首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lam SK  Cai Y  Hillmer S  Robinson DG  Jiang L 《Plant physiology》2008,147(4):1637-1645
We previously demonstrated that rice (Oryza sativa) SECRETORY CARRIER MEMBRANE PROTEIN1 (OsSCAMP1)-yellow fluorescent protein in transgenic tobacco (Nicotiana tabacum) Bright Yellow-2 cells locates to the plasma membrane and to motile punctate structures, which represent the trans-Golgi network/early endosome and are tubular-vesicular in nature. Here, we now show that SCAMPs are diverted to the cell plate during cytokinesis dividing Bright Yellow-2 cells. As cells progress from metaphase to cytokinesis, punctate OsSCAMP1-labeled structures begin to collect in the future division plane. Together with the internalized endosomal marker FM4-64, they then become incorporated into the cell plate as it forms and expands. This was confirmed by immunogold electron microscopy. We also monitored for the Golgi apparatus and the prevacuolar compartment (PVC)/multivesicular body. Golgi stacks tend to accumulate in the vicinity of the division plane, but the signals are clearly separate to the cell plate. The situation with the PVC (labeled by green fluorescent protein-BP-80) is not so clear. Punctate BP-80 signals are seen at the advancing periphery of the cell plate, which was confirmed by immunogold electron microscopy. Specific but weak labeling was observed in the cell plate, but no evidence for a fusion of the PVC/multivesicular body with the cell plate could be obtained. Our data, therefore, support the notion that cell plate formation is mainly a secretory process involving mass incorporation of domains of the trans-Golgi network/early endosome membrane. We regard the involvement of multivesicular late endosomes in this process to be equivocal.  相似文献   

2.
We have followed the redistribution of Golgi stacks during mitosis and cytokinesis in living tobacco BY-2 suspension culture cells by means of a green fluorescent protein-tagged soybean alpha-1,2 mannosidase, and correlated the findings to cytoskeletal rearrangements and to the redistribution of endoplasmic reticulum, mitochondria, and plastids. In preparation for cell division, when the general streaming of Golgi stacks stops, about one-third of the peripheral Golgi stacks redistributes to the perinuclear cytoplasm, the phragmosome, thereby reversing the ratio of interior to cortical Golgi from 2:3 to 3:2. During metaphase, approximately 20% of all Golgi stacks aggregate in the immediate vicinity of the mitotic spindle and a similar number becomes concentrated in an equatorial region under the plasma membrane. This latter localization, the "Golgi belt," accurately predicts the future site of cell division, and thus forms a novel marker for this region after the disassembly of the preprophase band. During telophase and cytokinesis, many Golgi stacks redistribute around the phragmoplast where the cell plate is formed. At the end of cytokinesis, the daughter cells have very similar Golgi stack densities. The sites of preferential Golgi stack localization are specific for this organelle and largely exclude mitochondria and plastids, although some mitochondria can approach the phragmoplast. This segregation of organelles is first observed in metaphase and persists until completion of cytokinesis. Maintenance of the distinct localizations does not depend on intact actin filaments or microtubules, although the mitotic spindle appears to play a major role in organizing the organelle distribution patterns. The redistribution of Golgi stacks during mitosis and cytokinesis is consistent with the hypothesis that Golgi stacks are repositioned to ensure equal partitioning between daughter cells as well as rapid cell plate assembly.  相似文献   

3.
Nagasato C  Motomura T 《Protoplasma》2002,219(3-4):140-149
Summary. The ultrastructure of mitosis and cytokinesis in Scytosiphon lomentaria (Lyngbye) Link zygotes was studied by freeze fixation and substitution. During mitosis, the nuclear envelope remained mostly intact. Spindle microtubules (MTs) from the centrosome passed through the gaps of the nuclear envelope and entered the nucleoplasm. In anaphase and telophase, two daughter chromosome masses were partially surrounded with endoplasmic reticulum. After telophase, the nuclear envelope was reconstructed and two daughter nuclei formed. Then, several large vacuoles occupied the space between the daughter nuclei. MTs from the centrosomes extended toward the mid-plane between two daughter nuclei, among the vacuoles. At that time, Golgi bodies near the centrosome actively produced many vesicles. Midway between the daughter nuclei, small globular vesicles and tubular cisternae accumulated. These vesicles derived from Golgi bodies were transported from the centrosome to the future division plane. Cytokinesis then proceeded by fusion of these vesicles, but not by a furrowing of the plasma membrane. After completion of the continuity with the plasma membrane, cell wall material was deposited between the plasma membranes. The tubular cisternae were still observed at the periphery of the newly formed septum. Microfilaments could not be observed by this procedure. We conclude that cytokinesis in the brown algae proceeds by fusion of Golgi vesicles and tubular cisternae, not by a furrowing of the plasma membrane. Received September 12, 2001 Accepted November 12, 2001  相似文献   

