首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As replacement of Thr(11) of omega-conotoxin MVIIC with Ala significantly reduced the affinity for both N- and P/Q-type calcium channels, we examined the effect of substitution at this position with other residues. Binding assays using rat cerebellar P2 membranes showed that the affinity is in the order of Leu>Val, aminobutyric acid, Thr>Asn&z.Gt;Ser, Ala, Asp, Phe, Tyr for N-type channels and Thr>Leu, Val, aminobutyric acid, Asn, Ser>Ala&z.Gt;Asp, Phe, Tyr for P/Q-type channels, suggesting that aliphatic amino acids with longer side chains are favorable for block of N-type channels. The effects of substitution were examined electrophysiologically in BHK cells expressing N-type Ca2+ channels. Inhibition of Ba2+ current by the analogs did not completely correlate with binding affinity, although binding to BHK cells was comparable to rat cerebellar membranes.  相似文献   

2.
Sasaki T  Kobayashi K  Kohno T  Sato K 《FEBS letters》2000,466(1):125-129
Omega-conotoxin MVIIC (MVIIC) blocks P/Q-type calcium channels with high affinity and N-type calcium channels with low affinity, while the highly homologous omega-conotoxin MVIIA blocks only N-type calcium channels. We wished to obtain MVIIC analogues more selective for P/Q-type calcium channels than MVIIC to elucidate structural differences among the channels, which discriminate the omega-conotoxins. To prepare a number of MVIIC analogues efficiently, we developed a combinatorial method which includes a random air oxidation step. Forty-seven analogues were prepared in six runs and some of them exhibited higher selectivity for P/Q-type calcium channels than MVIIC in binding assays.  相似文献   

3.
The effects of chirality inversions of Tyr13 on the structure-activity relationships of omega-conotoxins MVIIA and MVIIC were examined using a combination of 2D 1H NMR spectroscopy and radioligand binding studies specific for N-type ([125I]GVIA) and P/Q-type ([125I]MVIIC) voltage-sensitive calcium channels (VSCCs). A comparison of the Halpha secondary shifts suggests that the structural scaffolds of MVIIA and MVIIC are little altered by the L- to D- inversion of Tyr13; however, the conformations of several residues in loop 2 (residues 9-14) are significantly altered. The experimentally determined 3D structure of [D-Y13]MVIIA indicates that the positions of key residues in this loop which are involved in the binding of MVIIA to the N-type VSCC (Tyr13, Arg10, and Leu11) are so changed as to render the peptide unrecognizable by its cognate ion channel. The large reduction in potency observed for MVIIA and MVIIC at both N-type and P/Q-type VSCCs is likely to stem from the change in conformation and orientation of loop 2.  相似文献   

4.
A benzothiazole-derived compound (4a) designed to mimic the C(alpha)-C(beta) bond vectors and terminal functionalities of Lys2, Tyr13 and Arg17 in omega-conotoxin GVIA was synthesised, together with analogues (4b-d), which had each side-chain mimic systematically truncated or eliminated. The affinity of these compounds for rat brain N-type and P/Q-type voltage gated calcium channels (VGCCs) was determined. In terms of N-type channel affinity and selectivity, two of these compounds (4a and 4d) were found to be highly promising, first generation mimetics of omega-conotoxin. The fully functionalised mimetic (4a) showed low microM binding affinity to N-type VGCCs (IC(50)=1.9 microM) and greater than 20-fold selectivity for this channel sub-type over P/Q-type VGCCs, whereas the mimetic in which the guanidine-type side chain was truncated back to an amine (4d, IC(50)= 4.1 microM) showed a greater than 25-fold selectivity for the N-type channel.  相似文献   

5.
The omega-conotoxins are a set of structurally related, four-loop, six cysteine containing peptides, that have a range of selectivities for different subtypes of the voltage-sensitive calcium channel (VSCC). To investigate the basis of the selectivity displayed by these peptides, we have studied the binding affinities of two naturally occurring omega-conotoxins, MVIIA and MVIIC and a series of 14 MVIIA/MVIIC loop hybrids using radioligand binding assays for N and P/Q-type Ca2+channels in rat brain tissue. A selectivity profile was developed from the ratio of relative potencies at N-type VSCCs (using [125I]GVIA radioligand binding assays) and P/Q-type VSCCs (using [125I]MVIIC radioligand binding assays). In these peptides, loops 2 and 4 make the greatest contribution to VSCC subtype selectivity, while the effects of loops 1 and 3 are negligible. Peptides with homogenous combinations of loop 2 and 4 display clear selectivity preferences, while those with heterogeneous combinations of loops 2 and 4 are less discriminatory. 1H NMR spectroscopy revealed that the global folds of MVIIA, MVIIC and the 14 loop hybrid peptides were similar; however, several differences in local structure were identified. Based on the binding data and the 3D structures of MVIIA, GVIA and MVIIC, we have developed a preliminary pharmacophore based on the omega-conotoxin residues most likely to interact with the N-type VSCC.  相似文献   

