首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new strain of Chlorella sp. (Chlorella-Arc), isolated from Arctic glacier melt water, was found to have high specific growth rates (μ) between 3 and 27 °C, with a maximum specific growth rate of 0.85 day?1 at 15 °C, indicating that this strain was a eurythermal strain with a broad temperature tolerance range. To understand its acclimation strategies to low and high temperatures, the physiological and biochemical responses of the Chlorella-Arc to temperature were studied and compared with those of a temperate Chlorella pyrenoidosa strain (Chlorella-Temp). As indicated by declining F v/F m, photoinhibition occurred in Chlorella-Arc at low temperature. However, Chlorella-Arc reduced the size of the light-harvesting complex (LHC) to alleviate photoinhibition, as indicated by an increasing Chl a/b ratio with decreasing temperatures. Interestingly, Chlorella-Arc tended to secrete soluble sugar into the culture medium with increasing temperature, while its intracellular soluble sugar content did not vary with temperature changes, indicating that the algal cells might suffer from osmotic stress at high temperature, which could be adjusted by excretion of soluble sugar. Chlorella-Arc accumulated protein and lipids under lower temperatures (<15 °C), and its metabolism switched to synthesis of soluble sugar as temperatures rose. This reflects a flexible ability of Chlorella-Arc to regulate carbon and energy distribution when exposed to wide temperature shifts. More saturated fatty acids (SFA) in Chlorella-Arc than Chlorella-Temp also might serve as the energy source for growth in the cold and contribute to its cold tolerance.  相似文献   

2.
The thermal sensitivities of organisms regulate a wide range of ecological interactions, including host–parasite dynamics. The effect of temperature on disease ecology can be remarkably complex in disease systems where the hosts are ectothermic and where thermal conditions constrain pathogen reproductive rates. Amphibian chytridiomycosis, caused by the pathogen Batrachochytrium dendrobatidis (Bd), is a lethal fungal disease that is influenced by temperature. However, recent temperature studies have produced contradictory findings, suggesting that our current understanding of thermal effects on Bd may be incomplete. We investigated how temperature affects three different Bd strains to evaluate diversity in thermal responses. We quantified growth across the entire thermal range of Bd, and beyond the known thermal limits (T max and T min). Our results show that all Bd strains remained viable and grew following 24 h freeze (?12 °C) and heat shock (28 °C) treatments. Additionally, we found that two Bd strains had higher logistic growth rates (r) and carrying capacities (K) at the upper and lower extremities of the temperature range, and especially in low temperature conditions (2–3 °C). In contrast, a third strain exhibited relatively lower growth rates and carrying capacities at these same thermal extremes. Overall, our results suggest that there is considerable variation among Bd strains in thermal tolerance, and they establish a new thermal sensitivity profile for Bd. More generally, our findings point toward important questions concerning the mechanisms that dictate fungal thermal tolerances and temperature-dependent pathogenesis in other fungal disease systems.  相似文献   

3.
Over the last decades human have introduced non-native organisms to Antarctica, including the grass species Poa annua. This non-native grass under constant growth temperatures has been shown negatively affect the growth of the only two native Antarctic vascular plants, Deschampsia antarctica and Colobanthus quitensis, under constant growth temperatures. However, whether there are changes in the interaction between these species under warmer conditions is an important question. In cold ecosystems, soil nutrient status directly affects plant responses to increases in temperature and Antarctic soils are highly variable in nutrient supply. Thus, in this study we experimentally assessed the interaction between the non-native Poa with the two native Antarctic vascular plant species at two different temperatures and levels of nutrient availability. Individual mats of the study species were collected in King George Island, and then transported to Concepcion where we conducted competition experiments. In the first experiment we used soil similar to that of Antarctica and plants in competition were grown at two temperatures: 5°/2° and 11°/5 °C (day/night temperature). In a second experiment plants were grown in these two temperature regimes, but we varied nitrogen (N) availability by irrigating plants with Hoagland solutions that contained 8000 or 300 µM of N. Overall, Poa exerted a competitive effect on Deschampsia but only at the higher temperature and higher N availability. At 5°/11 °C the competitive response of Deschampsia to Poa was of similar magnitude to the competitive effect of P. Deschampsia, and the competitive effect was greater with at low N. The competitive effect of Poa was similar to the competitive response of Colobanthus to Poa at both temperatures and N levels. Thus, at low temperatures and N soil content the native Antarctic species might withstand Poa invasion, but this might change with climate warming.  相似文献   