4.
Calcineurin is a highly conserved regulator of Ca(2+) signaling in eukaryotes. In fission yeast, calcineurin is not essential for viability but is required for cytokinesis and Cl(-) homeostasis. In a genetic screen for mutations that are synthetically lethal with calcineurin deletion, we isolated a mutant, cis1-1/apm1-1, an allele of the apm1(+) gene that encodes a homolog of the mammalian micro1A subunit of the clathrin-associated adaptor protein-1 (AP-1) complex. The cis1-1/apm1-1 mutant as well as the apm1-deleted (Deltaapm1) cells showed distinct phenotypes: temperature sensitivity; tacrolimus (FK506) sensitivity; and pleiotropic defects in cytokinesis, cell integrity, and vacuole fusion. Electron micrographs revealed that Deltaapm1 cells showed large vesicular structures associated with Golgi stacks and accumulated post-Golgi secretory vesicles. Deltaapm1 cells also showed the massive accumulation of the exocytic v-SNARE Syb1 in the Golgi/endosomes and a reduced secretion of acid phosphatase. These phenotypes observed in apm1 mutations were accentuated upon temperature up-shift and FK506 treatment. Notably, Apm1-GFP localized to the Golgi/endosomes, the spindle pole bodies, and the medial region. These findings suggest a role for Apm1 associated with the Golgi/endosome function, thereby affecting various cellular processes, including secretion, cytokinesis, vacuole fusion, and cell integrity and also suggest that calcineurin is involved in these events.  相似文献   

5.
The Golgi complex of mammalian cells is composed of cisternal stacks that function in processing and sorting of membrane and luminal proteins during transport from the site of synthesis in the endoplasmic reticulum to lysosomes, secretory vacuoles, and the cell surface. Even though exceptions are found, the Golgi stacks are usually arranged as an interconnected network in the region around the centrosome, the major organizing center for cytoplasmic microtubules. A close relation thus exists between Golgi elements and microtubules (especially the stable subpopulation enriched in detyrosinated and acetylated tubulin). After drug-induced disruption of microtubules, the Golgi stacks are disconnected from each other, partly broken up, dispersed in the cytoplasm, and redistributed to endoplasmic reticulum exit sites. Despite this, intracellular protein traffic is only moderately disturbed. Following removal of the drugs, scattered Golgi elements move along reassembling microtubules back to the centrosomal region and reunite into a continuous system. The microtubule-dependent motor proteins cytoplasmic dynein and kinesin bind to Golgi membranes and have been implicated in vesicular transport to and from the Golgi complex. Microinjection of dynein heavy chain antibodies causes dispersal of the Golgi complex, and the Golgi complex of cells lacking cytoplasmic dynein is likewise spread throughout the cytoplasm. In a similar manner, kinesin antibodies have been found to inhibit Golgi-to-endoplasmic reticulum transport in brefeldin A-treated cells and scattering of Golgi elements along remaining microtubules in cells exposed to a low concentration of nocodazole. The molecular mechanisms in the interaction between microtubules and membranes are, however, incompletely understood. During mitosis, the Golgi complex is extensively reorganized in order to ensure an equal partitioning of this single-copy organelle between the daughter cells. Mitosis-promoting factor, a complex of cdc2 kinase and cyclin B, is a key regulator of this and other events in the induction of cell division. Cytoplasmic microtubules depolymerize in prophase and as a result thereof, the Golgi stacks become smaller, disengage from each other, and take up a perinuclear distribution. The mitotic spindle is thereafter put together, aligns the chromosomes in the metaphase plate, and eventually pulls the sister chromatids apart in anaphase. In parallel, the Golgi stacks are broken down into clusters of vesicles and tubules and movement of protein along the exocytic and endocytic pathways is inhibited. Using a cell-free system, it has been established that the fragmentation of the Golgi stacks is due to a continued budding of transport vesicles and a concomitant inhibition of the fusion of the vesicles with their target membranes. In telophase and after cytokinesis, a Golgi complex made up of interconnected cisternal stacks is recreated in each daughter cell and intracellular protein traffic is resumed. This restoration of a normal interphase morphology and function is dependent on reassembly of a radiating array of cytoplasmic microtubules along which vesicles can be carried and on reactivation of the machinery for membrane fusion.  相似文献   