6.
Neuropeptide Y (NPY) is an important regulator of energy balance in mammals through its orexigenic, antithermogenic, and insulin secretagogue actions. We investigated the regulation of endogenous NPY release from rat hypothalamic slices by NPY receptor ligands and calcium channel antagonists. High-potassium stimulation (60 mM) of the slices produced a calcium-dependent threefold increase in NPY release above basal release. The Y2 receptor agonists NPY(13-36) and N-acetyl[Leu28,Leu31]NPY(24-36), the Y4 agonist rat pancreatic polypeptide (rPP), and the Y4/Y5 agonist human pancreatic polypeptide (hPP) significantly reduced both basal and stimulated NPY release. NPY(13-36)-induced reduction of NPY release could be partially prevented in the presence of the weak Y2 antagonist T4-[NPY(33-36)]4, whereas the hPP- and rPP-induced inhibition of release was not affected by the Y5 antagonist CGP71683A or the Y1 antagonist BIBP3226. The selective Y1, Y2, and Y5 antagonists had no effect on either basal or potassium-stimulated release when administered alone. The calcium channel inhibitors omega-conotoxin GVIA (N-type), omega-agatoxin TK (P/Q-type), and omega-conotoxin MVIIC (Q-type) all significantly inhibited potassium-stimulated NPY release, without any effect on basal release, whereas nifedipine had no effect on either basal or stimulated release. Addition of both omega-conotoxin GVIA and omega-agatoxin TK together completely inhibited the potassium-stimulated release. In conclusion, we have demonstrated that NPY release from hypothalamic slices is calcium-dependent, involving N-, P-, and Q-type calcium channels. NPY release is also inhibited by Y2 agonists and rPP/hPP, suggesting that Y2 and Y4 receptors may act as autoreceptors on NPY-containing nerve terminals.  相似文献   

7.
The presence of high voltage-activated calcium channels in the rat pineal gland is well known. However, their role in pineal metabolism is not completely understood and is even controversial. Better to understand this matter, we investigated the effects of L-, N- or P/Q-type calcium channel blockers (nifedipine, omega-conotoxin GVIA, omega-agatoxin IVA, respectively) on melatonin content and arylalkylamine-N-acetyltransferase activity of denervated rat pineal glands kept for 48 h in culture and stimulated with norepinephrine. Melatonin was measured by high performance liquid chromatography with electrochemical detection and arylalkylamine-N-acetyltransferase activity was quantified by radiometric assay. Pre-incubation with any of these high voltage-activated calcium channel blockers reduced the melatonin production induced by norepinephrine although arylalkylamine-N-acetyltransferase activity was reduced only by the N-type calcium channel antagonist, omega-conotoxin GVIA. The results indicate that calcium influx through L-, N- or P/Q-type of high voltage-activated calcium channels is necessary for the full expression of the metabolic process leading to melatonin synthesis in the rat pineal glands. However, the mechanisms involved in this process are different for the L- or P/Q- and N-type calcium channels.  相似文献   