4.
The Antarctic Lake Wujka (62°09′28.3″S, 58°27′56.3″W), a shallow water body (Z m  = 1.38 m), situated at c.15 m from the seashore was sampled at two points (Sp 1 and Sp 2) at 3-day intervals from December 2003 to June 2004. The two sampling points differing in location and depth: Sp 1 (Z m  = 0.50 m) was the shallowest site, located near the lake outlet, while Sp 2 (Z m  = 1.38 m) was the deepest spot of the lake. The population density of Notholca squamula salina peaked in June (at 114 ind. l?1) at Sp 1, while at Sp 2 peaked in January (80 ind. l?1) and May (150 ind. l?1). Spearman non-parametric correlations with temperature, salinity, total dissolved solids, conductivity and pH revealed effects that characterize N. squamula salina as a species capable of surviving in a range of aquatic environments, but with a preference for high salinity, food and low temperature. It occurred in highest numbers when the diatom Achnanthes lanceolata var. rostrata (Øestrup) Hust., normally a benthic species, was stirred up into the water during storms that also raised the lake’s salinity to above 20 psu.  相似文献   

5.
The effect of five constant temperatures of 21, 24, 27, 30 and 33 °C on adult life span, reproduction, oviposition behavior and larval developmental time of a bitter gourd inhabited coleopteran insect Epilachna dodecastigma (Wied.) (Coccinellidae) was determined in laboratory conditions under 70 ± 5 % relative humidity and a photoperiod of 12 L : 12 D. Larval developmental time of E. dodecastigma decreased as temperature increased from 21 to 33 °C. Life table data revealed that overall mortality was lowest at 27 °C and highest at 21 °C. Females lived longer than males at all temperatures; but longevity decreased with increase in temperature. Pre-oviposition period decreased significantly with increase in temperature up to 27 °C and thereafter increased at a slower rate; whereas oviposition period decreased significantly with increase in temperature. Fecundity and egg viability increased significantly with an increase in temperature up to 27 °C and thereafter decreased at a slower rate. The intrinsic rate of increase (r m ) was 0.1703, 0.1984, 0.2235, 0.2227 and 0.2181 day?1 at 21, 24, 27, 30 and 33 °C, respectively. The net reproductive rate and finite rate of increase was highest at 27 °C (R o  = 112.05; λ = 1.4233) and lowest at 21 °C (R o  = 51.23; λ = 1.2581).  相似文献   

6.
In this study, our working hypothesis was to examine whether temperature alters biomass and metabolite production by microalgae according to strain. We also addressed whether it is possible to choose a strain suitable for growing in each season of a given region. A factorial experiment revealed a significant interaction between chlorophylls a and b (Chl a and Chl b), carotenoid/Chl (a?+?b) ratio, biomass and total lipid productivity of six green microalgae (four Chlorella spp., Chlorella sorokiniana and Neochloris oleoabundans) after 15 days at four temperatures. At 39/35 °C, two Chlorella sp. strains (IPR7115 and IPR7117) showed higher total carotenoids/Chl (a?+?b) (0.578 and 0.830), respectively. N. oleoabundans had the highest Chl a (8210 μg L?1) and Chl b (1909 μg L?1) at 19/15 °C and highest maximum dry biomass (2900 mg L?1), specific growth rate (0.538 day?1) and total lipids (1003 mg L?1) at 15/8 °C. We applied a method to infer the growth of these six green microalgae in outdoor ponds, as based on their response to changing temperatures and by combining with historical data on day/night air temperature occurrence for a given region. We conclude that the use of regionalized maps based on air temperature is a good strategy for predicting microalgal cultivation in outdoor ponds based on their features and tolerance to changing temperature.  相似文献   

