首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lutein is widely used as diet supplement for prevention of age-related macular degeneration. However, the application and efficacy of lutein in food and nutritional products has been hampered due to its poor solubility and low oral bioavailability. This study aimed to develop and evaluate the formulation of oral fast-dissolving film (OFDF) containing lutein nanocrystals for enhanced bioavailability and compliance. Lutein nanocrystals were prepared by anti-solvent precipitation method and then encapsulated into the films by solvent casting method. The formulation of OFDF was optimized by Box-Behnken Design (BBD) as follows: HPMC 2.05% (w/v), PEG 400 1.03% (w/v), Cremophor EL 0.43% (w/v). The obtained films exhibited uniform thickness of 35.64 ± 1.64 μm and drug content of 0.230 ± 0.003 mg/cm2 and disintegrated rapidly in 29 ± 8 s. The nanocrystal-loaded films with reconstituted particle size of 377.9 nm showed better folding endurance and faster release rate in vitro than the conventional OFDFs with raw lutein. The microscope images, thermograms, and diffractograms indicated that lutein nanocrystals were highly dispersed into the films. After administrated to SD rats, t max was decreased from 3 h for oral solution formulation to less than 0.8 h for OFDF formulations, and C max increased from 150 ng/mL for solution to 350 ng/mL for conventional OFDF or 830 ng/mL for nanocrystal OFDF. The AUC 0-24h of conventional or nanocrystal OFDF was 1.37 or 2.08-fold higher than that of the oral solution, respectively. These results suggested that drug nanocrystal-loaded OFDF can be applied as a promising approach for enhanced bioavailability of poor soluble drugs like lutein.  相似文献   

2.
A number of business opportunities may arise from microalgae and wastewater treatment becoming an integrated system, as biofuels and high-added value products could be obtained simultaneously. This study, performed under controlled and non-controlled conditions, aimed at cultivating Chlorococcum sp. using a digestate from pig manure as culture medium and assessing its growth and biochemical composition for further applications. Under controlled conditions, cultures of Chlorococcum sp. were established testing various digestate dilutions (v/v). It was found that all tested dilutions (up to 8% v/v) promoted a higher biomass density, compared to the control culture in modified Bold’s Basal Medium (modified BBM). Under non-controlled conditions, it was found that the biomass productivity using the digestate diluted 5.6% v/v (23.4 mg L?1 day?1) was statistically similar to the one obtained using modified BBM (26.4 mg L?1 day?1). The volatile fatty acids contained in the digestate might have allowed mixotrophic growth for Chlorococcum sp. The intracellular lipid content in Chlorococcum sp. remained constant throughout the experiments in both, treatment and control cultures, while carbohydrates increased from 20 to 45% of the cell dry weight in the treatment and from 20 to 42% in the control one. It was concluded that conditions of nitrogen starvation and fluctuating irradiance and temperature benefit carbohydrate accumulation in this strain, since intracellular carbohydrate content increased nearly two-fold during this period. Additionally, the obtained biomass has the potential to be used as feedstock for bioethanol production. This system can meet the concept of a microalgae-based biorefinery, in which biofuels and high-added value products are produced from microalgae and wastewater.  相似文献   

3.
Carvedilol, a beta-adrenergic blocker, suffers from poor systemic availability (25%) due to first-pass metabolism. The aim of this work was to improve carvedilol bioavailability through developing carvedilol-loaded solid lipid nanoparticles (SLNs) for nasal administration. SLNs were prepared by emulsion/solvent evaporation method. A 23 factorial design was employed with lipid type (Compritol or Precirol), surfactant (1 or 2% w/v poloxamer 188), and co-surfactant (0.25 or 0.5% w/v lecithin) concentrations as independent variables, while entrapment efficiency (EE%), particle size, and amount of carvedilol permeated/unit area in 24 h (Q 24) were the dependent variables. Regression analysis was performed to identify the optimum formulation conditions. The in vivo behavior was evaluated in rabbits comparing the bioavailability of carvedilol after intravenous, nasal, and oral administration. The results revealed high drug EE% ranging from 68 to 87.62%. Carvedilol-loaded SLNs showed a spherical shape with an enriched core drug loading pattern having a particle size in the range of 66 to 352 nm. The developed SLNs exhibited significant high amounts of carvedilol permeated through the nasal mucosa as confirmed by confocal laser scanning microscopy. The in vivo pharmacokinetic study revealed that the absolute bioavailability of the optimized intranasal SLNs (50.63%) was significantly higher than oral carvedilol formulation (24.11%). Hence, we conclude that our developed SLNs represent a promising carrier for the nasal delivery of carvedilol.  相似文献   

