首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined the effects of intravenous administration of a purified lipopolysaccharide (LPS) from Helicobacter pylori (3 mg kg(-1), i.v.) on rat vascular permeability, assessed by the radiolabelled human serum albumin leakage technique in the heart, kidney, liver and lung 4 h after challenge. An increased vascular permeability in cardiac, renal, hepatic and pulmonary tissues after challenge was determined. The albumin leakage observed in all these organs could be prevented by the selective inducible nitric oxide synthase inhibitor, N-(8-(aminomethyl)benzyl)-acetamidine (1400W; 0.2-1 mg kg(-1), s.c.) administered concurrently with LPS. Thus, H. pylori LPS can provoke a microvascular inflammatory response in the rat cardiac, renal, hepatic and pulmonary tissues, actions mediated through the activation of the inducible nitric oxide synthase isoenzyme.  相似文献   

2.
We have examined the effects of intravenous administration of a purified lipopolysaccharide (LPS) from Helicobacter pylori (3 mg kg−1, i.v.) on rat vascular permeability, assessed by the radiolabelled human serum albumin leakage technique in the heart, kidney, liver and lung 4 h after challenge. An increased vascular permeability in cardiac, renal, hepatic and pulmonary tissues after challenge was determined. The albumin leakage observed in all these organs could be prevented by the selective inducible nitric oxide synthase inhibitor, N-(8-(aminomethyl)benzyl)-acetamidine (1400W; 0.2–1 mg kg−1, s.c.) administered concurrently with LPS. Thus, H. pylori LPS can provoke a microvascular inflammatory response in the rat cardiac, renal, hepatic and pulmonary tissues, actions mediated through the activation of the inducible nitric oxide synhase isoenzyme.  相似文献   

3.
红花黄色素对新生鼠缺氧后一氧化氮合酶表达的影响   总被引:3,自引:0,他引:3  
目的:观察红花黄色素对缺氧后脑内诱生型一氧化氮合酶(iNOS)、神经原型一氧化氮合酶(nNOS)及内皮型一氧化氮合酶(eNOS)基因表达的影响,探讨红花黄色素抗缺氧脑损伤的作用.方法:采用SD新生鼠缺氧模型,于缺氧前30 min腹腔注射红花黄色素生药7g/kg,缺氧40 min后复氧48 h,提取脑组织总RNA,应用RT-PCR技术检测三种NOS mRNA的表达量.结果:新生鼠缺氧再复氧48 h,脑内iNOS、nNOS基因表达上升(P<0.05),预先给予红花黄色素能抑制iNOS、nNOS基因的表达(P<0.05),但eNOS基因表达不受影响.结论:红花黄色素对缺氧脑损伤的保护作用与NOS基因表达有关.  相似文献   

4.
We previously showed that resveratrol (3,4',5-trihydroxystilbene) stimulates NO production and is cardioprotective in rat heart subjected to ischemia-reperfusion (I/R rat heart). We now show that in I/R rat heart, inducible nitric oxide synthase (iNOS) expression is markedly induced, while expression of endothelial nitric oxide synthase (eNOS) and nueronal nitric oxide synthase (nNOS) is unchanged. In animals preconditioned with resveratrol (0.5 to 1 mg/kg body wt), I/R-induced iNOS induction is abrogated; however, expression of eNOS and nNOS is greatly upregulated. The protective effects of resveratrol on I/R rat heart include reduced rhythm disturbances, reduced cardiac infarct size, and decreased plasma levels of lactate dehydrogenase (LDH) and creatine kinase (CK). Among these, the reductions in LDH/CK levels and infarct size are NO-dependent as the coadministration of N(omega)-nitro-L-arginine methyl ester (L-NAME, 1 mg/kg body wt) with resveratrol abolishes the resveratrol effect. In contrast, the reductions in the severity of ventricular arrhythmia and mortality rate are not affected by L-NAME coadministration, suggesting that a NO-independent mechanism is involved.  相似文献   

5.
The present study was undertaken to investigate the role of inducible nitric oxide synthase in a rat model of persistent pain. The effects of L-N6 (1-iminoethyl) lysine (L-NIL), a relatively potent and relatively selective inhibitor of inducible nitric oxide synthase, were investigated in carrageenan induced hyperalgesia L-NIL (0.1 microMole) injected intraplantar or intrathecal markedly enhanced carrageenan induced hyperalgesia. These effects were reversed during the third hour by co-administration of L-arginine (900 mg/kg i.p.) but not D-arginine. Methylene blue (MB), a soluble guanylate cyclase inhibitor, administered intrathecally (0.1 microg) had no effect on L-NIL potentiation of carrageenan hyperalgesia but abolished antinociception induced by L-arginine. Obtained results suggest that nitric oxide derived from inducible nitric oxide synthase play an inhibitory role in carrageenan produced hyperalgesia in rat.  相似文献   