7.
A putative gene (gadlbhye1) encoding glutamate decarboxylase (GAD) was cloned from Lactobacillus brevis HYE1 isolated from kimchi, a traditional Korean fermented vegetable. The amino acid sequences of GADLbHYE1 showed 48% homology with the GadA family and 99% identity with the GadB family from L. brevis. The cloned GADLbHYE1 was functionally expressed in Escherichia coli using inducible expression vectors. The expressed recombinant GADLbHYE1 was successfully purified by Ni–NTA affinity chromatography, and had a molecular mass of 54 kDa with optimal hydrolysis activity at 55 °C and pH 4.0. Its thermal stability was determined to be higher than that of other GADs from L. brevis, based on its melting temperature (75.18 °C). Kinetic parameters including Km and Vmax values for GADLbHYE1 were 4.99 mmol/L and 0.224 mmol/L/min, respectively. In addition, the production of gamma-aminobutyric acid in E. coli BL21 harboring gadlbhye1/pET28a was increased by adding pyridoxine as a cheaper coenzyme.  相似文献   

8.
Bacterial communities of Antarctic marine macroalgae remain largely underexplored in terms of diversity and biotechnological applications. In this study, three Antarctic subtidal macroalgae (Himantothallus grandifolius, Pantoneura plocamioides and Plocamium cartilagineum), two of them endemic of Antarctica, were investigated as a source for isolation of agar-degrading bacteria. A total of 21 epiphytic isolates showed agarolytic activity at low temperature on agar plates containing agar as the sole carbon source. 16S rRNA identification showed that the agar-degrading bacteria belonged to the genera Cellulophaga, Colwellia, Lacinutrix, Olleya, Paraglaciecola, Pseudoalteromonas and Winogradskyella. The agarase enzyme from a potential new species of the genus Olleya was selected for further purification. The enzyme was purified from the culture supernatant of Olleya sp. HG G5.3 by ammonium sulfate precipitation and ion-exchange chromatography. Molecular weight of the agarase was estimated to be 38 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The purified enzyme exhibited activity at 4 °C, retaining >?50% of its maximum activity at this temperature. This is the first study reporting the phylogeny of agar-degrading bacteria isolated from Antarctic subtidal macroalgae and the results suggest the huge potential of Antarctic algae-associated bacteria as a source of cold-active hydrolytic enzymes of biotechnological interest.  相似文献   

9.
In order to identify suitable Trichogramma strains for mass production and successful control of key lepidopteran pests in paddy fields in the Greater Mekong Subregion, the effects of high temperatures on wasp life history traits were compared among three strains of Trichogramma chilonis Ishii and two strains of Trichogramma ostriniae Pang et Chen, collected from paddy fields in the region. At a rearing temperature of 25 °C, life history traits differed significantly among the five strains tested and the three T. chilonis strains and a T. ostriniae strain were of high performance. When female wasps were exposed to higher temperatures commonly encountered in the region, negative effects were observed on key life history parameters of adult females and their offspring at 34 °C, which became even more serious at 37 °C. In particular, the two T. ostriniae strains were not able to successfully develop to adulthood at all at 37 °C while for the T. chilonis strains adult emergence was significantly reduced. In addition, the emerged offspring females lived only around one day and no parasitism was observed. When the three T. chilonis strains were exposed to 37 °C for 4 to 12 h at prepupal and pupal stages, reflecting heat shocks that the released Trichogramma may experience in the field, adult emergence was significantly reduced after an exposure time of 12 h. In summary, the three T. chilonis strains show a relatively high potential for incorporation in a biological control program in the target region. Our results also highlight that tests at both rearing and field temperatures are necessary in selection of potential Trichogramma strains for an inundative release program where there is significant difference between rearing and field temperatures.  相似文献   