4.
5.
This study reports for the first time the extraction and quantification of sterols in six species of brown macroalgae from Antarctica: Adenocystis utricularis, Ascoseira mirabilis, Cystosphaera jacquinotii, Desmarestia anceps, Desmarestia antarctica, and Himantothallus grandifolius. Ultrasound irradiation was used as a promotor to extract sterols from algal biomass. The extracts were analyzed by high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) for sterol quantization (ergosterol, brassicasterol, fucosterol, β-sitosterol, campesterol, cholesterol, and stigmasterol). In general, fucosterol was the most abundant (6.60 to 48.13 mg kg?1), followed by β-sitosterol (5.29 to 16.49 mg kg?1), stigmasterol (2.69 to 14.84 mg kg?1) in five of the six examined algae. The sterol campesterol was found in lower concentrations (0.07 to 0.15 mg kg?1) in all studied samples.  相似文献   

6.
In this study conservation of Castilleja levisecta Greenm., a globally endangered species was addressed through in vitro cryopreservation of shoot tips. In vitro cultures were successfully established using seedlings received from British Columbia, Canada. Shoot tips excised from in vitro propagated plants were cryopreserved using a droplet-vitrification method following optimization of individual protocol steps such as pre-culture, treatment with vitrification solutions, and unloading. The highest plant regrowth after cryopreservation (66%) was achieved when shoot tips were pre-cultured in 0.3 M sucrose for 17 h followed by 0.5 M sucrose for 4 h, incubated in an osmo-protectant solution (17.5% [v/v] glycerol and 17.5% [w/v] sucrose) for 20 min, exposed to vitrification solution A3 (37.5% [v/v] glycerol plus 15% [v/v] dimethylsulfoxide (DMSO) plus 15% [v/v] ethylene glycol (EG) plus 22.5% [w/v] sucrose) on ice for 40 min, and unloaded in 0.8 M sucrose solution for 30 min. Healthy plants were developed from cryopreserved shoot tips and propagated in vitro using nodal segments. Plants derived from in vitro culture and from cryopreserved tissues were successfully rooted and acclimated in a greenhouse with 100% survival rate. Acclimatized plants were reintroduced in a naturalized propagation area at the Conservation Nursery at Fort Rodd Hill, Canada. Twenty of 94 reintroduced plants (21%) survived the transit from lab to field and some had started to flower. This is the first report for cryopreservation of C. levisecta, an important step in conserving and re-introducing this critically imperiled species in nature.  相似文献   

7.
Natural saline lakes in Western Australia were sampled for microalgae species and strains with potential for large-scale outdoor cultivation over a wide range of salinities for biofuels production. Using a rational isolation and screening process, several Tetraselmis strains (Chlorophyta, Chlorodendrales) with a broad range of salinity tolerance were identified and were characterised further for their potential for biofuels production. Specific growth rates increased from 0.8 to 1.2 days?1 when the medium salinity was decreased from 11 to 3 % (w/v) NaCl (1.88 to 0.51 M NaCl) in batch cultivation mode, thereby indicating quick adaptation to large salinity changes. In general, ash-free dry weight (AFDW), total lipid, protein and carbohydrate contents per cell were highest in the early stages of growth. Salinity increases led to an increase in cell AFDW, with the highest mean maximum of 2555?±?659 pg AFDW.cell?1 at 11 % (w/v) NaCl in the strains Tetraselmis MUR 167 and MUR 219 which had been in culture for many years, as compared to the mean maximum of 981?±?141 pg AFDW.cell?1 the in newly isolated strains MUR 230, 231, 232 and 233. Similar observations on total lipid, protein and carbohydrate content per cell were made between the two groups of strains. Overall, all strains yielded high biomass and total lipid productivities over a very wide range of salinities without large variation in their gross biochemical composition and growth pattern. Based on AFDW and total lipid productivity data, the order of preference for selecting strains for further investigation for large-scale culture was MUR 231?>?MUR 233?>?MUR 219?>?MUR 230?>?MUR 232?>?MUR 167. The Tetraselmis spp. were also very competitive as shown by the outdoor cultivation of diatom, Halamphora coffeaeformis MUR 158, in parallel with Tetraselmis sp. MUR 167 which resulted in the diatom being outcompeted by the green alga. Our results demonstrate the high commercial potential of euryhaline Tetraselmis spp. for cultivation over a broad range of salinity in outdoor cultures.  相似文献   

