortisone to inhibit rat basophilic leukemia cell mediator release induced by anti-IgE and by neutrophil-derived histamine-releasing activity (HRA-N). Serotonin release induced by HRA-N and anti-IgE was inhibited by 78 +/- 5 and 70 +/- 4%, respectively (IC50 7.5 x 10(-7)M) by hydrocortisone (10(-5)M). HRA-N does not cause arachidonic acid metabolism, however, anti-IgE induced the generation of PGD2 and leukotriene (LT)C4, and the generation of both mediators was inhibited by 10(-5)M hydrocortisone (IC50 = 4.8 x 10(-7)M, and 3.6 x 10(-9)M, respectively). Inhibition required at least 5 to 6 h of hydrocortisone exposure and was maximal after 22 h. The observed effects of hydrocortisone could be reproduced by human recombinant lipocortin-I (5 x 10(-7)M). Hydrocortisone, 10(-5)M, was a less potent inhibitor of calcium ionophore A23187-mediated serotonin release and PGD2 and LTC4 generation (inhibition of 20 +/- 2, 17 +/- 10, and 37 +/- 10%, respectively). Inasmuch as A23187-induced stimulation is not dependent on receptor coupling, the enhanced ability of hydrocortisone to inhibit IgE- and HRA-N-mediated events as compared with A23187 suggests that one possible site of action of hydrocortisone may be interruption of receptor-effector signals. In the presence of arachidonic acid, hydrocortisone-treated cells released as much LTB4 and PGD2 as control cells, however, serotonin release and LTC4 generation were inhibited 50 and 55%, respectively. Thus, these data suggest that hydrocortisone has three possible sites of action: 1) inhibition of phospholipase A2 activity, 2) inhibition of glutathione-s-transferase, and 3) inhibition of serotonin release by a third mechanism, possibly by interrupting the coupling of receptor and effector systems.  相似文献   

15.
The IV injection of neurotensin (NT) into anesthetized rats produced a marked increase in hematocrit, labored breathing and peripheral blood stasis with cyanosis. This effect could also be produced by the NT-related peptides, neuromedin-N and xenopsin; however, it was not observed when nine other biologically active peptides, including bradykinin and substance P, were tested. Associated with these responses were increases in the plasma levels of histamine (measured radioenzymatically) and the leukotrienes, LTB4, LTC4, LTD4, and LTE4 (measured by RIA and HPLC). The increment in hematocrit after varying doses of NT correlated to the increase in plasma levels of LTC4. Histamine and LTC4 were both capable of elevating hematocrit when given IV; however, LTC4 was approximately 1000 times more potent than histamine and active doses of histamine elevated LTC4 levels. Furthermore, the effects of NT on plasma LTC4 and hematocrit were reduced by pretreating animals with antagonists to histamine and serotonin. Pretreatment with the specific mast cell degranulating agent, compound 48/80, also blocked NT's ability to elevate plasma levels of histamine, LTB4 and LTC4 and prevented the increased hematocrit and cyanosis. These results indicate that NT-related peptides are very potent and specific stimulators of leukotriene release and that this action is mediated by mast cells and associated with loss of plasma volume and blood stasis. A working hypothesis is that histamine, released from mast cells in response to NT, stimulates LTC4 production by other cells.  相似文献   

