首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A setup for dual wavelength-excitation fluorescence measurements is introduced which permits a temporal resolution of up to 1 KHz, using the Ca2(+)-sensitive fluorescent dye Fura-2. The system makes use of a novel technical solution for chopping between two excitation wavelengths which does not move any optical components. Two beams, which are alternatively opened or shut by a rotating chopper wheel, are united by a dichroic mirror and are used for low-noise epifluorescence microscopy. The system includes a device for fast changes of extracellular solution that can be used for studying various components of [Ca2+]i-regulation in excitable and non-excitable cells. Sample recordings of spontaneous and experimentally-evoked [Ca2+]i-transients from cardiac myocytes are presented. Cardiac myocytes are a cell species that produces particularly fast [Ca2+]i-transients and therefore, a high temporal resolution is required in order to study physiological and/or pharmacological properties of these transients.  相似文献   

2.
Cytosolic free calcium concentrations in avian growth plate chondrocytes   总被引:2,自引:0,他引:2  
Isolated avian growth plate chondrocytes convert the acetoxymethyl ester (AM) form of Fura-2 quickly and efficiently to the Ca2(+)-sensitive pentacarboxylic acid (FA) form. Control experiments indicate that the Kd for intracellular Fura-2/FA is very close to that of extracellular Fura-2/FA at the same ionic strength and pH and that the Fura-2/FA fluorescence from indicator converted by intracellular organelles is quite small. Correcting for the effects of extracellular Fura-2/FA and partial hydrolysis products has improved the accuracy of determination of intracellular [Ca2+] over earlier measurements in chondrocytes. Cytosolic [Ca2+] in isolated growth plate chondrocytes (containing cells from each maturational stage) is found to require approximately 9 hours to recover from the isolation process. After this recovery period, cytosolic [Ca2+] in these cells converges to approximately 70 nM regardless of the [Ca2+] of the recovery medium, suggesting regulation of cytosolic [Ca2+] to a set point. Chondrocytes that are separated into maturationally distinct fractions using countercurrent centrifugal elutriation show an increase in cytosolic [Ca2+] with cellular maturation. The least mature resting cells have a [Ca2+] near 57 nM, while the most mature hypertrophic cells are around 95 nM.  相似文献   

3.
The affects of volatile anesthetics on mobilization of intracellular Ca2+ was monitored in primary cultures of rat hepatocytes using the fluorescent Ca2+ probe Fura-2. The use of Fura-2 was limited by several factors which complicated the quantitative analysis of the results, such as: (i) a high rate of dye leakage; (ii) changes in the redox state of the hepatocytes which interfered with the fluorescence produced by the dye at various excitation wavelengths; (iii) compartmentalization of the dye producing high local intracellular concentrations; and, of particular importance for this study, (iv) enhanced photobleaching of the dye in the presence of halothane. To aid in the interpretation of the Fura-2 data, the Ca2(+)-sensitive photoprotein aequorin was also used to monitor changes in [Ca2+]i. The aequorin and Fura-2 techniques qualitatively yielded the same result, that the volatile anesthetic agents halothane, enflurane, and isoflurane induce an immediate and transient increase of [Ca2+]i. The durations of these transients were approximately between 5 and 10 min and were not related to any evident acute cell toxicity. The [Ca2+]i increases induced by the volatile anesthetic agents were dose-dependent, with halothane the most potent. The exact mechanism governing these increases in [Ca2+]i induced by these anesthetics in rat hepatocytes is unknown, but is likely to involve effects on both the cell surface membrane and endoplasmic reticulum components of the signal transducing system.  相似文献   

