首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IL-13 is a Th2 cytokine that promotes alternative activation (M2 polarization) in primary human monocytes. Our studies have characterized the functional IL-13 receptor complex and the downstream signaling events in response to IL-13 stimulation in alternatively activated monocytes/macrophages. In this report, we present evidence that IL-13 induces the activation of a Src family tyrosine kinase, which is required for IL-13 induction of M2 gene expression, including 15-lipoxygenase (15-LO). Our data show that Src kinase activity regulates IL-13-induced p38 MAPK tyrosine phosphorylation via the upstream kinases MKK3 or MKK6. Our findings also reveal that the IL-13 receptor-associated tyrosine kinase Jak2 is required for the activation of both Src kinase as well as p38 MAPK. Further, we found that Src tyrosine kinase-mediated activation of p38 MAPK is required for Stat1 and Stat3 serine 727 phosphorylation in alternatively activated monocytes/macrophages. Additional studies identify Hck as the specific Src family member, stimulated by IL-13 and involved in regulating both p38 MAPK activation and p38 MAPK-mediated 15-LO expression. Finally we show that the Hck regulates the expression of other alternative state (M2)-specific genes (Mannose receptor, MAO-A, and CD36) and therefore conclude that Hck acts as a key regulator controlling gene expression in alternatively activated monocytes/macrophages.  相似文献   

2.
Interleukin-6 (LI-6) is a known growth and survival factor in multiple myeloma via activation of extracellular signal-regulated kinase and phosphatidylinositol 3-kinase signaling cascade. In this report we show that Grb2-associated binder (Gab) family adapter proteins Gab1 and Gab2 are expressed by multiple myeloma cells; and that interleukin-6 induces their tyrosine phosphorylation and association with downstream signaling molecules. We further demonstrate that these events are Src family tyrosine kinase-dependent and specifically identify the role of hematopoietic cell kinase (Hck) as a new Gab family adapter protein kinase. Conversely, inhibition of Src family tyrosine kinases by the pyrazolopyrimidine PP2, as in kinase-inactive Hck mutants, significantly reduces IL-6-triggered activation of extracellular signal-regulated kinase and AKT-1, leading to significant reduction of multiple myeloma cell proliferation and survival. Taken together, these results delineate a key role for Hck-mediated phosphorylation of Gab1 and Gab2 docking proteins in IL-6-induced proliferation and survival of multiple myeloma cells and identify tyrosine kinases and downstream adapter proteins as potential new therapeutic targets in multiple myeloma.  相似文献   

3.
Binding of interleukin-2 (IL-2) to its specific receptor induces activation of two members of Jak family protein tyrosine kinases, Jak1 and Jak3. An IL-2 receptor (IL-2R)-reconstituted NIH 3T3 fibroblast cell line proliferates in response to IL-2 only when hematopoietic lineage-specific Jak3 is ectopically expressed. However, the mechanism of Jak3-dependent proliferation in the fibroblast cell line is not known. Here, I showed that Jak3 expression is dispensable for IL-2-induced activation of Jak1 and Stat proteins and expression of nuclear proto-oncogenes in the IL-2R-reconstituted fibroblast cell line. Jak3 expression markedly enhanced these IL-2-induced signaling events. In contrast, Jak3 expression was essential for induction of cyclin genes involved in the G1-S transition. These data suggest a critical role of Jak3 in IL-2 signaling in the fibroblast cell line and may provide further insight into the cell type-specific mechanism of cytokine signaling.  相似文献   

4.
CD69 C-type lectin receptor represents a functional triggering molecule on activated NK cells, capable of directing their natural killing function. The receptor-proximal signaling pathways activated by CD69 cross-linking and involved in CD69-mediated cytotoxic activity are still poorly understood. Here we show that CD69 engagement leads to the rapid and selective activation of the tyrosine kinase Syk, but not of the closely related member of the same family, ZAP70, in IL-2-activated human NK cells. Our results indicate the requirement for Src family kinases in the CD69-triggered activation of Syk and suggest a role for Lck in this event. We also demonstrate that Syk and Src family tyrosine kinases control the CD69-triggered tyrosine phosphorylation and activation of phospholipase Cgamma2 and the Rho family-specific exchange factor Vav1 and are responsible for CD69-triggered cytotoxicity of activated NK cells. The same CD69-activated signaling pathways are also observed in an RBL transfectant clone, constitutively expressing the receptor. These data demonstrate for the first time that the CD69 receptor functionally couples to the activation of Src family tyrosine kinases, which, by inducing Syk activation, initiate downstream signaling pathways and regulate CD69-triggered functions on human NK cells.  相似文献   