16.
The effects of 4-bromo-5-(3-ethoxy-4-methoxybenzylamino)-3(2H)-pyridazinone (NZ-107) on immediate type hypersensitivity reactions in rats and guinea-pigs were studied. 1. When NZ-107, at a dose of 50 mg/kg (i.p.) or 100 mg/kg (orally), was administered to rats, 48-h homologous passive cutaneous anaphylaxis (PCA) reaction and histamine-, leukotriene C4 (LTC4)- and leukotriene D4 (LTD4)-induced skin reactions were suppressed by the agent. 2. NZ-107 (10(-6) g/ml) inhibited both LTC4- and LTD4-induced contractions of isolated rat stomach smooth muscle. 3. NZ-107 inhibited antigen-induced histamine release from rat peritoneal mast cells by 26% at a concentration of 10(-4) g/ml. 4. NZ-107, at doses of 25 and 50 mg/kg (orally), significantly inhibited guinea-pig 3-h heterologous PCA reaction. 5. NZ-107 inhibited antigen-induced histamine release from guinea-pig lung tissue by 17% and 48% at concentrations of 5 x 10(-5) and 10(-4) g/ml, respectively. 6. NZ-107, at doses of 25 and 50 mg/kg (i.p.), inhibited antigen-induced bronchoconstriction and eosinophil accumulation in the bronchoalveolar lavage fluid (BALF) of guinea-pigs. These results suggest that NZ-107 has anti-allergic action including inhibition of eosinophil accumulation in an antigen-challenged airway lesion in rats and guinea-pigs. The anti-allergic action of this agent is thought to be due to its action as a histamine and LT antagonist and its consequent inhibition of antigen-induced histamine release.  相似文献   

17.
Intravascular application of goat anti-rabbit immunoglobulin E (IgE) was used to stimulate parenchymal mast cells in situ in perfused rabbit lungs. Sustained pulmonary arterial pressure rise was evoked in the absence of lung vascular permeability increase and lung edema formation. Early prostaglandin (PG) D2 and histamine release into the perfusate was documented, accompanied by more sustained liberation of cysteinyl leukotrienes (LT), LTB4, and PGI2. The quantities of these inflammatory mediators displayed the following order: histamine greater than cysteinyl-LT greater than PGI2 greater than LTB4 greater than PGD2. Pressor response and inflammatory mediator release revealed corresponding bell-shaped dose dependencies. Cyclooxygenase inhibition (acetylsalicylic acid) suppressed prostanoid generation, increased LT release, and did not substantially affect pressor response and histamine liberation. BW755 C, a cyclo- and lipoxygenase inhibitor, blocked the release of cysteinyl-LT and markedly reduced the liberation of the other inflammatory mediators as well as the pressor response. The H1-antagonist clemastine caused a moderate reduction of the anti-IgE-provoked pressure rise. We conclude that intravascular anti-IgE challenge in intact lungs provokes the release of an inflammatory mediator profile compatible with in situ lung parenchymal mast cell activation. Pulmonary hypertension represents the predominant vascular response, presumably mediated by cysteinyl-LT and, to a minor extent, histamine liberation.  相似文献   