8.
Efficient methodology for simultaneous extraction of multiple bioactive compounds from microalgae still remains a major challenge. The present study provides a method for the sequential production of three major products: Chlorella Growth Factor (CGF, a nucleotide-peptide complex enriched with vitamins, minerals, and carbohydrates), lipid, and carotenoids from Chlorella vulgaris biomass in an economically feasible manner. After protein-rich CGF was extracted, the spent biomass was found to contain 12% lipid and 3% carotenoids when extracted individually, compared to that of the un-utilized (fresh) biomass (lipid, 14%; carotenoids, 4%). When extracted simultaneously using conventional methods, the yield of lipid from “CGF and carotenoids-extracted biomass,” and carotenoids from “CGF and lipid-extracted biomass” were significantly reduced (50%). However, simultaneous extraction using different solvent mixtures such as hexane:methanol:water and pentane:methanol:water mixture-augmented lipid yield by 38.5% and carotenoids by 14%, and additionally retained chlorophyll and its derivatives. Column chromatographic approach yielded sequential production of lipid (18%), lutein (9%) with better yields as well as without chlorophyll interference. Different geometric isomers of lutein all-E-(trans)-(3R,3′R,6′R)-β,ε-carotene-3,3′diol, 9Z(cis)-(3R,3′R,6′R)-β,ε-carotene-3,3′diol, and 13Z(cis)-(3R,3′R,6′R)-β,ε-carotene-3,3′diol were purified by HPLC and elucidated by CD, UV, NMR, FT-IR, and Mass spectra. In conclusion, the study provides an efficient and economically viable methodology for sequential production of lipid and lutein along with its geometrical isomers without chlorophyll influence and yield loss from the protein-rich CGF-extracted spent biomass of marine microalga, Chlorella vulgaris.  相似文献   

9.
Cultivation temperature is one of the major factors affecting the growth and lipid accumulation of microalgae. In this study, the effects of temperature on the growth, lipid content, fatty acid composition and biodiesel properties of the marine microalgae Chaetoceros sp. FIKU035, Tetraselmis suecica FIKU032 and Nannochloropsis sp. FIKU036 were investigated. These species were cultured at different temperatures (25, 30, 35 and 40 °C). The results showed that the specific growth rate, biomass and lipid content of all microalgae decreased with increasing temperature. With regards to fatty acids, the presence of saturated fatty acids (SFAs) in T. suecica FIKU032 and Nannochloropsis sp. FIKU036 decreased with increasing temperature, in contrast with polyunsaturated fatty acids (PUFAs). Moreover, Chaetoceros sp. FIKU035 was the only species that could grow at 40 °C. The highest lipid productivity was observed in Chaetoceros sp. FIKU035 when cultivated at 25 °C (66.73 ± 1.34 mg L?1 day?1) and 30 °C (61.35 ± 2.89 mg L?1 day?1). Moreover, the biodiesel properties (cetane number, cold filter plugging point, kinematic viscosity and density) of the lipids obtained from this species were in accordance with biodiesel standards. This study indicated that Chaetoceros sp. FIKU035 can be considered as a suitable species for biodiesel production in outdoor cultivation.  相似文献   