4.
P Hochstrate  A Juse 《Cell calcium》1991,12(10):695-712
The retinal tissue of blowflies was loaded with the fluorescent Ca2+ indicator Fura-2 by incubating cut heads in saline solutions which contained the membrane permeable acetoxymethylester of Fura-2 (Fura-2/AM). The spectral analysis of the tissue fluorescence showed that Fura-2/AM was intracellularly hydrolysed to Fura-2. In order to monitor the intracellular free Ca2+ concentration ([Ca2+]i) the Fura-2 fluorescence was excited by short light flashes. The fluorescence was calibrated by incubating the tissue in Ca2+ buffers of high buffering capacity and subsequent disruption of the cell membranes by freeze/thawing, which gave a dissociation constant for the Ca(2+)-Fura-2 complex of 100 nM. When the extracellular Ca2+ concentration ([Ca2+]o) was altered [Ca2+]i reversibly changed. The changes were most pronounced when [Ca2+]o was varied in the millimolar range, e.g. [Ca2+]i increased from 0.07 microM at [Ca2+]o = 0.1 mM to 1 microM at [Ca2+]o = 10 mM. When extracellular Na+ was replaced by Li+ or other monovalent ions, [Ca2+]i rapidly increased which supports the view that electrogenic Na+/Ca2+ exchange contributes to the control of [Ca2+]i. However, [Ca2+]i decreased again when the tissue was superfused with Na(+)-free media for longer periods, which points to a Ca(2+)-transporting system different from Na+/Ca2+ exchange. Light adaptation had only a small effect on [Ca2+]i. Even after intense stimulation [Ca2+]i increased by a factor of 1.5 only, which is in line with results obtained in the photoreceptors of Balanus and Apis.  相似文献   

5.
In studies about the effects of heavy metals on intracellular Ca2+, the use of fluorescent probes is debated, as metal cations are known to affect the probe signal. In this study, spectrofluorimetric experiments in free solution, using Fluo-3 and Fura-2, showed that Zn2+ and Cd2+ enhanced the probe signal, Cu2+ quenched it, and Hg2+ had no effect. Addition of GSH prevented most of these effects, suggesting the occurrence of a similar protective role in living cells. Digital imaging of living mussel haemocytes loaded with Fura-2/AM or Fluo-3/AM showed that Hg2+, Cu2+ and Cd2+ induced a rise in probe fluorescence, whereas up to 200 microM Zn2+ had no effect. In particular, Cd2+ produced the strongest probe signal rise in free solution, but the lowest fluorescence increase in cells. Probe calibration yielded [Ca2+]i values characteristic of resting levels in control and Zn2+-exposed cells, and, as expected, indicated Ca2+ homeostasis impairment in cells exposed to Cd2+, Cu2+ and Hg2+. Our results show that Ca2+ probe responses to heavy metals in living cells are completely different from those obtained in free solution, indicating that fluorescent probes can be a suitable tool to record the effects of heavy metals on [Ca2+]i.  相似文献   

6.
Xu YJ  Saini HK  Cheema SK  Dhalla NS 《Cell calcium》2005,38(6):569-579
Although lysophosphatidic acid (LPA) is known to cause an increase in intracellular Ca2+ concentration ([Ca2+]i) in vascular smooth muscle cells (VSMCs), the mechanisms of [Ca2+]i mobilization by LPA are not fully understood. In the present study, the effect of LPA on [Ca2+]i mobilization in cultured A10 VSMCs was examined by Fura-2 fluorescence technique. The expression of LPA receptors was studied by immunostaining. LPA was observed to increase [Ca2+]i in a concentration-dependent manner; this increase was dependent on the concentration of extracellular Ca2+. Both sarcolemmal (SL) Na(+)-Ca2+ exchange inhibitors (amiloride, Ni2+ and KB-R7943) and Na(+)-H+ exchange inhibitor (MIA) as well as SL store-operated Ca2+ channel (SOC) antagonists (SK&F 96365, tyrphostin A9 and gadolinium), unlike SL Ca2+ channel antagonists (verapamil and diltiazem), inhibited the LPA-induced increase in [Ca2+]i. In addition, sarcoplasmic reticulum (SR) Ca2+ channel blocker (ryanodine), SR Ca2+ channel opener (caffeine), SR Ca2+ pump ATPase inhibitor (thapsigargin) and inositol 1,4,5-trisphosphate (InsP3) receptor antagonists (xestospongin and 2-aminoethoxydiphenyl borate) were found to inhibit the LPA-induced Ca2+ mobilization. Furthermore, phospholipase C (PLC) inhibitor (U 73122) and protein kinase C (PKC) activator (phorbol 12-myristate 13-acetate) attenuated the LPA-induced increase in [Ca2+]i. These results indicate that Ca2+ mobilization by LPA involves extracellular Ca2+ entry through SL Na(+)-Ca2+ exchanger, Na(+)-H+ exchanger and SL SOCs. In addition, ryanodine-sensitive and InsP(3)-sensitive intracellular Ca2+ pools may be associated with the LPA-induced increase in [Ca2+]i. Furthermore, the LPA-induced [Ca2+]i mobilization in VSMCs seems to be due to the activation of both PLC and PKC.  相似文献   