5.
6.
The Janus protein tyrosine kinases (Jaks) play critical roles in transducing growth and differentiation signals emanating from ligand-activated cytokine receptor complexes. The activation of the Jaks is hypothesized to occur as a consequence of auto- or transphosphorylation on tyrosine residues associated with ligand-induced aggregation of the receptor chains and the associated Jaks. In many kinases, regulation of catalytic activity by phosphorylation occurs on residues within the activation loop of the kinase domain. Within the Jak2 kinase domain, there is a region that has considerable sequence homology to the regulatory region of the insulin receptor and contains two tyrosines, Y1007 and Y1008, that are potential regulatory sites. In the studies presented here, we demonstrate that among a variety of sites, Y1007 and Y1008 are sites of trans- or autophosphorylation in vivo and in in vitro kinase reactions. Mutation of Y1007, or both Y1007 and Y1008, to phenylalanine essentially eliminated kinase activity, whereas mutation of Y1008 to phenylalanine had no detectable effect on kinase activity. The mutants were also examined for the ability to reconstitute erythropoietin signaling in gamma2 cells, which lack Jak2. Consistent with the kinase activity, mutation of Y1007 to phenylalanine eliminated the ability to restore signaling. Moreover, phosphorylation of a kinase-inactive mutant (K882E) was not detected, indicating that Jak2 activation during receptor aggregation is dependent on Jak2 and not another receptor-associated kinase. The results demonstrate the critical role of phosphorylation of Y1007 in Jak2 regulation and function.  相似文献   

7.
The SH2-containing inositol 5'-phosphatase (SHIP) is tyrosine-phosphorylated in response to cytokines such as interleukin (IL)-3, granulocyte-macrophage colony-stimulating factor, and macrophage colony-stimulating factor. SHIP has been shown to modulate negatively these cytokine signalings; however, a potential role in IL-4 signaling remains uncharacterized. It has been recently shown that IL-4 induces tyrosine phosphorylation of SHIP, implicating the phosphatase in IL-4 processes. Tyrosine kinases, Jak1 and Jak3, involved in IL-4 signaling can associate with SHIP, yet only Jak1 can tyrosine-phosphorylate SHIP when co-expressed. In functional studies, cells overexpressing wild type SHIP are found to be hyperproliferative in response to IL-4 in comparison to parental cells. In contrast, cells expressing catalytically inactive form, SHIP(D672A), show reduced proliferation in response to IL-4. These changes in IL-4-induced proliferation correlate with alterations in phosphatidylinositol 3,4,5-triphosphate levels. However, no differential activation of STAT6, Akt, IRS-2, or p70(S6k), in response to IL-4, was observed in these cells. These data suggest that the catalytic activity of SHIP acts in a novel manner to influence IL-4 signaling. In addition, these data support recent findings that suggest there are uncharacterized signaling pathways downstream of phosphatidylinositol 3,4,5-triphosphate.  相似文献   

8.
Interleukin-7 (IL-7) receptor signaling begins with activation of the Janus tyrosine kinases Jak1 and Jak3, which are associated with the receptor complex. To identify potential targets of these kinases, we examined Pyk2 (a member of the focal adhesion kinase family) using an IL-7-dependent murine thymocyte line, D1. We demonstrate that stimulation of D1 (or normal pro-T) cells by IL-7 rapidly increased tyrosine phosphorylation and enzymatic activity of Pyk2, with kinetics slightly lagging that of Jak1 and Jak3 phosphorylation. Conversely, IL-7 withdrawal resulted in a marked decrease of Pyk2 phosphorylation. Pyk2 was found to be physically associated with Jak1 prior to IL-7 stimulation and to increase its association with IL-7Ralpha chain following IL-7 stimulation. Pyk2 appeared to be involved in cell survival, because antisense Pyk2 accelerated the cell death process. Activation of Pyk2 via the muscarinic and nicotinic receptors using carbachol or via intracellular Ca(2+) rise using ionomycin/phorbol myristate acetate promoted survival in the absence of IL-7. These data support a role for Pyk2 in coupling Jak signaling to the trophic response.  相似文献   