8.
Contributions of L-, N-, and P/Q-type voltage-operated Ca2+ channels to two responses of bovine adrenal chromaffin cells have been studied using the nonreceptor stimulus K+ depolarization. Tyrosine hydroxylase activity and catecholamine secretion were both increased by K+ over a similar concentration range and in a Ca(2+)-dependent manner. At a submaximal concentration of 20 mM K+, tyrosine hydroxylase activation was reduced by nitrendipine but unaffected individually by (+/-)-Bay K 8644, omega-conotoxin GVIA, omega-agatoxin IVA, and omega-conotoxin MVIIC. It was fully blocked by combined inhibition of L-, N-, and P/Q-type channels. With a maximal concentration of 50 mM K+, tyrosine hydroxylase activation was unaffected by nitrendipine as well as by each of the other drugs on its own; however, it was reduced by 71 % by combined inhibition of L-, N-, and P/Q-type channels. In contrast, catecholamine secretion with both 20 and 50 mM K+ was enhanced by (+/-)-Bay K 8644, partially inhibited by nitrendipine and omega-conotoxin MVIIC, and completely blocked by a combination of antagonists for L-, N-, and P/Q-type channels. The results show that Ca2+ entry through voltage-operated Ca2+ channels can differentially regulate distinct chromaffin cell responses and that this is an intrinsic property of the mechanisms by which Ca2+ entry activates these responses. It is not dependent on the parallel activation of other signaling events by receptors.  相似文献   

9.
Inhibition of N- (Cav2.2) and P/Q-type (Cav2.1) calcium channels by G-proteins contribute importantly to presynaptic inhibition as well as to the effects of opiates and cannabinoids. Accordingly, elucidating the molecular mechanisms underlying G-protein inhibition of voltage-gated calcium channels has been a major research focus. So far, inhibition is thought to result from the interaction of multiple proposed sites with the Gbetagamma complex (Gbetagamma). Far less is known about the important interaction sites on Gbetagamma itself. Here, we developed a novel electrophysiological paradigm, "compound-state willing-reluctant analysis," to describe Gbetagamma interaction with N- and P/Q-type channels, and to provide a sensitive and efficient screen for changes in modulatory behavior over a broad range of potentials. The analysis confirmed that the apparent (un)binding kinetics of Gbetagamma with N-type are twofold slower than with P/Q-type at the voltage extremes, and emphasized that the kinetic discrepancy increases up to ten-fold in the mid-voltage range. To further investigate apparent differences in modulatory behavior, we screened both channels for the effects of single point alanine mutations within four regions of Gbeta1, at residues known to interact with Galpha. These residues might thereby be expected to interact with channel effectors. Of eight mutations studied, six affected G-protein modulation of both N- and P/Q-type channels to varying degrees, and one had no appreciable effect on either channel. The remaining mutation was remarkable for selective attenuation of effects on P/Q-, but not N-type channels. Surprisingly, this mutation decreased the (un)binding rates without affecting its overall affinity. The latter mutation suggests that the binding surface on Gbetagamma for N- and P/Q-type channels are different. Also, the manner in which this last mutation affected P/Q-type channels suggests that some residues may be important for "steering" or guiding the protein into the binding pocket, whereas others are important for simply binding to the channel.  相似文献   

10.
Although an axoplasmic Ca(2+) increase is associated with an exocytotic acetylcholine (ACh) release from the parasympathetic postganglionic nerve endings, the role of voltage-dependent Ca(2+) channels in ACh release in the mammalian cardiac parasympathetic nerve is not clearly understood. Using a cardiac microdialysis technique, we examined the effects of Ca(2+) channel antagonists on vagal nerve stimulation- and ischemia-induced myocardial interstitial ACh releases in anesthetized cats. The vagal stimulation-induced ACh release [22.4 nM (SD 10.6), n = 7] was significantly attenuated by local administration of an N-type Ca(2+) channel antagonist omega-conotoxin GVIA [11.7 nM (SD 5.8), n = 7, P = 0.0054], or a P/Q-type Ca(2+) channel antagonist omega-conotoxin MVIIC [3.8 nM (SD 2.3), n = 6, P = 0.0002] but not by local administration of an L-type Ca(2+) channel antagonist verapamil [23.5 nM (SD 6.0), n = 5, P = 0.758]. The ischemia-induced myocardial interstitial ACh release [15.0 nM (SD 8.3), n = 8] was not attenuated by local administration of the L-, N-, or P/Q-type Ca(2+) channel antagonists, by inhibition of Na(+)/Ca(2+) exchange, or by blockade of inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] receptor but was significantly suppressed by local administration of gadolinium [2.8 nM (SD 2.6), n = 6, P = 0.0283]. In conclusion, stimulation-induced ACh release from the cardiac postganglionic nerves depends on the N- and P/Q-type Ca(2+) channels (with a dominance of P/Q-type) but probably not on the L-type Ca(2+) channels in cats. In contrast, ischemia-induced ACh release depends on nonselective cation channels or cation-selective stretch activated channels but not on L-, N-, or P/Q type Ca(2+) channels, Na(+)/Ca(2+) exchange, or Ins(1,4,5)P(3) receptor-mediated pathway.  相似文献   