10.
The purpose of this research was to develop microemulsions (ME) and microemulgels (MG) for enhancing transdermal delivery of Kaempferia parviflora (KP) extract. The methoxyflavones were used as markers. Various formulations of ME and MG containing 10% w/v KP extract were prepared, and the in vitro skin permeation and deposition were investigated. The potential ME system containing oleic acid (5% w/v), Tween 20 (20% w/v), PG (40% w/v), and water (35% w/v) was successfully formulated. ME with 10% w/v limonene (ME-L10%) showed higher methoxyflavones flux than ME-L5%, ME-L1%, ME without limonene, and KP extract in water, respectively. ME-L10% was selected for adding a gelling agent to form microemulgels (MG-L10%). However, the high viscosity of the gel formulation might control the diffusion of the compound from gel layer into the skin. Therefore, the liquid formulation provided potential ME droplets to deliver KP extract through the skin. Limonene also plays an effective role on the skin permeation, in which the histological image of the skin treated with ME-L10% exhibited larger space of each flattened keratinocyte layer in the stratum corneum compared to the skin treated with KP extract in water. Moreover, ME-L10% showed good stability. Therefore, ME-L10% was a potential formulation for improving transdermal delivery of KP extract.  相似文献   

11.
Abelmoschus manihot, an ornamental plant, was examined for phytoremediation purposes in accordance with the ability to accumulate cadmium and physiological mechanisms of cadmium tolerance. A net photosynthetic rate (A N) glasshouse experiment for 60 days was conducted to investigate the influence of different cadmium amounts (0–100 mg kg?1) on the growth, biomass, photosynthetic performance, reactive oxygen species (ROS) production, antioxidative enzyme activities, Cd uptake and accumulation of A. manihot. Exposure to cadmium enhanced plant growth even at 100 mg kg?1, without showing symptoms of visible damage. The cadmium concentration of shoots (stems or leaves) and roots was more than the critical value of 100 mg kg?1 and reached 126.17, 185.26 and 210.24 mg kg?1, respectively. BCF values of A. manihot plants exceeded the reference value 1.0 for all the Cd treatments, and TF values were greater than 1 at 15–60 mg kg?1 Cd treatment. The results also showed that cadmium concentrations of 60 mg kg?1 or less induced a significant enhancement in plant net photosynthetic rate (A N), stomatal conductance (G s), transpiration rate (T r), photosynthetic pigments and F v/F m. These parameters were slightly decreased at the higher concentration (100 mg kg?1). The ROS production (O2 ?, H2O2) and antioxidative response including SOD, CAT and POD were significantly enhanced by increasing cadmium. These results suggest that A. manihot can be considered as a Cd-hyperaccumulator and the hormetic effects may be taken into consideration in remediation of Cd contamination soil.  相似文献   

12.
In this study, our working hypothesis was to examine whether temperature alters biomass and metabolite production by microalgae according to strain. We also addressed whether it is possible to choose a strain suitable for growing in each season of a given region. A factorial experiment revealed a significant interaction between chlorophylls a and b (Chl a and Chl b), carotenoid/Chl (a?+?b) ratio, biomass and total lipid productivity of six green microalgae (four Chlorella spp., Chlorella sorokiniana and Neochloris oleoabundans) after 15 days at four temperatures. At 39/35 °C, two Chlorella sp. strains (IPR7115 and IPR7117) showed higher total carotenoids/Chl (a?+?b) (0.578 and 0.830), respectively. N. oleoabundans had the highest Chl a (8210 μg L?1) and Chl b (1909 μg L?1) at 19/15 °C and highest maximum dry biomass (2900 mg L?1), specific growth rate (0.538 day?1) and total lipids (1003 mg L?1) at 15/8 °C. We applied a method to infer the growth of these six green microalgae in outdoor ponds, as based on their response to changing temperatures and by combining with historical data on day/night air temperature occurrence for a given region. We conclude that the use of regionalized maps based on air temperature is a good strategy for predicting microalgal cultivation in outdoor ponds based on their features and tolerance to changing temperature.  相似文献   