9.
We reported previously that interleukin-13 (IL-13) induces tyrosine phosphorylation/activation of Jak2 and Tyk2 kinases and Stats 1, 3, 5, and 6 in primary human monocytes. We recently revealed that p38 MAPK-mediated serine phosphorylation of both Stat1 and Stat3 is required for the induction of 15-lipoxygenase (15-LO) expression by IL-13. In this study, we present data indicating that another serine/threonine kinase, PKCdelta, is also required for IL-13-induced 15-LO expression. PKCdelta, a member of the novel protein kinase C (PKC) subclass, was rapidly phosphorylated and activated upon exposure to IL-13. Treatment of cells with rottlerin, a PKCdelta inhibitor, blocked IL-13-induced 15-LO mRNA and protein expression, whereas Go6976, an inhibitor of the conventional PKC subclass, had no inhibitory effects. Down-regulation of cellular PKCdelta protein levels by PKCdelta-specific antisense oligodeoxyribonucleotides also inhibited 15-LO expression markedly. IL-13-induced 15-LO expression resulted in significant inhibition of synthesis of the potent chemotactic factor leukotriene B4, and that process was reversed by rottlerin, presumably through the blockage of PKCdelta-dependent 15-LO expression. Furthermore, our data demonstrate that IL-13-mediated activation of PKCdelta and p38 MAPK are independent pathways, because inhibition of one kinase activity had no effect on the other, suggesting that the two pathways act in parallel to regulate the downstream targets necessary for 15-LO expression. Inhibition of PKCdelta activation by rottlerin also markedly attenuated IL-13-induced Stat3 DNA binding activity. Our findings indicate that PKCdelta plays an important role in regulating IL-13-induced 15-LO expression in human monocytes and subsequently modulates the inflammatory responses mediated by 15-LO products.  相似文献   

10.
11.
In an effort to clone novel tyrosine-phosphorylated substrates of the epidermal growth factor receptor, we have initiated an approach coupling affinity purification using anti-phosphotyrosine antibodies to mass spectrometry-based identification. Here, we report the identification of a signaling molecule containing a Src homology 3 domain as well as an immunoreceptor tyrosine-based activation motif (ITAM). This molecule is 55% identical to a previously isolated molecule designated signal transducing adaptor molecule (STAM) that was identified as an interleukin (IL)-2-induced phosphoprotein and is therefore designated STAM2. Tyrosine phosphorylation of STAM2 is induced by growth factors such as epidermal growth factor and platelet-derived growth factor as well as by cytokines like IL-3. Several of the deletion mutants tested except the one containing only the amino-terminal region underwent tyrosine phosphorylation upon growth factor stimulation, implying that STAM2 is phosphorylated on several tyrosine residues. STAM2 is downstream of the Jak family of kinases since coexpression of STAM2 with Jak1 or Jak2 but not an unrelated Tec family kinase, Etk, resulted in its tyrosine phosphorylation. In contrast to epidermal growth factor receptor-induced phosphorylation, this required the ITAM domain since mutants lacking this region did not undergo tyrosine phosphorylation. Finally, overexpression of wild type STAM2 led to an increase in IL-2-mediated induction of c-Myc promoter activation indicating that it potentiates cytokine receptor signaling.  相似文献   

12.
The c-Abl tyrosine (Tyr) kinase is activated after platelet-derived-growth factor receptor (PDGFR) stimulation in a manner that is partially dependent on Src kinase activity. However, the activity of Src kinases alone is not sufficient for activation of c-Abl by PDGFR. Here we show that functional phospholipase C-gamma1 (PLC-gamma1) is required for c-Abl activation by PDGFR. Decreasing cellular levels of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) by PLC-gamma1-mediated hydrolysis or dephosphorylation by an inositol polyphosphate 5-phosphatase (Inp54) results in increased Abl kinase activity. c-Abl functions downstream of PLC-gamma1, as expression of kinase-inactive c-Abl blocks PLC-gamma1-induced chemotaxis towards PDGF-BB. PLC-gamma1 and c-Abl form a complex in cells that is enhanced by PDGF stimulation. After activation, c-Abl phosphorylates PLC-gamma1 and negatively modulates its function in vivo. These findings uncover a newly discovered functional interdependence between non-receptor Tyr kinase and lipid signalling pathways.  相似文献   