11.
We previously reported a dual kinetics of Ca2+ transport by the distal tubule luminal membrane of the kidney, suggesting the presence of several types of channels. To better characterize these channels, we examined the effects of specific inhibitors (i.e., diltiazem, an L-type channel; omega-conotoxin MVIIC, a P/Q-type channel; and mibefradil, a T-type channel antagonist) on 0.1 and 0.5 mM Ca2+ uptake by rabbit nephron luminal membranes. None of these inhibitors influenced Ca2+ uptake by the proximal tubule membranes. In contrast, in the absence of sodium (Na+), the three channel antagonists decreased Ca2+ transport by the distal membranes, and their action depended on the substrate concentrations: 50 microM diltiazem decreased 0.1 mM Ca2+ uptake from 0.65 +/- 0.07 to 0.48 +/- 0.06 pmol. microg-1.10 s-1 (P < 0.05) without influencing 0.5 mM Ca2+ transport, whereas 100 nM omega-conotoxin MVIIC decreased 0.5 mM Ca2+ uptake from 1.02 +/- 0.05 to 0.90 +/- 0.05 pmol. microg-1.10 s-1 (P < 0.02) and 1 microM mibefradil decreased it from 1.13 +/- 0.09 to 0.94 +/- 0.09 pmol. microg-1.10 s-1 (P < 0.05); the latter two inhibitors left 0.1 mM Ca2+ transport unchanged. Diltiazem decreased the Vmax of the high-affinity channels, whereas omega-conotoxin MVIIC and mibefradil influenced exclusively the Vmax of the low-affinity channels. These results not only confirm that the distal luminal membrane is the site of Ca2+ channels, but they suggest that these channels belong to the L, P/Q, and T types.  相似文献   

12.
Rat brain hypothalami were exposed to various depolarizing stimuli and vasoactive intestinal polypeptide-like immunoreactivity (VIP-LI) release was measured by means of a radioimmunoassay (RIA) procedure. Under conditions of noradrenergic blockade, exposure to high K(+) (40-100 mM) produced dose-dependent increases in the VIP-LI release in a Ca(2+)-dependent manner. Exposure to veratridine (3-100 microM) also induced concentration-dependent increases in VIP-LI release, an effect that was Ca(2+)-dependent and tetrodotoxin (TTX)-sensitive. Specific ligands for the L, N, and P/Q-type voltage-operated Ca(2+) channels (VOCCs) were used to determine which channel subtypes were involved in the K(+)-evoked VIP-LI release. The L-type VOCC ligand, nifedipine (10 microM), had no effect on release. In contrast, the N-type VOCC blocker, omega-conotoxin GVIA (omega-CgTx GVIA) (0.1-100 nM), markedly reduced the K(+)-evoked response, with maximal inhibition of approximately 60+/-8%. omega-Agatoxin IVA (omega-Aga IVA) (1-50 nM), which binds P-type and, at high doses, also Q-type VOCCs, produced dose-dependent inhibition of up to 25+/-3%, while the maximal inhibition observed with the non-selective VOCCs ligand, omega-conotoxin MVIIC (omega-CmTx MVIIC) (1 nM-3 microM), amounted to 85+/-8%. These findings indicate that N and P-type Ca(2+) channels play predominant roles in the high K(+)-evoked release of VIP-LI from the rat hypothalamus.  相似文献   

13.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

14.
Neurotransmitter release from preganglionic parasympathetic neurons is resistant to inhibition by selective antagonists of L-, N-, P/Q-, R-, and T-type calcium channels. In this study, the effects of different omega-conotoxins from genus Conus were investigated on current flow-through cloned voltage-sensitive calcium channels expressed in Xenopus oocytes and nerve-evoked transmitter release from the intact preganglionic cholinergic nerves innervating the rat submandibular ganglia. Our results indicate that omega-conotoxin CVID from Conus catus inhibits a pharmacologically distinct voltage-sensitive calcium channel involved in neurotransmitter release, whereas omega-conotoxin MVIIA had no effect. omega-Conotoxin CVID and MVIIA inhibited depolarization-activated Ba(2+) currents recorded from oocytes expressing N-type but not L- or R-type calcium channels. High affinity inhibition of the CVID-sensitive calcium channel was enhanced when position 10 of the omega-conotoxin was occupied by the smaller residue lysine as found in CVID instead of an arginine as found in MVIIA. Given that relatively small differences in the sequence of the N-type calcium channel alpha(1B) subunit can influence omega-conotoxin access (Feng, Z. P., Hamid, J., Doering, C., Bosey, G. M., Snutch, T. P., and Zamponi, G. W. (2001) J. Biol. Chem. 276, 15728-15735), it is likely that the calcium channel in preganglionic nerve terminals targeted by CVID is a N-type (Ca(v)2.2) calcium channel variant.  相似文献   