7.
Dual-excitation ratiometric dyes permit quantitative measurements of Ca2+ concentrations ([Ca2+]s), by minimizing the effects of several artifacts that are unrelated to changes in [Ca2+]. These dyes are excited at two different wavelengths, and the resultant fluorescence intensities are measured sequentially. Therefore, it is difficult to follow fast [Ca2+] dynamics or [Ca2+] changes in highly motile cell samples. To overcome this problem, we have developed a new dual-excitation ratiometry system that employs two high-power light-emitting diodes (LEDs), two high-speed liquid crystal shutters, and a CCD camera. The open/close operation of the two shutters is synchronized with the on/off switching of the two LEDs. This system increases the rate at which ratio measurements are made to 1 kHz, and provides ratio images at 10-100 Hz depending on the signal intensity. We demonstrate the effectiveness of this system by monitoring changes in [Ca2+] in cardiac muscle cells loaded with Fura-2.  相似文献   

8.
Qifu MA  Rengel Z  Kuo J 《Annals of botany》2002,89(2):241-244
Aluminium (Al) toxicity in rye (Secale cereale L.), an Al-resistant crop, was examined by measuring root elongation and cytoplasmic free activity of calcium ([Ca2+]cyt) in intact root apical cells. Measurement of [Ca2+]cyt, was achieved by loading a Ca2+-sensitive fluorescent probe. Fluo-3/AM ester, into root apical cells followed by detection of intracellular fluorescence using a confocal laser scanning microscope. After 20 min of exposure to 50 microM Al (pH 4-2) a slight increase in [Ca2+]cyt of root apical cells was observed, while the response of [Ca2+]cyt to 100 microM Al (pH 4.2) was faster and larger ([Ca2+]cyt increased by 46% in 10 min). Increases in [Ca2+]cyt were correlated with inhibition of root growth, generally measurable after 2 h. Addition of 400 microM malic acid (pH 4.2) largely ameliorated the effect of 100 microM Al on [Ca2+]cyt in root apical cells and protected root growth from Al toxicity. These results suggest that an increase in [Ca2+]cyt in root apical cells in rye is an early effect of Al toxicity and is followed by the secondary effect on root elongation.  相似文献   

9.
P W Marks  F R Maxfield 《Cell calcium》1990,11(2-3):181-190
Neutrophils are capable of undergoing rapid directed movement up a concentration gradient of chemoattractant culminating in the phagocytosis of a target. We have developed a system to make rapid photometric measurements and ratio images of cytosolic free calcium [( Ca2+]i) in human neutrophils loaded with the fluorescent Ca2(+)-sensitive indicator Fura-2 during these processes. In our system neutrophils undergo chemotaxis toward and phagocytosis of IgG and IgM-coated sheep erythrocytes attached to a surface. During chemotaxis and phagocytosis, repetitive transients in [Ca2+]i take place. Accompanying the transients during phagocytosis is a localized [Ca2+]i increase in the periphagosomal region. This localized increase is more apparent in cells phagocytosing particles coated with both IgG and IgM than with IgM alone. No consistent localization of increased [Ca2+]i is seen in cells solely undergoing chemotaxis. The imaging techniques described here allow the observation of [Ca2+]i changes over regions of several microns 2 in a cell with a time resolution of approximately 0.5 s. [Ca2+]i gradients extending over regions greater than approximately 4 microns 2 and lasting at least 1 s can be reliably detected.  相似文献   