10.
The biodegradation of furfuryl alcohol (FA) in shake flask experiments using a pure culture of Pseudomonas putida (MTCC 1194) and Pseudomonas aeruginosa (MTCC 1034) was studied at 30 °C and pH 7.0. Experiments were performed at different FA concentrations ranging from 50 to 500 mg/l. Before carrying out the biodegradation studies, the bacterial strains were acclimatized to the concentration of 500 mg/l of FA by gradually raising 100 mg/l of FA in each step. The well acclimatized culture of P. putida and P. aeruginosa degraded about 80 and 66% of 50 mg/l FA, respectively. At higher concentration of FA, the percentage of FA degradation decreased. The purpose of this study was to determine the kinetics of biodegradation of FA by measuring biomass growth rates and concentration of FA as a function of time. Substrate inhibition was calculated from experimental growth parameters using the Haldane equation. Data for P. putida were determined as µ max ?=?0.23 h?1, K s ?=?23.93 mg/l and K i ?=?217.1 mg/l and for P. aeruginosa were determined as µ max ?=?0.13 h?1, K s ?=?21.3 mg/l and K i ?=?284.9 mg/l. The experimental data were fitted in Haldane, Aiba and Edwards inhibition models.  相似文献   

11.
Arthrospira (Spirulina) is widely used as human health food and animal feed. In cultures grown outdoors in open ponds, Arthrospira cells are subjected to various environmental stresses, such as high temperature. A better understanding of the effects of high temperature on photosynthesis may help optimize the productivity of Arthrospira cultures. In this study, the effects of heat stress on photosynthetic rate, chlorophyll a fluorescence transients, and photosystem (PS) II, PSI activities in a marine cyanobacterium Arthrospira sp. were examined. Arthrospira cells grown at 25 °C were treated for 30 min at 25 (control), 30, 34, 37, or 40 °C in the dark. Heat stress (30–37 °C) enhanced net photosynthetic O2 evolution rate. Heat stress caused over-reduction PSII acceptor side, damage of donor side of PSII, decrease in the energetic connectivity of PSII units, and decrease in the performance of PSII. When the temperature changed from 25 to 37 °C, PSII activity decreased, while PSI activity increased, the enhancement of photosynthetic O2 evolution was synchronized with the increase in PSI activity. When temperature was further increased to 40 °C, it induced a decrease in photosynthetic O2 evolution rate and a more severe decrease in PSII activity, but an increase in PSI activity. These results suggest that PSI activity was the decisive factor determining the change of photosynthetic O2 evolution when Arthrospira was exposed to a temperature from 25 to 37 °C, but then, PSII activity became the decisive factor adjusting the change of photosynthetic O2 evolution when the temperature was increased to 40 °C.  相似文献   

12.
Despite the significance of biological invasions in the Antarctic region, understanding of the rates of spread and impact of introduced species is limited. Such information is necessary to develop and to justify management actions. Here we quantify rates of spread and changes in impact of the introduced wasp Aphidius matricariae Haliday, which parasitizes the invasive aphid Rhopalosiphum padi (L.), on sub-Antarctic Marion Island, to which the wasp was introduced in ca. 2001. Between 2006 and 2011, the wasp had colonised all coastal sites, with an estimated rate of spread of 3–5 km year?1. Adult abundance doubled over the period, while impact, measured as mean percentage parasitism of R. padi, had increased from 6.9 to 30.1 %. Adult wasps have thermal tolerances (LT50s) of between ?18 and 33.8 °C, with a crystallization temperature of ?22.9 °C, and little tolerance (ca. 37 h) of low humidity at 10 °C. Desiccation intolerance is probably limiting for the adult wasps, while distribution of their aphid host likely sets ultimate distributional limits, especially towards higher elevations where R. padi is absent, despite the presence of its host grass on the island, Poa cookii (Hook. f.). Rising temperatures are benefitting P. cookii, and will probably do the same for both R. padi and A. matricariae. Our study shows that once established, spread of introduced species on the island may be rapid, emphasizing the importance of initial quarantine.  相似文献   

13.