15.
To elucidate the types of voltage-dependent Ca(2+) channels controlling ACh and catecholamine releases in the in vivo adrenal medulla, we implanted microdialysis probes in the left adrenal medulla of anesthetized rats and investigated the effects of Ca(2+) channel antagonists on ACh, norepinephrine, and epinephrine releases induced by nerve stimulation. The dialysis probes were perfused with Ringer solution containing a cholinesterase inhibitor, neostigmine. The left splanchnic nerves were electrically stimulated at 2 and 4 Hz before and after intravenous administration of Ca(2+) channel antagonists. omega-Conotoxin GVIA (an N-type Ca(2+) channel antagonist, 10 microg/kg) inhibited ACh release at 2 and 4 Hz by approximately 40%, norepinephrine release at 4 Hz by approximately 50%, and epinephrine release at 2 and 4 Hz by approximately 45%. A fivefold higher dose of omega-conotoxin GVIA (50 microg/kg) did not further inhibit these releases. omega-Conotoxin MVIIC (a P/Q-type Ca(2+) channel antagonist, 50 microg/kg) inhibited ACh and epinephrine releases at 4 Hz by approximately 30%. Combined omega-conotoxin GVIA (50 microg/kg) and MVIIC (250 microg/kg) inhibited ACh release at 2 and 4 Hz by approximately 70% and norepinephrine and epinephrine releases at 2 and 4 Hz by approximately 80%. Nifedipine (an L-type Ca(2+) channel antagonist, 300 and 900 microg/kg) did not change ACh release at 2 and 4 Hz; however, nifedipine (300 microg/kg) inhibited epinephrine release at 4 Hz by 20%, and nifedipine (900 microg/kg) inhibited norepinephrine and epinephrine releases at 4 Hz by 30%. In conclusion, both N- and P/Q-type Ca(2+) channels control ACh release on preganglionic splanchnic nerve endings while L-type Ca(2+) channels do not. L-type Ca(2+) channels are involved in norepinephrine and epinephrine releases on chromaffin cells.  相似文献   

16.
Incubation of bovine adrenal chromaffin cells in high K+ (38 mM) during 24-48 h enhanced 2.5 to five times the expression of SNAP-25 protein and mRNA, respectively. This increase was reduced 86% by furnidipine (an L-type Ca2+ channel blocker) but was unaffected by either omega-conotoxin GVIA (an N-type Ca2+ channel blocker) or -agatoxin IVA (a P/Q-type Ca2+ channel blocker). Combined blockade of N and P/Q channels with omega-conotoxin MVIIC did, however, block by 76% the protein expression. The inhibitory effects of fumidipine were partially reversed when the external Ca2+ concentration was raised from 1.6 to 5 mM. These findings, together with the fact that nicotinic receptor activation or Ca2+ release from internal stores also enhanced SNAP-25 protein expression, suggest that an increment of cytosolic Ca2+ concentration ([Ca2+]), rather than its source or Ca2+ entry pathway, is the critical signal to induce the protein expression. The greater coupling between L-type Ca2+ channels and protein expression might be due to two facts: (a) L channels contributed 50% to the global [Ca2+]i rise induced by 38 mM K+ in indo-1-loaded chromaffin cells and (b) L channels undergo less inactivation than N or P/Q channels on sustained stimulation of these cells.  相似文献   