10.
Activation of calcium oscillations by thapsigargin in parotid acinar cells.   总被引:7,自引:0,他引:7  
The tumor promoter thapsigargin releases Ca2+ from intracellular stores by specific inhibition of microsomal Ca-ATPase activity without inositol phosphate formation. Recent studies of the actions of thapsigargin support the concept that the level of Ca2+ within the inositol (1,4,5)-trisphosphate (IP3)-sensitive intracellular pool regulates the Ca2+ permeability of the plasma membrane. We examined the effects of thapsigargin on intracellular Ca2+ concentration ([Ca2+]i) in single rat parotid cells using digital fluorescence microscopy. In the absence of extracellular Ca2+ (Ca2+o), thapsigargin transiently increased [Ca2+]i. Following the thapsigargin-induced [Ca2+]i transient, carbachol in the continued absence of Ca2+o was unable to raise [Ca2+]i, indicating that thapsigargin mobilizes Ca2+ from the IP3-sensitive store. In the converse experiment, carbachol prevented a rise of [Ca2+]i by thapsigargin, suggesting that the IP3- and thapsigargin-sensitive Ca2+ pools are the same. Depletion of Ca2+ from the IP3-sensitive pool by thapsigargin enhanced plasma membrane Ca2+ permeability. Thapsigargin triggered sustained Ca2+ oscillations in Ca2(+)-containing medium which are highly reminiscent of agonist-induced oscillations in these cells. Carbachol addition rapidly raised IP3 levels during oscillations triggered by thapsigargin but did not elevate [Ca2+]i, indicating that the IP3-sensitive pool remains continuously depleted during [Ca2+]i fluctuations. The results from this study rule out the involvement of the IP3-sensitive pool in the mechanisms involved in thapsigargin-induced (and by analogy, agonist-induced) oscillations in parotid cells.  相似文献   

11.
Internal Ca2+ mobilization and secretion in bovine adrenal chromaffin cells   总被引:5,自引:0,他引:5  
T R Cheek  O Thastrup 《Cell calcium》1989,10(4):213-221
Since secretion from intact bovine adrenal chromaffin cells in response to depolarization by nicotine is triggered by a rise in the concentration of intracellular Ca2+ ([Ca2+]i) to about 200-300 nM above basal, it has been assumed that the failure of the inositol 1,4,5-trisphosphate (InsP3)-mobilizing muscarinic agonists to induce secretion reflects the fact that the 50 nM rise in [Ca2+]i they elicit is insufficient to trigger the exocytotic machinery. A recent report, however, has demonstrated that some of the nicotine-induced rise in [Ca2+]i could originate from the InsP3-releasable Ca2+ store. The role of this Ca2+ store in secretion from bovine adrenal chromaffin cells is therefore unclear. In order to investigate in more detail the role of the InsP3-sensitive Ca2+ store in secretion from these cells, we have used a combination of an InsP3-mobilizing muscarinic agonist and the sesquiterpene lactone thapsigargin (TG), which releases internal Ca2+ without concomitant breakdown of inositol lipids or protein kinase C activation, to examine the events which follow depletion of the releasable Ca2+ store in these cells. Monitoring [Ca2+]i using Fura-2 demonstrated that TG released Ca2+ from the InsP3-sensitive store and, additionally, that the Ca2+ response to TG was composed of two distinct, temporally separated, components: a) a slow (1 min) increase in [Ca2+]i to approximately 50 nM above basal that was independent of extracellular Ca2+ and b) the maintenance of this level at a new steady-state that was dependent on the continual entry of extracellular Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A rise in cytosolic free Ca2+ is the immediate trigger for contraction in vascular smooth muscle (VSM). We employed the fluorescent Ca2(+)-indicator, Fura-2, and digital imaging microscopy to study the spatial distribution of intracellular Ca2+ in cultured A7r5 cells and the changes evoked by activation with 5-HT. Several methodological considerations that affect the temporal and spatial resolution of Ca2+ images have been addressed. These include: cytoplasmic distribution of Fura-2, wavelength selection for ratio imaging, signal:noise ratio measurement and the effect of [Ca2+] on the limits of detectability under conditions in which [Ca2+] is changing. The distribution of apparent free Ca2+, [Ca2+]App, in A7r5 cells was heterogeneous. This reflects, in part, different pools of intracellular Ca2+. [Ca2+]App was lowest in the nucleus (113 +/- 14 nM; n = 20 cells) and highest in the organelle-rich perinuclear region (228 +/- 12; n = 20), while the surrounding cytoplasmic area (containing relatively few organelles) had intermediate [Ca2+]app levels (150 +/- 13; n = 20). 5-HT (1 microM) evoked transient increases in [Ca2+]App that began within 11 s as relatively modest elevations of [Ca2+]App in the periphery, near the sarcolemma, and subsequently spread to the entire cell, reaching a peak within 18-24 s. At the peak of the Ca2+ transients, [Ca2+]App was highest in the perinuclear region where it sometimes exceeded the maximal detectable levels of the system (1.9 microM). The average peak Ca2+ transient amplitude in the non-nuclear cytoplasm was 1083 +/- 208 nM (1 microM 5-HT; n = 20 cells). Despite the continued presence of 5-HT following the Ca2+ transients, [Ca2+]App then returned to pre-stimulation levels within 5 min. These observations indicate that digital imaging microscopy enables the study of subcellular regulation of intracellular Ca2+ in VSM. The results provide new insights into the role of localized changes in Ca2+ in the regulation of VSM contractility.  相似文献   