6.
Nuclear factor-kappaB (NF-kappaB) plays a key role in regulating expression of several genes involved in the pathophysiology of endotoxic shock. We investigated whether in vivo introduction of synthetic double-stranded DNA with high affinity for the NF-kappaB binding site could block expression of genes mediating pulmonary vascular permeation and thereby provide effective therapy for septic lung failure. Endotoxic shock was induced by an intravenous injection of 10 mg/kg Escherichia coli endotoxin in mice. We introduced NF-kappaB decoy oligodeoxynucleotide (ODN) in vivo 1 h after endotoxic shock by using a gene transfer kit. At 10 h, blood samples were collected for measurement of histamine and for blood-gas analysis. Gene and protein expression levels of target molecules were determined by means of Northern and Western blot analyses, respectively. The transpulmonary flux of (125)I-labeled albumin was used as an index of lung vascular permeability. Administration of endotoxin caused marked increases in plasma histamine and gene and protein expressions of histidine decarboxylase, histamine H(1) receptors, and inducible nitric oxide synthase in lung tissues. Elevated lung vascular permeability was also found. Blood-gas analysis showed concurrent decreases in arterial Po(2), Pco(2), and pH. All of these events induced by endotoxin were significantly inhibited by transfection of NF-kappaB decoy ODN but not by its mutated (scrambled) form (used as a control). Our results indicate for the first time the potential usefulness of NF-kappaB decoy ODN for gene therapy of endotoxic shock.  相似文献   

7.
In the present study, we investigated the effects of the nitric oxide (NO) synthase inhibitor N(G)-nitro-L-arginine-methyl ester (L-NAME) on tissue injury or cytotoxicity caused by endotoxin challenge by assaying lactate dehydrogenase (LDH) isozymes and cell viability in J774A.1 cells. In mice treated with L-NAME (10 mg kg(-1), i.v.), the activity of LDH in serum 18 h after endotoxin (6 mg kg(-1), i.p.) injection was not significantly different from that in mice treated with endotoxin alone. Mice injected with endotoxin exhibited leakage of LDH isozymes 3 and 5, but L-NAME did not protect against endotoxin-induced acute leakage of LDH isozymes. Treatment with L-NAME (10-1000 microM) significantly inhibited NO generation by endotoxin (1 microg ml(-1))-activated J774A.1 cells. However, L-NAME (10-1000 microM) did not affect endotoxin-induced cytotoxicity in J774A.1 cells. These findings suggested that endotoxin-induced NO formation may not contribute to tissue injury or cytotoxicity caused by endotoxin.  相似文献   

8.
An increased expression of inducible nitric oxide synthase (iNOS) has been observed in the inflamed human gastric mucosa as well as in some tumors. This observation suggests a pathobiological role of elevated NO production. The purpose of this study was to compare the immunohistochemical iNOS expression in the different kinds of gastritis before and after the eradication of Helicobacter pylori. We performed iNOS and H. pylori immunohistochemical staining and counted iNOS positive cells. We detected elevated expression of iNOS around sites infected with H. pylori. iNOS expression in chemical gastritis was strongly elevated in mucosal glands. After treatment, we found a significant difference in iNOS expression in patients with classical H. pylori-induced antrum predominant gastritis and in patients with active autoimmune gastritis. In the special case of progressed gastritis with intestinal metaplasia we found persistence of intestinal metaplasia, and we could not find a significant difference in the number of positive iNOS cells before and after treatment. The persistence of IM as a possibly precancerous lesion is probably at least in the antrum a source of continuous iNOS induction even after H. pylori eradication.  相似文献   

9.
The existence of an inducible mitochondrial nitric oxide synthase has been recently related to the nitrosative/oxidative damage and mitochondrial dysfunction that occurs during endotoxemia. Melatonin inhibits both inducible nitric oxide synthase and inducible mitochondrial nitric oxide synthase activities, a finding related to the antiseptic properties of the indoleamine. Hence, we examined the changes in inducible nitric oxide synthase/inducible mitochondrial nitric oxide synthase expression and activity, bioenergetics and oxidative stress in heart mitochondria following cecal ligation and puncture-induced sepsis in wild-type (iNOS(+/+)) and inducible nitric oxide synthase-deficient (iNOS(-/-)) mice. We also evaluated whether melatonin reduces the expression of inducible nitric oxide synthase/inducible mitochondrial nitric oxide synthase, and whether this inhibition improves mitochondrial function in this experimental paradigm. The results show that cecal ligation and puncture induced an increase of inducible mitochondrial nitric oxide synthase in iNOS(+/+) mice that was accompanied by oxidative stress, respiratory chain impairment, and reduced ATP production, although the ATPase activity remained unchanged. Real-time PCR analysis showed that induction of inducible nitric oxide synthase during sepsis was related to the increase of inducible mitochondrial nitric oxide synthase activity, as both inducible nitric oxide synthase and inducible mitochondrial nitric oxide synthase were absent in iNOS(-/-) mice. The induction of inducible mitochondrial nitric oxide synthase was associated with mitochondrial dysfunction, because heart mitochondria from iNOS(-/-) mice were unaffected during sepsis. Melatonin treatment blunted sepsis-induced inducible nitric oxide synthase/inducible mitochondrial nitric oxide synthase isoforms, prevented the impairment of mitochondrial homeostasis under sepsis, and restored ATP production. These properties of melatonin should be considered in clinical sepsis.  相似文献   