13.
14.
Fibroblast growth factors (FGFs) regulate a number of angiogenic cellular responses such as migration of endothelial cells. To examine the role of mitogen-activated protein kinase (MAPK) in endothelial cell migration, chemotaxis toward FGF-2 was determined in murine brain capillary endothelial cells, denoted IBE cells. PD98059, a specific inhibitor for MAPK/Erk kinase, inhibited FGF-2-induced chemotaxis of IBE cells. It has been reported that c-Src tyrosine kinase phosphorylates focal adhesion kinase at tyrosine 925 within focal adhesions, which in turn creates the binding site for Grb2, leading to MAPK activation. The Src family tyrosine kinase inhibitor, PP1, as well as overexpression of kinase-inactive c-Src, attenuated chemotaxis toward FGF-2. To investigate the signaling events involved in FGF-2-induced chemotaxis, MAPK activation was monitored in IBE cells by indirect immunofluorescence staining. Activated MAPK was initially observed in the cytoplasm and gradually moved into nuclei. A fraction of MAPK was activated by FGF-2 within focal adhesions, where FGF receptor-1 and Src family kinases were also colocalized. MAPK activation within focal adhesions was remarkably decreased in kinase-inactive c-Src-expressing IBE cells. Our data suggest that activation of MAPK by FGF-2 within focal adhesions may depend on c-Src activity and is crucial for FGF-2-induced migration of IBE cells.  相似文献   

15.
Interleukin-2 (IL-2) activates several different families of tyrosine kinases, but precisely how these kinases interact is not completely understood. We therefore investigated the functional relationships among Jak3, Lck, and Syk in IL-2 signaling. We first observed that in the absence of Jak3, both Lck and Syk had the capacity to phosphorylate Stat3 and Stat5a. However, neither supported IL-2-induced STAT activation, nor did dominant negative alleles of these kinases inhibit. Moreover, pharmacological abrogation of Lck activity did not inhibit IL-2-mediated phosphorylation of Jak3 and Stat5a. Importantly, ligand-dependent Syk activation was dependent on the presence of catalytically active Jak3, whereas Lck activation was not. Interestingly, Syk functioned as a direct substrate of Jak1 but not Jak3. Additionally, Jak3 phosphorylated Jak1, whereas the reverse was not the case. Taken together, our data support a model in which Lck functions in parallel with Jak3, while Syk functions as a downstream element of Jaks in IL-2 signaling. Jak3 may regulate Syk catalytic activity indirectly via Jak1. However, IL-2-mediated Jak3/Stat activation is not dependent on Lck or Syk. While the essential roles of Jak1 and Jak3 in signaling by gammac-utilizing cytokines are clear, it will be important to dissect the exact contributions of Lck and Syk in mediating the effects of IL-2 and related cytokines.  相似文献   

16.
17.
Adenosine is a purine nucleoside with immunosuppressive activity that acts through cell surface receptors (A(1), A(2a), A(2b), A(3)) on responsive cells such as T lymphocytes. IL-2 is a major T cell growth and survival factor that is responsible for inducing Jak1, Jak3, and STAT5 phosphorylation, as well as causing STAT5 to translocate to the nucleus and bind regulatory elements in the genome. In this study, we show that adenosine suppressed IL-2-dependent proliferation of CTLL-2 T cells by inhibiting STAT5a/b tyrosine phosphorylation that is associated with IL-2R signaling without affecting IL-2-induced phosphorylation of Jak1 or Jak3. The inhibitory effect of adenosine on IL-2-induced STAT5a/b tyrosine phosphorylation was reversed by the protein tyrosine phosphatase inhibitors sodium orthovanadate and bpV(phen). Adenosine dramatically increased Src homology region 2 domain-containing phosphatase-2 (SHP-2) tyrosine phosphorylation and its association with STAT5 in IL-2-stimulated CTLL-2 T cells, implicating SHP-2 in adenosine-induced STAT5a/b dephosphorylation. The inhibitory effect of adenosine on IL-2-induced STAT5a/b tyrosine phosphorylation was reproduced by A(2) receptor agonists and was blocked by selective A(2a) and A(2b) receptor antagonists, indicating that adenosine was mediating its effect through A(2) receptors. Inhibition of STAT5a/b phosphorylation was reproduced with cell-permeable 8-bromo-cAMP or forskolin-induced activation of adenylyl cyclase, and blocked by the cAMP/protein kinase A inhibitor Rp-cAMP. Forskolin and 8-bromo-cAMP also induced SHP-2 tyrosine phosphorylation. Collectively, these findings suggest that adenosine acts through A(2) receptors and associated cAMP/protein kinase A-dependent signaling pathways to activate SHP-2 and cause STAT5 dephosphorylation that results in reduced IL-2R signaling in T cells.  相似文献   