Background and aims

Bradyrhizobium japonicum and Bradyrhizobium elkanii dominated soybean nodules in temperate and subtropical regions in Nepal, respectively, in our previous study. The aims of this study were to reveal the effects of temperature on the nodulation dominancy of B. japonicum and B. elkanii and to clarify the relationship between the effects of temperature and the climate-dependent distribution of Bradyrhizobium species.

Methods

A laboratory competition experiment was conducted between B. japonicum and B. elkanii strains isolated from the same temperate location in Nepal. A mixture of each strain was inoculated into sterilized vermiculite with or without soybean seeds, and inoculated samples were incubated at 33/27 (day/night) and 23/17 °C. Relative populations in the non-rhizosphere, rhizosphere, and nodules were determined by competitive PCR using specific primers for each strain at 0, 1, 2, and 4 weeks after inoculation.

Results

Both separately inoculated B. japonicum and B. elkanii strains formed nodules at both temperatures. Under competitive conditions, B. japonicum strains dominated at low temperature; however, at high temperature, both strains achieved co-nodulation in 1 week, with B. elkanii dominating after 2 weeks. The relative populations of both strains were similar in the non-rhizosphere and rhizosphere at low temperature, but B. elkanii strains dominated in these regions at high temperature.

Conclusions

The domination of B. japonicum strains in nodules at the low temperature appeared to be due to preferential infection, while the domination of B. elkanii strains at high temperature appeared to be due to the higher population of B. elkanii in the non-rhizosphere and rhizosphere, in addition to its domination in nodules after co-nodulation. The effects of temperature on the competition between B. japonicum and B. elkanii strains were remarkable and corresponded with the distribution of bradyrhizobial species in Nepal.
  相似文献   

14.
The effect of five constant temperatures (16, 20, 24, 28 and 32 °C) on the development, survival and reproduction of Tetranychus cinnabarinus (Boisduval) [=?Tetranychus urticae Koch (red form)] fed on cassava leaves was examined in the laboratory at 85% relative humidity. Development time of various immature stages decreased with increasing temperature, with total egg-to-adult development time varying from 27.7 to 6.7 days. The lower thermal threshold for development was 10.8 °C and the thermal constant from egg to adult was 142.4 degree-days. Pre- and post-oviposition period and female longevity all decreased as temperature increased. The longest oviposition period was observed at 20 °C with 20.4 days. Under different temperatures, mated females laid, on average, 1.0, 2.9, 4.7, 4.7 and 4.9 eggs per day, respectively. The maximum fecundity (81.5 eggs per female) was at 28 °C and the intrinsic rate of increase (r m ) was highest (0.25) at 32 °C. The results of this study indicate that T. cinnabarinus population could increase rapidly when cassava leaves serve as a food source. At the appropriate temperature T. cinnabarinus could seriously threaten growth of cassava.  相似文献   

15.
Bacillus thuringiensis (Berliner) bears essential characteristics in the control of insect pests, such as its unique mode of action, which confers specificity and selectivity. This study assessed cry gene contents from Bt strains and their entomotoxicity against Diatraea saccharalis (F.) and Diatraea flavipennella (Box) (Lepidoptera: Crambidae). Bioassays with Bt strains were performed against neonates to evaluate their lethal and sublethal activities and were further analyzed by PCR, using primers to identify toxin genes. For D. saccharalis and D. flavipennella, 16 and 18 strains showed over 30% larval mortality in the 7th day, respectively. The LC50 values of strains for D. saccharalis varied from 0.08 × 105 (LIIT-0105) to 4104 × 105 (LIIT-2707) spores + crystals mL?1. For D. flavipennella, the LC50 values of strains varied from 0.40 × 105 (LIIT-2707) to 542 × 105 (LIIT-2109) spores + crystals mL?1. For the LIIT-0105 strain, which was the most toxic to D. saccharalis, the genes cry1Aa, cry1Ab, cry1Ac, cry1B, cry1C, cry1D, cry1F, cry1I, cry2Aa, cry2Ab, cry8, and cry9C were detected, whereas for the strain LIIT-2707, which was the most toxic to D. flavipennella, detected genes were cry1Aa, cry1Ab, cry1Ac, cry1B, cry1D, cry1F, cry1I, cry2Aa, cry2Ab, and cry9. The toxicity data and toxin gene content in these strains of Bt suggest a great variability of activity with potential to be used in the development of novel biopesticides or as source of resistance genes that can be expressed in plants to control pests.  相似文献   