6.
The corpora allata exbibit cycles of synchronous cell growth and atrophy during ovarian cycles in adult females of the cockroach Diploptera punctata. In the present report, the process of synchronous autophagy of organelles which results in cellular atrophy was investigated. In general, unwanted organelles were sequentially sequestered by several different mechanisms and then targeted for destruction. Autophagy was initiated on day 4 when corpus allatum cells were largest and most actively synthesizing juvenile hormone. The first sign of the initiation of autophagy was aggregation of ribosomes in an isolation membrane. By day 5, many organelles were isolated in the autophagic vacuoles. The ribosomecontaining vacuoles were wrapped by flattened stacks of Golgi cisternae to form conspicuous whorl-like autophagosomes. This is a previously undescribed type of autophagic vacuole with the entire complex of Golgi cisternae forming part of the autophagic membranes. Smooth endoplasmic reticulum was wrapped into membranous autophagic vacuoles with concentric arrays of doubel membranes. Plasma membrane was invaginated and then isolated in a multivesicular body. These three different types of isolated vacuoles did not show acid phosphatase activity as indicated by histochemical staining with -glycerophosphate as substrate. Subsequently, these autophagosomes fused with each other and with 1° or 2° lysosomes to form giant autophagolysosomes. Some mitochondria appeared to have coalesced directly into autophagolysosomes. Golgi complexes were evident during this period; they actively participated in making lysosomal enzymes. Cytoskeletons were frequently observed in the vicinity of autophagic vacuoles and were presumably involved in the transport of the vacuoles. As a result of lysosomal degradation lipofuscins and dense bodies were frequently observed by days 9–12 indicating atrophy of corpus allatum cells. Structural parameters, especially those present early in autophagy, such as the isolation membrane, ribosome-containing vacuoles and whorl-like autophagosomes, can be used to search for potential growth regulators responsible for the induction of autophagy, of the corpora allata, and the subsequent termination in juvenile hormone synthesis.  相似文献   

7.
Summary The jejunal absorptive cells of the salamander Amphiuma, when examined using transmission electron microscopy, were found to possess a unique type of intracellular vacuole containing membranous tubules. These vanoles, tentatively named multitubular bodies, were located in the cytoplasm between the nucleus and the brush-border membrane, and were seen with greatest frequency in the summer and fall. The vacuoles containing multitubular bodies had an average diameter of 0.6 m, and the membranous tubules within had an average diameter of 30 nm. The tubules differed morphologically from the vesicles in the multivesicular bodies, and from the primary lysosomes in the polylysosomal vacuoles. The tubules did not exhibit acid phosphatase activity, and were of similar diameter and membrane thickness as the Golgi saccules. In contrast to the multivesicular bodies, the multitubular bodies did not take up exogenous horseradish peroxidase. Early forms of autophagosomes resembling these vacuoles were often seen in the para-Golgi region of the cell. The multitubular bodies may represent a distinct type of autophagosome. Although the exact origin of the tubules as well as their role in cellular activity is unclear, their seasonal appearance within the multitubular bodies of the absorptive cells suggests a unique means of selective down-regulation of Golgi-like organelles.  相似文献   

8.
Summary Before formation of the cyst wall, the food vacuoles are lost, the cell rounds up and the flagella lie close against the body in a flagellar groove. At this early stage, the contractile vacuole is very active, the Golgi apparatus is prominent and the basophilic cytoplasm is composed of closely packed ribosomes. As the cyst wall is secreted, layer by layer, the large Golgi apparatus is replaced by several smaller membrane stacks and mitochondrial changes occur involving local loss and modification of the cristae. Some parts of the mitochondrion undergo degenerative changes and may become surrounded by bacilliform bodies. These same bodies are also associated with small particles of sequestered cytoplasm which are present throughout the encystment process and are believed to be autophagic vacuoles. As the cyst wall thickens, cell shrinkage is manifest as a number of membrane invaginations. The final cyst wall is of uneven thickness and possesses a single operculum which is visible only by electron microscopy. Probable cyst wall precursor is found in small vesicles scattered throughout the cytoplasm.  相似文献   