18.
Mouse bone marrow-derived mast cells (BMMC), cultured for 2, 7, or 14 days in WEHI-3 conditioned medium in the absence or presence of mouse 3T3 fibroblasts, were examined morphologically and for their functional responses to IgE-Fc-mediated and calcium ionophore-mediated activation. The 7- and 14-day fibroblast-adherent and non-fibroblast-adherent populations of cocultured BMMC had more granules per cell and the granule contents were more electron dense than non-cocultured BMMC or BMMC cocultured for only 2 days. The adherent cocultured BMMC were usually located within multiple layers of fibroblasts, but did not form junctions with the fibroblasts. When activated immunologically, the adherent cocultured mast cells generally discharged their granules singly, but compound exocytosis was occasionally seen. Both the non-adherent cocultured BMMC and the BMMC that were cultured in the absence of fibroblasts were similar to one another in that they exocytosed 9 to 11% of their histamine when sensitized with anti-dinitrophenyl IgE and challenged with dinitrophenyl-bovine serum albumin and 27 to 29% of their histamine when challenged with calcium ionophore. In contrast, adherent cocultured BMMC exocytosed 27 and 61% of their histamine upon immunologic and calcium ionophore activation, respectively, representing a significant two- to three-fold increase relative to that obtained from the other populations of BMMC. When activated immunologically, BMMC cultured in WEHI-3 conditioned medium alone generated a mean of 12 ng of immunoreactive C-6-sulfidopeptide leukotrienes, 1.6 ng of leukotriene B4 (LTB4), and 1.0 ng of prostaglandin D2 (PGD2)/10(6) cells. The immunologic response of the nonadherent 7-day cocultured BMMC was similar. Fibroblast-adherent cocultured BMMC, on the other hand, generated 56 ng of immunoreactive C-6-sulfidopeptide leukotrienes, 6.4 ng of LTB4, and 5.6 ng of PGD2/10(6) mast cells, representing a significant increase for each product. When calcium ionophore was used as the agonist, the adherent cocultured mast cells also generated significantly more arachidonic acid metabolites than nonadherent cocultured BMMC or BMMC cultured in the absence of fibroblasts. Retention times on high performance liquid chromatography confirmed that the generated immunoreactive products were LTB4, PGD2, and LTC4. Thus, coculture of BMMC with fibroblasts induces an alteration in the composition of the secretory granules of the mast cells, as well as an augmentation of the activation-secretion response of the BMMC.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The regulation of the cytosolic calcium concentration was investigated in freshly isolated adult bovine tracheal smooth muscle cells using fura 2. These cells contain 1.1 and 1.8 pmol of cGMP kinase and cAMP kinase per mg protein, respectively. Carbachol, histamine, serotonin, isoproterenol, and salbutamol increased the cytosolic calcium in a dose-dependent manner from 79 nM to about 650 nM. Preincubation of these cells for 20 min with isoproterenol, forskolin, 8-Br-cAMP and 8-(4-Cl-phenyl)thio-cAMP did not lower carbachol-induced increases in cytosolic calcium concentration, whereas the phorbol ester 12-O-tetradecanoylphorbol 13-acetate, the atrionatriuretic factor, isobutylmethylxanthine, and 8-Br-cGMP lowered cytosolic calcium. The active fragment of cGMP kinase, but not the catalytic subunit of cAMP kinase lowered carbachol-induced calcium levels. Carbachol released calcium from intracellular stores and increased calcium influx from the extracellular space. The influx was inhibited by preincubation with the calcium channel blockers nitrendipine or gallopamil. Both carbachol-stimulated pathways were suppressed by 8-Br-cGMP. Isoproterenol increased only the influx of calcium from the outside by a channel which was blocked by calcium channel blockers or 8-Br-cGMP. Forskolin and 8-Br-cAMP lowered carbachol- and isoproterenol-stimulated increases in calcium when added shortly before or after the addition of the agonist. In addition, isoproterenol decreased carbachol-stimulated calcium levels when added 10 s after carbachol. The calcium stimulatory effect of isoproterenol was abolished by preincubation of the cells with pertussis toxin or cholera toxin. These results show (a) that the beta 2-adrenoceptor couples in isolated tracheal smooth muscle cells to a dihydropyridine- and pertussis toxin-sensitive calcium channel; (b) that the same channel is opened by carbachol; (c) that cGMP kinase is very effective in decreasing elevated cytosolic calcium concentrations, whereas cAMP-dependent protein kinase has a variable effect on stimulated cytosolic calcium levels.  相似文献   

20.
Basic characteristics of human lung mast cell desensitization   总被引:1,自引:0,他引:1  
Human lung parenchymal mast cells displayed both specific and nonspecific desensitization. The kinetics of both release and desensitization were approximately equal to 3 times faster than human basophils, but a similar relationship between release and desensitization suggests similar biochemistries in basophils and mast cells. Arachidonic acid metabolite (PGD2 and LTC4) release was slower to desensitize (t1/2 of 8 min) than histamine release (t1/2 of 3 min), the ratio of which is similar to the ratio observed in basophils. Ionophore A23187-induced release was unaffected by desensitization to anti-IgE antibody, and calcium-45 uptake was inhibited by desensitization, suggesting that desensitization inhibits the early post-cross-linking "influx" of calcium that is necessary for mediator release in mast cells. In contrast to the above similarities in basophil and mast cell desensitization, mast cell desensitization, unlike that of basophils was not inhibited by diisopropylfluorophosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号