13.
We have previously shown that cardiovascular anomalies, such as hypertension and tachycardia, develop in Ca(2+)-deficient, shell-less (SL) chick embryos cultured ex ovo, accompanied by elevated circulating catecholamines and higher alpha-adrenergic sensitivity of cardiovascular functions. Results described in the preceding work, using erythrocytes as an experimental system, show that cellular Ca2+ handling properties are also altered as a result of long-term calcium deficiency. To examine the relevance of these findings to cells of the cardiovasculature, we have analyzed and compared the Ca2+ handling characteristics of the heart cells of SL and normal (NL) embryos. For this study, isolated and cultured ventricular myocytes of SL and NL embryos were loaded with Fura-2 via transient membrane damage with glass beads. Compared to Fura-2/AM, bead loading yielded similar values and kinetic profiles of [Ca2+]i-dependent differential fluorescence and, in addition, did not affect cell viability and beating activity. The Fura-2 loaded ventricular myocytes were washed in Ca(2+)-free buffer and then analyzed by ratiometric fluorescence (350 nm/380 nm) microscopy for kinetic changes in [Ca2+]i (R350/380 values) as a function of [Ca2+]o and adrenergic modifiers. At 0.5 and 1.0 mM [Ca2+]o, SL cells showed significantly higher [Ca2+]i, higher beating rates, and faster rate of increase in [Ca2+]i compared to NL cells. At higher [Ca2+]o (3.5 mM), there was no significant difference in [Ca2+]i and beating rate between NL and SL cells. Treatment with norepinephrine (NE; 0.01-1 microM) at 1 mM [Ca2+]o substantially increased [Ca2+]i in both NL and SL cells. In the former, the NE effect was completely inhibited by beta-blockade (1 microM propranolol). In contrast, in SL cells, NE remained effective after beta-blockade, and combined alpha-blockade (1 microM prazosin) and beta-blockade was needed to inhibit completely the NE effect. In both NL and SL cells, treatment with NE substantially increased beating rates in a similar manner. Taken together, these findings suggest that Ca2+ handling and adrenergic regulation of the heart cells are significantly altered in the SL embryos, and that these alterations may be related to the development of impaired cardiovascular functions resulting from systemic Ca2+ deficiency.  相似文献   

14.
InsP3- and Ca2(+)-induced Ca2+ release in single mouse oocytes   总被引:1,自引:0,他引:1  
A Peres 《FEBS letters》1990,275(1-2):213-216
To better understand the mechanism of intracellular Ca2+ mobilization, mouse oocytes were micro-injected with 'caged'-inositol-1,4,5 triphosphate caged-InsP3) together with the Ca2+ indicator Fluo-3 to directly induce and monitor Ca2+ redistribution. Photo-released InsP3 elicits [Ca2+]i changes exhibiting several kinetic phases and threshold behaviour. Often Ca2+ oscillations were induced after a single InsP3 pulse. Autoregenerative Ca2+ transients could also be induced by injections of Ca2+ itself, demonstrating unequivocally the presence of a Ca2(+)-induced Ca2(+)-release mechanism in these cells.  相似文献   