9.
Using the cryo-fixation/freeze-substitution method, we studied the ultrastructural changes and behavior of vacuoles and related organelles (rER and Golgi bodies) during microspore and pollen development, and pollen maturation of Arabidopsis thaliana. In young microspores forming exine (pollen outer cell wall), vacuoles looked like those of somatic cells. In microspores during the formation of intine (inner cell wall), a large vacuole appeared which was made by fusion of pre-existing vacuoles and probably absorption of solutions. In the young pollen grain after the first mitosis, a large vacuole was divided into small vacuoles. The manner of division was not by binary fission and centripetally, but by the invagination of tonoplasts from one side to the opposite side of a vacuole. After the second mitosis, somatic type vacuoles disappeared. In mature pollen grains just before germination, membrane-bound structures containing fine fibrillar substances (MBFs) appeared. The MBFs were considered to be storage vacuoles. In pollen grains from flowers in bloom, MBFs changed to lysosomal structures with acid phosphatases (lytic vacuole). They gradually increased in number and volume, and decomposed the cytoplasm. The autolysis of pollen grains is the first finding in this study, which may contribute to the loss of ability of pollen germination after anthesis.  相似文献   

10.
Developing pea cotyledons contain functionally different vacuoles, a protein storage vacuole and a lytic vacuole. Lumenal as well as membrane proteins of the protein storage vacuole exit the Golgi apparatus in dense vesicles rather than in clathrin-coated vesicles (CCVs). Although the sorting receptor for vacuolar hydrolases BP-80 is present in CCVs, it is not detectable in dense vesicles. To localize these different vacuolar sorting events in the Golgi, we have compared the distribution of vacuolar storage proteins and of alpha-TIP, a membrane protein of the protein storage vacuole, with the distribution of the vacuolar sorting receptor BP-80 across the Golgi stack. Analysis of immunogold labeling from cryosections and from high pressure frozen samples has revealed a steep gradient in the distribution of the storage proteins within the Golgi stack. Intense labeling for storage proteins was registered for the cis-cisternae, contrasting with very low labeling for these antigens in the trans-cisternae. The distribution of BP-80 was the reverse, showing a peak in the trans-Golgi network with very low labeling of the cis-cisternae. These results indicate a spatial separation of different vacuolar sorting events in the Golgi apparatus of developing pea cotyledons.  相似文献   

11.
The superficial squamous cells of rat transitional epithelium are limited, on their luminal face, by an asymmetrically thickened membrane. Patches of similar thick membrane are found in the walls of the Golgi cisternae and it is suggested that the Golgi system is the site of assembly of the thick plasma membrane. This implies membrane flow from the Golgi apparatus to the cell surface, and there is indirect evidence that the membrane is transported in the form of fusiform vacuoles, derived from the Golgi cisternae, which fuse with, and become part of, the free cell membrane. Uptake of injected Imferon shows that similar, large, thick-walled vacuoles may be formed by invagination of the free cell surface. Some of these vacuoles are subsequently transformed into multivesicular bodies and autophagic vacuoles. The formation of other large heterogeneous bodies is described, and some of these are shown to have acid phosphatase activity.  相似文献   

12.
Summary The ultrastructural localization of peroxidase in soybean (Glycine max L.) suspension culture cells and protoplasts is reported. In cells peroxidase is found primarily in the cell wall and at the tonoplast. Protoplasts and cells contain a vacuolar system which is differentiated with respect to peroxidase content since some vacuoles are found which do not contain peroxidase reaction product. The Golgi dictyosomes, coated and smooth vesicles contain peroxidase. Some of the multivesicular bodies have the reaction product as well. The results are discussed in terms of the pathways of sorting of peroxidase between the cell wall and vacuoles of cultured cells.  相似文献   