13.
Geranyl diphosphate (GPP), the unique precursor for all monoterpenoids, is biosynthesized from isopentenyl diphosphate and dimethylallyl diphosphate via the head-to-tail condensation reaction catalyzed by GPP synthase (GPPS). Herein a homomeric GPPS from Camptotheca acuminata, a camptothecin-producing plant, was obtained from 5′- and 3′-rapid amplification of cDNA ends and subsequent overlap extension and convenient PCR amplifications. The truncate CaGPPS was introduced to replace ispA of pBbA5c-MevT(CO)-MBIS(CO, ispA), a de novo biosynthetic construct for farnesyl diphosphate generation, and overexpressed in Escherichia coli, together with the truncate geraniol synthase-encoding gene from C. acuminata (tCaGES), to confirm CaGPPS-catalyzed reaction in vivo. A 24.0 ± 1.3 mg L?1 of geraniol was produced in the recombinant E. coli. The production of GPP was also validated by the direct UPLC-HRMSE analyses. The tCaGPPS and tCaGES genes with different copy numbers were introduced into E. coli to balance their catalytic potential for high-yield geraniol production. A 1.6-fold increase of geraniol production was obtained when four copies of tCaGPPS and one copy of tCaGES were introduced into E. coli. The following fermentation conditions optimization, including removal of organic layers and addition of new n-decane, led to a 74.6 ± 6.5 mg L?1 of geraniol production. The present study suggested that the gene copy number optimization, i.e., the ratio of tCaGPPS and tCaGES, plays an important role in geraniol production in the recombinant E. coli. The removal and addition of organic solvent are very useful for sustainable high-yield production of geraniol in the recombinant E. coli in view of that the solubility of geraniol is limited in the fermentation broth and/or n-decane.  相似文献   

14.
Producing valuable coproducts from oleaginous microalgae is an option to reduce the total cost of biofuel production. Here, the influence of nitrogen sources on biomass yield and lipid accumulation of a newly identified oleaginous green microalgal strain, Mychonastes afer HSO-3-1, was evaluated. Carbon assimilation and the following lipid biosynthesis of M. afer were inhibited to some extent under weak acidic conditions (6 < pH < 7) and any of the tested nitrogen source. The highest lipid productivity of 50.7 mg L?1 day?1 was achieved with a 17.6 mM nitrogen supplement in the form of urea. The cell polar lipid content was significantly higher than triacylglycerol (TAG), and saturated palmitic acid (C16:0) occupied a dominant position in the fatty acid profiles while culturing M. afer in acidic medium with NH4 + as the nitrogen source. Under neutral conditions, the lipid productivities of M. afer cultivated in media containing 17.6 mM of NaNO3, NH4Cl, and NH4NO3 were 76.2, 77.5, and 79.0 mg L?1 day?1, respectively. The greatest TAG content (58.56%) of total lipids was obtained when NaNO3 was used as the nitrogen source. There was no significant difference in the fatty acid composition of M. afer cells when they were cultivated in neutral media supplemented with NaNO3, urea, NH4Cl, and NH4NO3. Therefore, NH4 + was not a suitable nitrogen source for M. afer cultivation due to the additional labor, working procedures, and alkali required to adjust the medium pH. Considering that using urea as nitrogen source could reduce the cost of nutrient salts substantially and urea can be taken up and utilized by most microalgae, it is a preferred nitrogen source. The major properties of biodiesel derived from M. afer HSO-3-1 met biodiesel quality, and nervonic acid concentrations remained at approximately 3.0% of total fatty acids.  相似文献   

15.
Botryococcus braunii is a microalga considered for biofuel production and may require physical disruption of cells/colonies for efficient hydrocarbon extraction. In this study, the strength of individual cells of B. braunii was measured using a nanoindenter. From the load and cell size, the pressure for bursting the cell was calculated to be 56.9 MPa. This value is 2.3–10 times those of Saccharomyces cerevisiae and Chlorella vulgaris found in another research, because B. braunii has two types of cell walls with different thicknesses. The energy required to disrupt 1 g of dry B. braunii cells, estimated by load-displacement curves, is 3.19 J g?1 which is 0.19–1.2 times higher than those of S. cerevisiae and C. vulgaris. When using a high-pressure homogenizer for disrupting B. braunii cells, the cell disruption degree increased with the treatment pressure at above 30 MPa, and 70% of cells were disrupted at 80 MPa.  相似文献   