17.
Due to their selectivity towards voltage-sensitive calcium channels (VSCCs) omega-conotoxins are being exploited as a new class of therapeutics in pain management and may also have potential application in ischaemic brain injury. Here, the structure-activity relationships (SARs) of several omega-conotoxins including GVIA, MVIIA, CVID and MVIIC are explored. In addition, the three-dimensional structures of these omega-conotoxins and some structurally related peptides that form the cysteine knot are compared, and the effects of the solution environment on structure discussed. The diversity of binding and functional assays used to measure omega-conotoxin potencies at the N-type VSCC warranted a re-evaluation of the relationship between these assays. With one exception, [A22]-GVIA, this analysis revealed a linear correlation between functional (peripheral N-type VSCCs) and radioligand binding assays (central N-type VSCCs) for the omega-conotoxins and analogues that were tested over three studies. The binding and functional results of several studies are compared in an attempt to identify and distinguish those residues that are important in omega-conotoxin function as opposed to those that form part of the structural scaffold. Further to determining what omega-conotoxin residues are important for VSCC binding, the range of possible interactions between the ligand and channel are considered and the factors that influence the selectivity of MVIIA, GVIA and CVID towards N-type VSCCs examined.  相似文献   

18.
The modulation of calcium channels by metabotropic glutamate receptors (mGluRs) is a key event in the fine-tuning of neurotransmitter release. Here we report that, in cerebrocortical nerve terminals of adult rats, the inhibition of glutamate release is mediated by mGluR7. In this preparation, the major component of glutamate release is supported by P/Q-type Ca2+ channels (72.7%). However, mGluR7 selectively reduced the release component that is associated with N-type Ca2+ channels (29.9%). Inhibition of P/Q channels by mGluR7 is not masked by the higher efficiency of these channels in driving glutamate release when compared with N-type channels. Thus, activation of mGluR7 failed to reduce the release associated with P/Q channels when the extracellular calcium concentration, ([Ca2+]o), was reduced from 1.3 to 0.5 mm. Through Ca2+ imaging, we show that Ca2+ channels are distributed in a heterogeneous manner in individual nerve terminals. Indeed, in this preparation, nerve terminals were observed that contain N-type (31.1%; conotoxin GVIA-sensitive) or P/Q-type (64.3%; agatoxin IVA-sensitive) channels or that were insensitive to these two toxins (4.6%). Interestingly, the great majority of the responses to l-AP4 (95.4%) were observed in nerve terminals containing N-type channels. This specific co-localization of mGluR7 and N-type Ca2+-channels could explain the failure of the receptor to inhibit the P/Q channel-associated release component and also reveal the existence of specific targeting mechanisms to localize the two proteins in the same nerve terminal subset.  相似文献   

19.
It is well known that antagonists of N-type voltage-gated calcium channels inhibit the evoked quantal release of acetylcholine in amphibian neuromuscular synapses. This, however, does not exclude the functional expression of other types of voltage-gated calcium channels in these nerve terminals. Using immunocytochemistry, we detected the expression of the alpha1A subunit of P/Q-type calcium channels (that is otherwise typical of mammalian motor nerve endings) in the frog neuromuscular junction. In addition, we demonstrated that the P/Q-type channel blocker omega-agatoxin IVA (20 nM) reduced the action potential-induced calcium transient and significantly decreased both spontaneous and evoked mediator release. Our data indicates the functional expression of P/Q-type calcium channels in the frog motor nerve ending which participate in acetylcholine release.  相似文献   

20.
Here we report the first assessment of the expression and modulation of an invertebrate alpha1 subunit homolog of mammalian presynaptic Cav2 calcium channels (N-type and P/Q-type) in mammalian cells. Our data show that molluscan channel (LCav2a) isolated from Lymnaea stagnalis is effectively membrane-targeted and electrophysiologically recordable in tsA-201 cells only when the first 44 amino acids of LCav2a are substituted for the corresponding region of rat Cav2.1. When coexpressed with rat accessory subunits, the biophysical properties of LCav2a-5'rbA resemble those of mammalian N-type calcium channels with respect to activation and inactivation, lack of pronounced calcium dependent inactivation, preferential permeation of barium ions, and cadmium block. Consistent with reports of native Lymnaea calcium currents, the LCav2a-5'rbA channel is insensitive to micromolar concentrations of omega-conotoxin GVIA and is not affected by nifedipine, thus confirming that it is not of the L-type. Interestingly, the LCav2a-5'rbA channel is almost completely and irreversibly inhibited by guanosine 5'-3-O-(thio)triphosphate but not regulated by syntaxin1, suggesting that invertebrate presynaptic calcium channels are differently modulated from their vertebrate counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号