13.
Chondrocytes were isolated enzymatically from guinea-pig epiphyses and grown in vitro. The fate of the Golgi complex during mitosis in relation to changes in the cytoplasmic microtubules was then studied by transmission electron microscopy. Interphase cells were observed to be polarized, with the Golgi complex occupying a well-defined juxtanuclear area of the cell's cytoplasmic pole. During prophase the cytoplasmic microtubules were largely lost, the nucleus moved to the center of the cell and the Golgi complex dissolved into single dictyosomes spread diffusely throughout the cytoplasm. The distribution of other organelles also changed to a more random pattern. In telophase, i.e. after the completion of nuclear division, the mitotic spindle decomposed and cytoplasmic microtubules reappeared. Furthermore, the organization of the Golgi complex and other organelles returned to that characteristic of interphase cells. Previous studies on cells treated with colchicine have indicated that the polarized distribution of cell organelles is dependent on the presence of intact cytoplasmic micro-tubules. It is suggested that the disappearance of such tubules observed here to be coupled with the disorganization of cell interphase structure fulfills the double function of providing free tubulin units from which to build the mitotic spindle and ensuring an approximately equal distribution of dictyosomes and other organelles to the daughter cells during cytokinesis.  相似文献   

14.
Ultrastructural changes during zygotic and somatic embryogenesis in pearl millet (Pennisetum glaucum [L.] R. Br.) were quantified using morphometric techniques. The total area per cell profile and the cell volume percentage of the whole cell, endoplasmic reticulum (ER), Golgi bodies, mitochondria, nuclei, lipids, plastids, starch grains and vacuoles were measured and comparisons made between three zygotic and three somatic embryo developmental stages. All measurements were taken from scutellar or scutellar-derived cells. Zygotic embryogenesis was characterized by increases in cell size, lipids, plastids, starch, Golgi bodies, mitochondria and ER. Somatic embryogenesis was characterized by two phases of cell development: (1) the dedifferentiation of scutellar cells involving a reduction in cell and vacuole size and an increase in cell activity during somatic proembryoid formation and (2) the development of somatic embryos in which most cell organelle quantities returned to values found in late coleoptile or mature predesiccation zygotic stages. In summary, although their developmental pathways differed, the scutella of somatic embryos displayed cellular variations which were within the ranges observed for later stages of zygotic embryogenesis.  相似文献   

15.
The role of plant mitochondria in the programmed cell death (PCD) is widely discussed. However, spectrum and sequence of mitochondrial structural changes during different types of PCD in leaves are poorly described. Pea, cucumber and rye plants were grown under controlled growing conditions. A part of them were sprinkled with ethylene releaser to accelerate cell death. During yellowing the palisade parenchyma mitochondria were attracted to nuclear envelope. Mitochondrial matrix became electron translucent. Mitochondria entered vacuole by invagination of tonoplast and formed multivesicular bodies. Ethephon treatment increased the frequency of sticking of mitochondria to the nuclear envelope or chloroplasts and peroxisomes. Mitochondria divided by different mechanisms and became enclosed in Golgi and ER derived authopagic vacuoles or in the central vacuole. Several fold increase of the diameter of cristae became typical. In all cases mitochondria were attached to nuclear envelope. It can be considered as structural mechanism of promoting of PCD.  相似文献   

16.
Summary For the first time, mononuclear cell-mediated ingestion of osteoid in cultures of long bones of fetal rats is described and characterized. The mononuclear cells, located at sites of osteoid deposition, ingest collagen fibrils and clumps of mineral crystals which are segregated within cytoplasmic vacuoles or multivesicular bodies. The ingestion of osteoid continues in cultures treated with agents that normally inhibit osteoclastic bone resorption. Morphologically, the osteoid-containing cells are characterized by a moderate number of mitochondria and short-stranded rough endoplasmic reticulum, a modest Golgi apparatus and variable numbers of vesicles, vacuoles, and multivesicular bodies. The morphologic appearance of the mononuclear cell is consistent with that of a macrophage.This study was supported by NIH Grants DE-04443 and AM-16858  相似文献   

17.
锦橙汁囊的超微结构   总被引:1,自引:0,他引:1  
用常规电镜方法观察了锦橙[Citrussinensis (L.) Osb.]汁囊从原始细胞到发育为一个具柄的成熟汁囊的过程中,汁囊构成细胞超微结构的变化。锦橙汁囊原始细胞及发育为球状体时的构成细胞以及柱状结构顶端的细胞都是一种典型的分生组织细胞。在细胞质中有包括线粒体、质体、内质网、核糖体等丰富的细胞器,但没有观察到高尔基体。这些分生细胞分裂一段时期后就停止活动,逐渐分化为适应贮藏功能的液泡化薄壁细胞。分生细胞开始分化时,在细胞中出现许多小液泡和高尔基体。这些小液泡逐渐地融合,同时细胞质变少,最后形成一个有中央大液泡的薄壁细胞,在紧贴细胞膜的薄薄的一层细胞质中有线粒体、质体、高尔基体以及含有许多脂滴的杂色体。但成熟果实中汁囊的薄壁细胞中几乎没有任何细胞器。  相似文献   