16.
The objective of this study was to prepare and evaluate terbutaline sulphate (TBS) bi-layer tablets for once-daily administration. The bi-layer tablets consisted of an immediate-release layer and a sustained-release layer containing 5 and 10 mg TBS, respectively. The sustained-release layer was developed by using Compritol®888 ATO, Precirol® ATO 5, stearic acid, and tristearin, separately, as slowly eroding lipid matrices. A full 4?×?22 factorial design was employed for optimization of the sustained-release layer and to explore the effect of lipid type (X 1), drug–lipid ratio (X 2), and filler type (X 3) on the percentage drug released at 8, 12, and 24 h (Y 1, Y 2, and Y 3) as dependent variables. Sixteen TBS sustained-release matrices (F1–F16) were prepared by melt solid dispersion method. None of the prepared matrices achieved the targeted release profile. However, F2 that showed a relatively promising drug release was subjected to trial and error optimization for the filler composition to develop two optimized matrices (F17 and F18). F18 which consisted of drug–Compritol®888 ATO at ratio (1:6 w/w) and Avicel PH 101/dibasic calcium phosphate mixture of 2:1 (w/w) was selected as sustained-release layer. TBS bi-layer tablets were evaluated for their physical properties, in vitro drug release, effect of storage on drug content, and in vivo performance in rabbits. The bi-layer tablets showed acceptable physical properties and release characteristics. In vivo absorption in rabbits revealed initial high TBS plasma levels followed by sustained levels over 24 h compared to immediate-release tablets.  相似文献   

17.
Dioscorea spp. is an important food crop in many countries and the source of the phytochemical diosgenin. Efficient microtuber production could provide source materials for farm-planting stock, for food markets, and for the production of high-diosgenin-producing cultivars. The first step in this study was optimizing the plant growth regulators for plantlet production, followed by a study of the effects of sucrose concentration on microtuber induction and diosgenin production. Significantly, more shoots (3.5) were produced at 4.65 μM (1 mg L?1) kinetin (KIN), longer shoots (4.1 cm) were obtained at 2.46 μM (0.5 mg L?1) indole-3-butyric acid (IBA), and root number (3.9) was significantly higher at 5.38 μM (1 mg L?1) naphthalene acetic acid (NAA) than in other treatments. Increased sucrose concentrations in the optimized growth medium with 4.65 μM KIN and 5.38 μM NAA had significant effects on microtuber production (p < 0.01) and diosgenin content (p < 0.05). The most microtubers (6.2) were obtained with 100 g L?1 sucrose, while those on 80 g L?1 sucrose were the heaviest (0.7 g) and longest (7.4 mm). Microtubers formed in medium with 80 g L?1 sucrose had significantly higher diosgenin content (3.64% [w/w]) than those in other sucrose treatments (< 2%) and was similar to that of field-grown parent tubers (3.79%). This result indicates an important role for sucrose in both microtuber growth and diosgenin production. Medium containing 4.65 μM KIN and 5.38 μM NAA is recommended for plantlet production, and medium containing 80 g L?1 sucrose is recommended for microtuber and diosgenin production.  相似文献   

18.
This study aimed to evaluate the ability of commercial soy protein isolate (SPI) to form cold-set gels under different pHs (5–11), pre-heating temperatures (60 °C, 80 °C), CaCl2 (0–15 mM) and SPI (5–15%, w/v) concentrations, and also select a formulation for the investigation of the effects of incorporating locust bean gum (LBG) (0–0.3%, w/v) and solid lipid microparticles (SLM) on gels rheological and microstructural properties. Gels were evaluated in terms of visual aspect, water-holding capacity, microstructure (using confocal laser scanning microscopy and cryo-scanning electronic microscopy) and rheological properties. SPI showed higher solubilities at pHs 7 (32.0%), 9 (51.6%) and 11 (100%). Self-supported gels were obtained under several conditions at alkaline pHs. At pH 7, only systems pre-heated to 80 °C with 15% (w/v) SPI and 10 or 15 mM CaCl2 gave self-supported gels. At neutral pH, samples showed relative structural instability, which was minimized with LBG incorporation. Formulations GSPI (pH 7, preheated to 80 °C, 15% (w/v) SPI, 10 mM CaCl2) and GMIX (pH 7, preheated to 80 °C, 15% (w/v) SPI, 0.2% (w/v) LBG, 15 mM CaCl2) were selected for emulsion-filled gels (EFG) production. Power law parameters (K′, K″), calculated from frequency sweep results, revealed that non-filled GMIX (K′: 472.1; K″: 77.6) was stronger than GSPI (K′: 170.4; K″: 33.6). Besides, GMIX showed microphase separation. SLM stabilized with Tween 80-Span 80 were active fillers in EFG, altering microstructures and increasing G’, G” and the Young’s modulus (1.8 to 2.1 kPa for GSPI and 1.4 to 2.2 kPa for GMIX).  相似文献   