16.
Fopius arisanus (Sonan) is a solitary parasitoid of eggs and the first instar larvae of Tephritidae. Due to the occurrence of Ceratitis capitata (Wiedemann) in various regions and under several climatic conditions, this study aimed to evaluate the effect of different temperatures on the embryonic development (egg–adult) and determine thermal requirements and the number of annual generations F. arisanus on eggs of C. capitata. In the laboratory, eggs of C. capitata (24 h) were submitted to parasitism of F. arisanus during 6 h. Later, the eggs were placed in plastic containers (50 mL) (50 eggs/container) on a layer of artificial diet and packed in chambers at temperatures 15, 18, 20, 22, 25, 28, 30, and 32 ± 1°C, RH 70 ± 10%, and a photophase of 12 h. The largest number of offspring, emergence rate, and weight of adults of F. arisanus were observed at 25°C. The highest sex ratios (sr > 0.75) were recorded at 15 and 18°C, being statistically higher than the temperatures 20°C (0.65), 22°C (0.64), 25°C (0.65), 28°C (0.49), and 30°C (0.47). At 32°C, there was no embryonic development of F. arisanus. The egg–adult period was inversely proportional to temperature. Based on the development of the biological cycle (egg–adult), the temperature threshold (T t) was 10.3°C and thermal constant (K) of 488.34 degree-days, being the number of generations/year directly proportional to the temperature increase. The data show the ability of F. arisanus to adapt to different thermal conditions, which is important for biological control programs of C. capitata.  相似文献   

17.
Bacterial metabolites with communicative functions could provide protection against stress conditions to members of the same species. Yet, information remains limited about protection provided by metabolites in Bacillus cereus and inter-species. This study investigated the effect of extracellular compounds derived from heat shocked (HS) and non-HS cultures of B. cereus and Geobacillus stearothermophilus on the thermotolerance of non-HS vegetative and sporulating B. cereus. Cultures of B. cereus and G. stearothermophilus were subjected to HS (42 or 65 °C respectively for 30 min) or non-HS treatments. Cells and supernatants were separated, mixed in a combined array, and then exposed to 50 °C for 60 min and viable cells determined. For spores, D values (85 and 95 °C) were evaluated after 120 h. In most cases, supernatants from HS B. cereus cultures added to non-HS B. cereus cells caused their thermotolerance to increase (D 50 12.2–51.9) when compared to supernatants from non-HS cultures (D 50 7.4–21.7). While the addition of supernatants from HS and non-HS G. stearothermophilus cultures caused the thermotolerance of non-HS cells from B. cereus to decrease initially (D 50 3.7–7.1), a subsequent increase was detected in most cases (D 50 18–97.7). In most cases, supernatants from sporulating G. stearothermophilus added to sporulating cells of B. cereus caused the thermotolerance of B. cereus 4810 spores to decline, whereas that of B. cereus 14579 increased. This study clearly shows that metabolites in supernatants from either the same or different species (such as G. stearothermophilus) influence the thermotolerance of B. cereus.  相似文献   

18.
Genista saharae is an indigenous shrub legume that spontaneously grows in the northeastern Algerian Sahara. It is known for efficient dune fixation and soil preservation against desertification, due to its drought tolerance and its contribution to sustainable nitrogen resources implemented by biological N2-fixation. In this study, the root nodule bacteria of G. saharae were investigated using phenotypic and phylogenetic characterization. A total of 57 rhizobial strains were isolated from nodules from several sites in the hyper-arid region of Metlili and Taibet (east Septentrional Sahara). They all nodulate G. saharae species but they differed in their symbiotic efficiency and effectiveness. The genetic diversity was assessed by sequencing three housekeeping genes (atpD, recA and 16S rRNA). The majority of isolates (81 %) belonged to the genus Ensifer (previously Sinorhizobium), represented mainly by the species Ensifer meliloti. The next most abundant genera were Neorhizobium (17 %) with 3 different species: N. alkalisoli, N. galegae and N. huautlense and Mesorhizobium (1.75 %) represented by the species M. camelthorni. Most of the isolated strains tolerated up to 4 % (w/v) NaCl and grew at 45 °C. This study is the first report on the characterization of G. saharae microsymbionts in the Algerian Sahara.  相似文献   

