首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequential staining for G- and C-banding of acrocentric chromosomes of 8 persons showed that the large heterochromatin region occurred more frequently in chromosome 15 than in chromosomes 13 and 14, and in chromosome 22 more frequently than in chromosome 21. There proved to be no correlation between the size of the heterochromatic region and the short arm of the acrocentric chromosomes. The frequency of occurrence of the satellites in the 8 persons was approximately the same for all the acricentric pairs. The C-banded satellite region of the homologous chromosomes is often heteromorphic.  相似文献   

2.
Cis- and trans-positions of chromatid associations of human acrocentric chromosomes were examined at extreme old age. Lymphocyte cultures were prepared by the usual method, from peripheral blood of 9 subjects aged 80-90 years (analysis of 179 metaphases) and 7 subjects aged 20-48 years (analysis of 124 metaphases). The functional difference between stalks of the sister chromatids was found. In the subjects at the age 80-90 years satellite stalks of chromatids-1 (in all DNA strands thymidine was substituted by 5-BrdU) of the D chromosome in cis-position are included into associations with lower frequency, as compared with the satellite stalks of chromatids-2 (thymidine+ is only substituted by 5-BrdU in a half DNA strands of the chromosome). This apparently reflects variability of regulation of functional activity of satellite stalks of sister chromatids.  相似文献   

3.
The DNA composition and the in situ hybridization of satellite fractions were analysed in the New World camelids llama, alpaca, guanaco and vicuña. In the four camelid forms, it was possible to identify a similar main band DNA and five satellite fractions (I–V) with G+C base contents ranging from 32% to 66%. Satellites II–V from llama were in situ reannealed on chromosomes from the four camelid forms. The results obtained were: (a) the four satellites hybridized with regions of C-banding (centromeric regions of all chromosomes and short arms of some autosomes); (b) in general, homologous hybridizations (llama DNA versus llama chromosomes) were more efficient than heterologous reassociations; there were however three exceptions to this rule (vicuña and alpaca satellite fraction II, chromosome group B; vicuña fraction V, chromosome groups A and B); (c) X chromosomes from the four camelids had satellites III–V but lacked satellite II, (d) no satellite fraction was detected on chromosome Y. The analysis of the in situ hybridization patterns allowed to conclude that most or all C-banded chromosome regions comprise several satellite DNA fractions. It is, moreover, proposed that there is an ample interspecies variation in the number of chromosomes that cross-react with a given satellite fraction. Our data give further support to the close genomic kinship of New World camelids.  相似文献   

4.
Summary The possible derivation of a small supernumerary marker chromosome was investigated by means of different staining techniques and the frequency of satellite associations. It could be demonstrated that the marker chromosome participates at satellite association more than randomly. The marker chromosome is supposed to derive from 2 of chromosomes 13, 14, 21, or 22.Who died accidentally in 1978  相似文献   

5.
Satellite DNA and evolution of sex chromosomes   总被引:7,自引:2,他引:7  
The satellite DNA (satellite III) which is mainly represented in the female of Elaphe radiata (Ophidia, Colubridae) has been isolated and its buoyant density has been determined (=1.700 g cm–3). In situ hybridisation of radioactive complementary RNA of this satellite DNA with the chromosomes of different species has revealed that it is mainly concentrated on the W sex chromosome and its sequences are conserved throughout the sub-order Ophidia. From hybridisation studies these sequences are absent from the primitive family Boidae which represents a primitive state of differentiation of sex chromosomes. Chromosome analysis and C-banding have also revealed the absence of heteromorphism and of an entirely heterochromatic chromosome in the species belonging to the primitive family and their presence in the species of highly evolved families. It is suggested that the origin of satellite DNA (satellite III) in the W chromosome is the first step in differentiation of W from the Z in snakes by generating asynchrony in the DNA replication pattern of Z and W chromosomes and thus conceivably reducing the frequency of crossing-over between them which is the prerequisite of differentiation of sex chromosomes. Presence of similar sex chromosome associated satellite DNA in domestic chicken suggests its existence in a wider range of vertebrates than just the snakes.  相似文献   

6.
Human artificial chromosomes have been used to model requirements for human chromosome segregation and to explore the nature of sequences competent for centromere function. Normal human centromeres require specialized chromatin that consists of alpha satellite DNA complexed with epigenetically modified histones and centromere-specific proteins. While several types of alpha satellite DNA have been used to assemble de novo centromeres in artificial chromosome assays, the extent to which they fully recapitulate normal centromere function has not been explored. Here, we have used two kinds of alpha satellite DNA, DXZ1 (from the X chromosome) and D17Z1 (from chromosome 17), to generate human artificial chromosomes. Although artificial chromosomes are mitotically stable over many months in culture, when we examined their segregation in individual cell divisions using an anaphase assay, artificial chromosomes exhibited more segregation errors than natural human chromosomes (P < 0.001). Naturally occurring, but abnormal small ring chromosomes derived from chromosome 17 and the X chromosome also missegregate more than normal chromosomes, implicating overall chromosome size and/or structure in the fidelity of chromosome segregation. As different artificial chromosomes missegregate over a fivefold range, the data suggest that variable centromeric DNA content and/or epigenetic assembly can influence the mitotic behavior of artificial chromosomes.  相似文献   