10.
Macrophages activated by exposure to cytokines and/or to endotoxin produce nitric oxide (NO.), a free radical that is a mediator of the host response to infection. Activation induces the expression of nitric oxide synthase, the enzyme that catalyzes formation of NO. from L-arginine and molecular oxygen. We report the cloning of a cDNA encoding the inducible nitric oxide synthase from a murine macrophage cell line, RAW264.7, exposed to interferon-gamma and lipopolysaccharide. Oocytes injected with mRNA transcribed from this cDNA demonstrate arginine-dependent production of nitrite, a stable metabolite of NO.. Nitric production is blocked by the enzyme inhibitor, NG-monomethylarginine, and is independent of calcium/calmodulin. RAW264.7 cells demonstrate rapid accumulation of the nitric oxide synthase-encoding mRNAs upon activation. Comparison of the deduced amino acid sequence to the calcium/calmodulin-dependent nitric oxide synthase previously purified (Bredt, D. S., and Synder, S.H. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 682-685) and cloned (Bredt, D. S., Hwang, P. M., Glatt, C. E., Lowenstein, C., Reed, R. R., and Synder, S. H. (1991) nature 351, 714-718) from rat brain identifies shared binding sites for the cofactors NADPH and flavins in the C-terminal half of both proteins and an additional conserved region near the N terminus that may recognize L-arginine and/or contribute to the active site.  相似文献   

11.
Nitric oxide has been shown to be beneficial for gastric ulcer healing. We determined the relative effects of endothelial and inducible nitric oxide synthases on gastric ulcer healing in rats. Ulcers were induced by serosal application of acetic acid. Ulcer severity, angiogenesis, and nitric oxide synthase expression were assessed 3-10 days later. The effects of inhibitors of nitric oxide synthase were also examined. Inducible nitric oxide synthase mRNA was only detected in ulcerated tissue (maximal at day 3), whereas the endothelial isoform mRNA was detected in normal tissue and increased during ulcer healing. Inducible nitric oxide synthase was expressed in inflammatory cells in the ulcer bed, whereas endothelial nitric oxide synthase was found in the vascular endothelium and in some mucosal cells in both normal and ulcerated tissues. Angiogenesis changed in parallel with endothelial nitric oxide synthase expression. N(6)-(iminoethyl)-L-lysine did not affect angiogenesis or ulcer healing, while N(G)-nitro-L-arginine methyl ester significantly reduced both. In conclusion, endothelial nitric oxide synthase, but not the inducible isoform, plays a significant role in gastric ulcer healing.  相似文献   

12.
《Life sciences》1995,57(13):PL147-PL152
We investigated the effects of nitric oxide (NO) synthesis inhibition on mortality rate and TNFa serum levels in rats inoculated with E. Coli endotoxin (30 mg/kg i.V.). Pre-treatment of endotoxemic rats with NG-monomethyl-L-arginine (L-NMMA), an inhibitor of NO synthesis by both the constitutive and the inducible isoforms of the NO synthase, did not change the mortality rate but significantly reduced TNFa serum levels. By contrast, administration of aminoguanidine, a more specific inhibitor of the inducible NO synthase, did not modifiy serum TNFα. These results suggest that, in E. Coli endotoxemic rats, NO synthetized by the constitutive isoform of the NO synthase positively modulates TNFa synthesis.  相似文献   

13.
We have administered aminoguanidine, a relatively specific inhibitor of inducible nitric oxide synthase, and N-nitro-L-arginine methyl ester (L-NAME), an unspecific nitric oxide synthase inhibitor, to rats made febrile with the gram-positive pyrogen, muramyl dipeptide and gram-negative pyrogen, lipopolysaccharide. Sprague-Dawley rats, housed individually at approximately 25 degrees C with a 12:12 h light:dark cycle (lights on 0700 hours), were injected (at 0900 hours) intraperitoneally with 50 mg/kg aminoguanidine, 25 mg/kg or 50 mg/kg L-NAME, and intramuscularly with 500 microg/kg muramyl dipeptide or 100 microg/kg lipopolysaccharide. Pyrogen injections were spaced at least 14 days apart. Body temperature was measured throughout the study in unrestrained animals using radio-telemetry. Neither muramyl dipeptide nor lipopolysaccharide-induced fevers were affected by aminoguanidine. However, L-NAME administration inhibited muramyl dipeptide and lipopolysaccharide-induced fevers, but only for the 1st 2-4 h of the fevers (two-way ANOVA, P<0.05). After the initial inhibition, lipopolysaccharide fevers developed normally. Therefore, constitutively expressed nitric oxide synthase appears to be involved in the initial phases of fever genesis of gram-negative and gram-positive fevers in rats. On the other hand, inducible nitric oxide synthase appears not to play a role in these fevers.  相似文献   