15.
Regulation of intracellular Ca2+ homeostasis was characterized in epimastigote forms of Trypanosoma cruzi using the fluorescence probe Fura-2. Despite an increase in extracellular Ca2+, [Ca2+]o, from 0 to 2 mM, cytosolic Ca2+, [Ca2+]i, increased only from 85 +/- 9 to 185 +/- 21 nM, indicating the presence of highly efficient mechanisms for maintaining [Ca2+]i. Exposure to monovalent Na+ (monensin)-, K+ (valinomycin, nigericin)-, and divalent Ca2+ (ionomycin)-specific ionophores, uncouplers of mitochondrial respiration (oligomycin), inhibitors of Na+/K(+)-ATPase (ouabain), and Ca(2+)-sensitive ATPase (orthovanadate) in 0 or 1 mM [Ca2+]o resulted in perturbations of [Ca2+]i, the patterns of which suggested both sequestration and extrusion mechanisms. Following equilibration in 1 mM [Ca2+]o, incubation with orthovanadate markedly increased [Ca2+]i, results which are compatible with an active uptake of [Ca2+]i by endoplasmic reticulum. In contrast, equilibration in 0 or 1 mM [Ca2+]o did not influence the relatively smaller increase in [Ca2+]i following incubation with oligomycin, suggesting a minor role for the mitochondrial compartment. In cells previously equilibrated in 1 mM [Ca2+]o, exposure to monensin or ouabain, conditions known to decrease the [Na+]o/[Na+]i gradient, upon which the Na+/Ca2+ exchange pathways are dependent, markedly increased [Ca2+]i. In a complementary manner, decreasing the extracellular Na+ gradient with Li+ increased [Ca2+]i in a dose-dependent manner. Finally, the calcium channel blockers verapamil and isradipine inhibited the uptake of Ca2+ by greater than 50%, whereas diltiazem, nifedipine, and nicardipine were ineffective. The results suggest that epimastigote forms of T. cruzi maintain [Ca2+]i by uptake, sequestration, and extrusion mechanisms, with properties common to eukaryotic organisms.  相似文献   

16.
The Ca(2+) dissociation constant (K(d)) of Fluo-3 was determined using confocal fluorescence microscopy in two different situations: (i) within the cytosol of a permeabilised cardiomyocyte; and (ii) in an intact cardiomyocyte after incubation with the acetoxymethyl ester form of Fluo-3 (AM). Measurements were made on isolated rabbit ventricular cardiomyocytes after permeabilisation by a brief treatment with beta-escin (0.1mg/ml) and equilibration with 10 microM Fluo-3. The K(d) of Fluo-3 within the cytosol was not significantly different from that in free solution (558 +/- 15 nM, n=6). Over a range of cytoplasmic [Ca(2+)], the minimum [Ca(2+)] values between Ca(2+) waves was relatively constant despite changes in wave frequency. After loading intact cardiomyocytes with Fluo-3 by incubation with the -AM, spontaneous Ca(2+) waves were produced by incubation with strophanthidin (10 microM). By assuming a common minimum [Ca(2+)] in permeabilised and intact cells, the intracellular K(d) of Fluo-3 in intact myocytes was estimated to be 898 +/-64 nM (n=6). Application of this K(d) to fluorescence records shows that Ca(2+) waves in intact cells have similar amplitudes to those in permeabilised cells. Stimulation of cardiac myocytes at 0.5 Hz in the absence of strophanthidin (room temperature) resulted in a Ca(2+) transient with a maximum and minimum [Ca(2+)] of 1190 +/- 200 and 158 +/- 30 nM (n=11), respectively.  相似文献   

17.
Lipolytic rates and intracellular Ca2+ concentration ([Ca2+]i) were determined under basal conditions and upon stimulation with adrenocorticotropic hormone (ACTH), norepinephrine (NE) and insulin (I), in adipocytes isolated from control and acutely endotoxin (ET)-treated rats (1 mg/100 g body weight, LD50 at 6 h). [Ca2+]i measurements were done using the fluorescent Ca2(+)-indicator Fura-2. NE and ACTH, but not I, produced a marked increase of [Ca2+]i in cells of both control and ET-treated rats. ET treatment elicited a significant increase in [Ca2+]i of resting cells, and enhanced the ACTH effect on this parameter. The changes in lipolytic activity correlated well with changes of [Ca2+]i induced by ACTH. The results indicate that ET-induced alterations in intracellular calcium homeostasis of adipocytes may contribute to the mediation of effects on fat mobilization during endotoxemia.  相似文献   