19.
A complete protocol for the in vitro induction of Eclipta alba tetraploids has been optimized to enhance the wedelolactone content, an anti-cancerous compound. The effects of different concentrations of colchicine (0, 0.01, 0.05, 0.1, 0.2 and 0.3%; w/v) along with treatment durations (12, 24, 36 and 48 h) were investigated on shoot tip (ST) and nodal segment (NS). The treated explants were then incubated on Murashige and Skoog (MS) medium having 1.5 mg L?1 N6-benzylaminopurine and 0.5 mg L?1 α-napthalene acetic acid for shoot regeneration and afterward root was induced on 1.0 mg L?1 indole-3-acetic acid enriched ½MS medium. The tetraploids of E. alba were proficiently induced by the treatment of 0.1% colchicine for 24 h. The highest tetraploid induction efficiency was obtained from ST (30.56%) in comparison to the NS (22.22%). Analysis by spectrophotometry and flow cytometry showed that colchicine treated plants contained higher quantity of DNA than diploid plants. Cytological studies demonstrated doubled the chromosome number in tetraploids (2n?=?4x?=?44) than diploids (2n?=?2x?=?22). The ploidy level enhancement lead to alteration of other traits, like increased plant height, stem diameter, leaf size, stomatal size and chlorophyll content. As determined through high performance thin-layer chromatography, the ultimate achievement of this technique is the higher accumulation of wedelolactone in tetraploid plants (300.32 µg g?1 dry weight) in evaluation to in vitro diploid (131.31 µg g?1 dry weight) and in vivo diploid mother plants (93.26 µg g?1 dry weight), thus improving the pharmaceutical value of E. alba.  相似文献   

20.
Shoot tip explants of Phyllanthus amarus were cocultivated with Agrobacterium tumefaciens strain LBA 4404 carrying plasmid pCAMBIA 2301 harbouring genes coding for betaglucuronidase (gus), kanamycin (kan), and neomycin phosphotransferase II (nptII) along with a gene coding for Linum usitatissimum PINORESINOL LARICIRESINOL REDUCTASE (Lu-PLR). Transformed shoot tip explants were maintained in a Murashige and Skoog (MS) medium containing TDZ 1.54 mg l?1, kan 50 mg l?1 and cephotaxime 62.5 mg l?1. The optimum medium for regeneration of multiple shoots was MS supplemented with TDZ 1.54 mg l?1, kan 50 mg l?1. Efficient and effective rooting of plantlets was achieved by culturing the in vitro regenerated shoots on liquid ½ MS medium containing 0.7 mg l?1 indole 3-butyric acid (IBA) and 5 mg l?1 kan. Rooted plants were acclimatized in the mixtures of vermiculite and soil. The transformation of kan-resistant plantlets regenerated from shoot-tip explants was confirmed by GUS and polymerase chain reaction (PCR) analysis. Southern blot and reverse transcribed PCR (RT-PCR) analysis confirmed successful integration and expression of Lu-PLR gene. Quantitative analysis of phyllanthin performed on transgenic and wild plants using high-performance liquid chromatography (HPLC) revealed that transgenic lines contained higher phyllanthin content (0.3–0.81% w/w) than wild plants (0.09% w/w). The highest yield of phyllanthin was detected in transgenic lines was up to 1.16, 1.22 and 1.23 folds higher than that of wild plant. This report highlights the transgenic approach to enhance the contents of phyllanthin and hypophyllanthin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号