19.
To quantify both temperature (T) and water potential (ψ) effects on sesame (Sesamum indicum L.) seed germination (SG) and also to determine the cardinal T s for this plant, a laboratory experiment was carried out using hydrothermal time model (HTT). For this purpose, four sesame cultivars (‘Asbomahalleh’, ‘Darab’, ‘Dashtestan’ and ‘Yellowhite’) were germinated at seven constant T s (20, 25, 30, 35, 37, 39 and 43 °C) at each of the following ψ s (0, ? 0.12, ? 0.24 and ? 0.36 MPa; provided by PEG 8000). Germination rate (GR) and germination percentage (GP) significantly influenced by ψ, T and their interactions in all cultivars (P ≤ 0.01). There was no significant difference, based on the confidence intervals of the model coefficients, between cultivars, so an average of cardinal T s was 14.7, 35.4 and 47.2 °C for the minimum (T b), optimum (T o) and maximum (T c) T s, respectively, in the control condition (0 MPa). Hydrotime values in all cultivars decreased when T was increased to T o and then remained constant at T s > T o (15 MPa h?1). An average value of ψ b(50) was estimated to be ? 1.23 MPa at T s ≤ T o and then increased linearly (0.1041 MPa°Ch?1, the slope of the relationship between ψ b(50) and supra-optimal T s) with T when T s increased above T o and finally reached to zero at T c. The T b and T o values were not influenced by ψ, but T c value decreased (from 47.2 for zero to 43.5 °C for ? 0.36 MPa) at supra-optimal T s as a result of the effect of ψ on GR. Based on our findings, this model (as a predictive tool) and or the estimated parameter values in this study can easily be used in sesame SG simulation models to quantitatively characterize the physiological status of sesame seed populations at different T s and ψ s.  相似文献   

20.
Many phytopathogenic micro-organisms such as bacteria and fungi produce pectin methylesterases (PME) during plant invasion. Plants and insects also produce PME to degrade plant cell wall. In the present study, a thermostable pectin methylesterase (CtPME) from Clostridium thermocellum belonging to family 8 carbohydrate esterase (CE8) was cloned, expressed and purified. The amino acid sequence of CtPME exhibited similarity with pectin methylesterase from Erwinia chrysanthemi with 38% identity. The gene encoding CtPME was cloned into pET28a(+) vector and expressed using Escherichia coli BL21(DE3) cells. The recombinant CtPME expressed as a soluble protein and exhibited a single band of molecular mass approximately 35.2 kDa on SDS-PAGE gels. The molecular mass, 35.5 kDa of the enzyme, was also confirmed by MALDI-TOF MS analysis. Notably, highest protein concentration (11.4 mg/mL) of CtPME was achieved in auto-induction medium, as compared with LB medium (1.5 mg/mL). CtPME showed maximum activity (18.1 U/mg) against citrus pectin with >85% methyl esterification. The optimum pH and temperature for activity of CtPME were 8.5 and 50 °C, respectively. The enzyme was stable in pH range 8.0–9.0 and thermostable between 45 and 70 °C. CtPME activity was increased by 40% by 5 mM Ca2+ or Mg2+ ions. Protein melting curve of CtPME gave a peak at 80 °C. The peak was shifted to 85 °C in the presence of 5 mM Ca2+ ions, and the addition of 5 mM EDTA shifted back the melting peak to 80 °C. CtPME can be potentially used in food and textile industry applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号