18.
In many cell types, low concentrations of inositol 1,4,5-trisphosphate (IP3) release only a portion of the intracellular IP3-sensitive Ca2+ store, a phenomenon known as "quantal" Ca2+ release. It has been suggested that this effect is a result of reduced activity of the IP3- dependent Ca2+ channel with decreasing calcium concentration within the IP3-sensitive store ([Ca2+]s). To test this hypothesis, the properties of IP3-dependent Ca2+ release in single saponin-permeabilized HSY cells were studied by monitoring [Ca2+]s using the Ca(2+)-sensitive fluorescent dye mag-fura-2. In permeabilized cells, blockade of the sarco/ER Ca(2+)-ATPase pump in stores partially depleted by IP3 induced further Ca2+ release via an IP3-dependent route, indicating that Ca2+ entry via the sarco/ER Ca(2+)-ATPase pump had been balanced by Ca2+ loss via the IP3-sensitive channel before pump inhibition. IP3- dependent Mn2+ entry, monitored via quenching of luminal mag-fura-2 fluorescence, was readily apparent in filled stores but undetectable in Ca(2+)-depleted stores, indicating markedly reduced IP3-sensitive channel activity in the latter. Also consistent with reduced responsiveness of Ca(2+)-depleted stores to IP3, the initial rate of refilling of these stores was unaffected by the presence of 0.3 microM IP3, a concentration that was clearly effective in eliciting Ca2+ release from filled stores. Analysis of the rate of Ca2+ release at various IP3 concentrations indicated a significant shift of the IP3 dose response toward higher [IP3] with decreasing [Ca2+]s. We conclude that IP3-dependent Ca2+ release in HSY cells is a steady-state process wherein Ca2+ efflux via the IP3 receptor Ca2+ channel is regulated by [Ca2+]s, apparently via changes in the sensitivity of the channel to IP3.  相似文献   

19.
Effects of dantrolene, a blocker of intracellular Ca2+ release, on the oscillation of the intracellular Ca2+ ([Ca2+]i) induced by caffeine were studied in bullfrog sympathetic ganglion cells, using a Fura-2 fluorescence technique. Dantrolene blocked the Ca2+ oscillation only in the cell illuminated by ultraviolet light (335-385 nm). Likewise, the blocking effects on rhythmic Ca(2+)-dependent hyperpolarizations, representing Ca2+ oscillations via activation of Ca(2+)-dependent K+ channel, occurred only under the illumination with ultraviolet light (335-385 nm), but not with visible light (404-417 nm). This wavelength dependence differs from the absorbance spectrum of dantrolene. On the other hand, dantrolene preirradiated with ultraviolet light under dark condition or ultraviolet light itself did not affect the [Ca2+]i oscillation. The blocking action was not prevented by the pretreatment of the cells with reducing agents. These results indicate that illumination of the Ca2+ release channel or dantrolene itself with ultraviolet light (possibly the former) is necessary for the drug to exert its blocking effect. Furthermore, dantrolene was found to decrease Fura-2 fluorescence and to increase cell autofluorescence, leading sometimes to a false decrease in the basal [Ca2+]i.  相似文献   

20.
A variety of neurotransmitters are believed to elicit effects through receptor-stimulated inositol phospholipid metabolism. It appears that most major types of retinal neurons receive a direct glutamatergic input. The aim of the present studies was to characterize excitatory amino acid (EAA) receptor-mediated breakdown of inositol phospholipids and changes in Ca2+ homeostasis in primary avian retinal cell cultures. Cell monolayers, prepared from 8-day-old chick embryo neural retina, were labelled with [3H]inositol for 48 h, and used after 7 days in vitro. Kainic acid stimulated the accumulation of inositol phosphates in a time- and dose-dependent manner (ED50 = 30 microM). The EAA receptor agonists glutamate, N-methyl-D-aspartate (NMDA), ibotenate and quisqualate were all active, with the rank order: glutamate greater than kainate greater than NMDA much greater than ibotenate approximately quisqualate. External Ca2+ was required for these effects. Agonist actions were inhibited by type-specific antagonists, and also Mg2+ in the case of glutamate and NMDA. Glutamate, NMDA and kainate also elevated cytosolic free Ca2+ in individual retinal cells loaded with the Ca2(+)-sensitive dye Fura-2, as assessed by digital fluorescence ratio imaging microscopy. The agonist-induced increases in [Ca2+]i were largely dependent on extracellular Ca2+, independent of membrane depolarization and were blocked by Mg2+ for glutamate and NMDA. These results demonstrate that vertebrate retinal cells possess EAA receptors coupled to intracellular signal transduction pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号