18.
The leptin receptor, LRb, and other cytokine receptors are devoid of intrinsic enzymatic activity and rely upon the activity of constitutively associated Jak family tyrosine kinases to mediate intracellular signaling. In order to clarify mechanisms by which Jak2, the cognate LRb-associated Jak kinase, is regulated and mediates downstream signaling, we employed tandem mass spectroscopic analysis to identify phosphorylation sites on Jak2. We identified Ser523 as the first-described site of Jak2 serine phosphorylation and demonstrated that this site is phosphorylated on Jak2 from intact cells and mouse spleen. Ser523 was highly phosphorylated in HEK293 cells independently of LRb-Jak2 activation, suggesting a potential role for the phosphorylation of Ser523 in the regulation of LRb by other pathways. Indeed, mutation of Ser523 sensitized and prolonged signaling by Jak2 following activation by the intracellular domain of LRb. The effect of Ser523 on Jak2 function was independent of Tyr570-mediated inhibition. Thus, the phosphorylation of Jak2 on Ser523 inhibits Jak2 activity and represents a novel mechanism for the regulation of Jak2-dependent cytokine signaling.  相似文献   

19.
The Abl tyrosine kinases, Abl and Arg, play a role in the regulation of the actin cytoskeleton by modulating cell-cell adhesion and cell motility. Deregulation of both the actin cytoskeleton and Abl kinases have been implicated in cancers. Abl kinase activity is elevated in a number of metastatic cancers and these kinases are activated downstream of several oncogenic growth factor receptor signaling pathways. However, the role of Abl kinases in regulation of the actin cytoskeleton during tumor progression and invasion remains elusive. Here we identify the Abl kinases as essential regulators of invadopodia assembly and function. We show that Abl kinases are activated downstream of the chemokine receptor, CXCR4, and are required for cancer cell invasion and matrix degradation induced by SDF1α, serum growth factors, and activated Src kinase. Moreover, Abl kinases are readily detected at invadopodia assembly sites and their inhibition prevents the assembly of actin and cortactin into organized invadopodia structures. We show that active Abl kinases form complexes with membrane type-1 matrix metalloproteinase (MT1-MMP), a critical invadopodia component required for matrix degradation. Further, loss of Abl kinase signaling induces internalization of MT1-MMP from the cell surface, promotes its accumulation in the perinuclear compartment and inhibits MT1-MMP tyrosine phosphorylation. Our findings reveal that Abl kinase signaling plays a critical role in invadopodia formation and function, and have far-reaching implications for the treatment of metastatic carcinomas.  相似文献   

20.
Hematopoietic cytokines, including interleukin (IL)-3 and erythropoietin (Epo), regulate hematopoiesis by stimulating their receptors coupled with the Jak2 tyrosine kinase to induce receptor tyrosine phosphorylation and activate mainly the STAT5, PI3K/Akt, and Ras/MEK/ERK signaling pathways. Here we demonstrate that IL-3 or Epo induces a rapid and transient (peaking at 30 min) as well as late progressive increase in reactive oxygen species (ROS) in a hematopoietic progenitor model cell line, 32Dcl3, and its subclone expressing the Epo receptor (EpoR), 32D/EpoR-Wt. The cytokine-induced ROS generation was not affected in 32Dcl3 cells depleted of mitochondrial DNA. The antioxidant N-acetyl-L-cysteine (NAC) inhibited IL-3-induced tyrosine phosphorylation of Jak2, IL-3 receptor betac subunit (IL-3Rbetac), and STAT5 as well as activation-specific phosphorylation of Akt, MEK, and ERK, while treatment of cells with H2O2 activated these signaling events. NAC also inhibited the EpoR-induced transphosphorylation of IL-3Rbetac. Moreover, NAC treatment reduced the expression levels of c-Myc, Cyclin D2, and Cyclin E, and induced expression of p27, thus inhibiting the G1 to S phase transition of cells cultured with IL-3. Further studies have shown that the degradation of c-Myc was facilitated or inhibited by treatment of cells with NAC or H2O2, respectively. These data indicate that the rapid generation of ROS by cytokine stimulation, which is at least partly independent of mitochondria, may play a role in activation of Jak2 and the STAT5, PI3K/Akt, and Ras/MEK/ERK signaling pathways as well as in transactivation of cytokine receptors. The cytokine-induced ROS generation was also implicated in G1 to S progression, possibly through stabilization of c-Myc and induction of G1 phase Cyclin expression leading to suppression of p27.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号