18.
Ultrastructure of Jincheng juice sac of Citrus sinensis (L.) Osb. was continuously investigated from the initial cell to the stalk-bearing sac. The initial cell and cells formed globularstructure, as well as the uper cells of the column-structure were typical meristem cells with mitochondria, plastids, rough endoplasmic reticulum, rich ribosome without Golgi body in their dense cytoplasm. These meristem cells would differentiate into parenchyma ceils pro2 viding storage function. At the beginning of differentiation of the meristem cells, the number of small vacuoles increased and some Golgi bodies appeared. Small vacuoles gradually fused into a central vacuole. During the fusion of small vacuoles, the cytoplasm became thinned, but still contained mitochondria, plastids, Golgi bodies, end0plasmic reticulum and some chromplasts with lipid drops. Almost no organelle were ever observed in the parenchyma cells of juice sac from mature fruit.  相似文献   

19.
Digestive cells are the most abundant cell type in the digestive diverticula of Aplysia depilans. These are tall columnar or club shaped cells, covered with microvilli on their apical surface. A large number of endocytic vesicles containing electron-dense substances can be found in the apical zone, but the presence of many heterolysosomes of large diameter is the main feature of these cells. Glycogen particles and some lipid droplets were also observed. Peroxisomes with a circular or oval profile were common, but crystalline nucleoids were not detected in them, although a dense spot in the matrix was observed in a few cases. These organelles were strongly stained after cytochemical detection of catalase activity. The Golgi stacks are formed by 4 or 5 cisternae, with dilated zones containing electron dense material. Arylsulphatase activity was detected in the Golgi stacks and also in lysosomes. Cells almost entirely occupied by a very large vacuole containing a residual dense mass seem to be digestive cells in advanced stages of maturation. The observation of semithin and ultrathin sections indicates that these very large vacuoles are the result of a fusion among the smaller lysosomes. Some images suggest that the content of these large vacuoles is extruded into the lumen of the digestive diverticula.  相似文献   

20.
The highly conserved Golgi phosphoprotein 3 (GOLPH3) protein has been described as a Phosphatidylinositol 4-phosphate [PI(4)P] effector at the Golgi. GOLPH3 is also known as a potent oncogene, commonly amplified in several human tumors. However, the molecular pathways through which the oncoprotein GOLPH3 acts in malignant transformation are largely unknown. GOLPH3 has never been involved in cytokinesis. Here, we characterize the Drosophila melanogaster homologue of human GOLPH3 during cell division. We show that GOLPH3 accumulates at the cleavage furrow and is required for successful cytokinesis in Drosophila spermatocytes and larval neuroblasts. In premeiotic spermatocytes GOLPH3 protein is required for maintaining the organization of Golgi stacks. In dividing spermatocytes GOLPH3 is essential for both contractile ring and central spindle formation during cytokinesis. Wild type function of GOLPH3 enables maintenance of centralspindlin and Rho1 at cell equator and stabilization of Myosin II and Septin rings. We demonstrate that the molecular mechanism underlying GOLPH3 function in cytokinesis is strictly dependent on the ability of this protein to interact with PI(4)P. Mutations that abolish PI(4)P binding impair recruitment of GOLPH3 to both the Golgi and the cleavage furrow. Moreover telophase cells from mutants with defective GOLPH3-PI(4)P interaction fail to accumulate PI(4)P-and Rab11-associated secretory organelles at the cleavage site. Finally, we show that GOLPH3 protein interacts with components of both cytokinesis and membrane trafficking machineries in Drosophila cells. Based on these results we propose that GOLPH3 acts as a key molecule to coordinate phosphoinositide signaling with actomyosin dynamics and vesicle trafficking during cytokinesis. Because cytokinesis failures have been associated with premalignant disease and cancer, our studies suggest novel insight into molecular circuits involving the oncogene GOLPH3 in cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号