14.
The biotherapeutic agent Saccharomyces boulardii has been shown to inhibit castor oil-induced diarrhoea in rats in a dose-response fashion, and one of the suggested mechanisms of action included involvement of the nitric oxide pathway. The present study was designed to address this mechanism of action by firstly measuring the effects of S. boulardii on the inducible nitric oxide synthase (iNOS) isoform activity in vitro. Second, the effects of S. boulardii on the increase in colonic citrulline level associated with castor oil treatment were examined. In vitro, S. boulardii showed a dose-dependent inhibition of iNOS activity with an IC50 of 0.89 mg/ml. In the rat diarrhoea model, the antidiarrhoeal effect of S. boulardii was confirmed using a single oral dose of 12 x 10(10) CFU/kg (viable cells). In this model, castor oil significantly elevated citrulline level from 2526+/-164 to 3501+/-193 nmol/g in the colon. When the rats were treated with the same antidiarrhoeal single dose of S. boulardii, no increase in citrulline level was observed. Moreover, the iNOS inhibitor 1400 W at 10 mg/kg and the inhibitor of iNOS expression dexamethasone at 1 mg/kg, administered subcutaneously, blocked the citrulline production induced by the laxative. Taken together, these findings confirm the involvement of inhibition of the inducible isoform of nitric oxide synthase in the mechanism of action of S. boulardii in diarrhoea.  相似文献   

15.
16.
Elevated levels of plasma homocysteine (Hcy) called hyperhomocysteinemia (HHcy) have been implicated in inflammation and remodeling in intestinal vasculature, and HHcy is also known to aggravate the pathogenesis of inflammatory bowel disease (IBD). Interestingly, colon is the pivotal site that regulates Hcy levels in the plasma. We hypothesize that HHcy decreases intestinal motility through matrix metalloproteinase-9 (MMP-9)-induced intestinal remodeling leading to constipation. To verify this hypothesis, we used C57BL/6J or wild-type (WT), cystathionine β-synthase (CBS(+/-)), MMP-9(-/-), and MMP-9(-/-) + Hcy mice. Intestinal motility was assessed by barium meal studies and daily feces output. Plasma Hcy levels were measured by HPLC. Expression of ICAM-1, inducible nitric oxide synthase, MMP-9, and tissue inhibitors of MMPs was studied by Western blot and immunohistochemistry. Reactive oxygen species (ROS) including super oxide were measured by the Invitrogen molecular probe method. Tissue nitric oxide levels were assessed by a commercially available kit. Plasma Hcy levels in the treated MMP-9 group mice were comparable to CBS(+/-) mice. Barium meal studies suggest that intestinal motility is significantly decreased in CBS(+/-) mice compared with other groups. Fecal output-to-body weight ratio was significantly reduced in CBS(+/-) mice compared with other groups. There was significant upregulation of MMP-9, iNOS, and ICAM-1 expression in the colon from CBS(+/-) mice compared with WT mice. Levels of ROS, superoxide, and inducible nitric oxide were elevated in the CBS(+/-) mice compared with other groups. Results suggest that HHcy decreases intestinal motility due to MMP-9-induced intestinal remodeling leading to constipation.  相似文献   

17.
18.
19.
20.
Kamerman P  Fuller A 《Life sciences》2000,67(21):2639-2645
We investigated the effect of N-nitro-L-arginine methyl ester (L-NAME), an unspecific nitric oxide synthase (NOS) inhibitor, and aminoguanidine, a relatively selective inhibitor of the inducible NOS enzyme, on both gram-negative lipopolysaccharide (LPS) and gram-positive muramyl dipeptide (MDP) fever in guinea pigs. Intraperitoneal injection of either 10 mg/kg L-NAME or 25 mg/kg aminoguanidine inhibited the febrile response to an intramuscular injection of 50 microg/kg MDP. However, LPS fever (20 microg/kg) was inhibited only by L-NAME. The development of LPS fever may therefore occur independently of the synthesis of nitric oxide by the inducible NOS enzyme, while MDP fever may involve synthesis of nitric oxide by both the inducible and the constitutively expressed NOS enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号