7.
We have investigated the organization and complexity of alpha satellite DNA on chromosomes 10 and 12 by restriction endonuclease mapping, in situ hybridization (ISH), and DNA-sequencing methods. Alpha satellite DNA on both chromosomes displays a basic dimeric organization, revealed as a 6- and an 8-mer higher-order repeat (HOR) unit on chromosome 10 and as an 8-mer HOR on chromosome 12. While these HORs show complete chromosome specificity under high-stringency ISH conditions, they recognize an identical set of chromosomes under lower stringencies. At the nucleotide sequence level, both chromosome 10 HORs are 50% identical to the HOR on chromosome 12 and to all other alpha satellite DNA sequences from the in situ cross-hybridizing chromosomes, with the exception of chromosome 6. An 80% identity between chromosome 6- and chromosome 10-derived alphoid sequences was observed. These data suggest that the alphoid DNA on chromosomes 6 and 10 may represent a distinct subclass of the dimeric subfamily. These sequences are proposed to be present, along with the more typical dimeric alpha satellite sequences, on a number of different human chromosomes.  相似文献   

8.
Physical connections between mitotic chromosomes have been reported previously. It was assumed that the interchromosome connection was based on the DNA-protein thread. However, the data about DNA sequences and protein component in the thread is fragmentary. We demonstrated on the mouse cultured cell line and prematurely condensed chromosomes that: (a) all four mouse satellite DNA fragments (major and minor satellite, mouse satellite 3 (MS3) and mouse satellite 4 (MS4)) were involved in the thread formation; (b) MS4 was involved in the thread to the least extent among all the other fragments; (c) telomere was never a member of the thread; (d) the thread was synthesized at a late G(2) phase; (e) RNA helicase p68 and CENP-B were among the protein components of the interchromosome connection. It was shown by FACS analysis that in mouse and human cell lines: (1) the flow karyotype spectrums were never free from chromosome aggregates; (2) chromosome association did not depend on the chromosome length and each chromosome was free to associate with the other.  相似文献   

9.
杭绮  毛树坚 《动物学研究》1993,14(4):367-373
以草鱼ZC7901细胞株为材料,观察鱼类细胞从间期染色质到中期染色体的包装过程。主要通过(1)分裂期与间期细胞融合,诱导染色体早熟凝集;(2)染色体“伸长”处理;(3)培养细胞的低渗处理;(4)染色质辅展等方法,制作染色体标本,进行扫描和透射电镜观察。观察表明,鱼类染色质的基本结构与哺乳类细胞相同,也是直径约10nm的核丝。染色体的色装有两种形式:一种是多级螺旋化形成直径约300nm的染色单体,  相似文献   

10.
Harald Fuge 《Chromosoma》1985,91(3-4):322-328
Microtubules of amphitelically oriented sex univalent chromosome fibres were traced in longitudinal serial sections. The investigated chromosomes were from four different cells representing consecutive stages of anaphase segregation. A correlation was found between chromosome movement and a characteristic distribution of free microtubules (fMTs) oriented obliquely with respect to the kinetochore microtubules. During chromosome segregation the proportion of these skew fMTs (the proportion of skew fMTs is a measure of the degree of disorder in the fibre) is higher in the fibre pointing in the direction of movement than in the trailing fibre. The results are discussed in relation to spindle forces. Although the anaphase of amphitelic sex chromosomes is different in several respects (orientation of chromosome fibres, mutual connexion of chromosomes via kinetochore microtubules, spindle elongation occurring simultaneously), the observations on the distribution of fMTs in the chromosome fibres is, in principle, compatible with those previously made on syntelic autosomes.  相似文献   

11.
以内蒙古草原3种针茅属植物为材料,常规压片法制片后观察记录染色体数,并进行核型分析。实验结果表明: 贝加尔针茅、大针茅和克氏针茅细胞染色体数均为2n=44,属于2A核型,为二倍体。在3种针茅的染色体中,中部着丝粒染色体占大多数平均为62.1%,其次近中部着丝粒染色体平均为28.9%,近端部着丝粒染色体较少约为9.0%。在3种针茅的第五号染色体上均有随体,表明起源于同一祖先。虽然染色体核型均属于较对称型,但是染色体不对称系数随着3种针茅分布生境的干旱程度的增加而逐渐增加,可能是长期适应与进化的结果。  相似文献   

12.
Biotinylated rat satellite DNA I probe p93-50 was used to visualize the chromatin of surface-spread rat pachytene chromosomes. Fluorescein isothiocyanate (FITC)-conjugated avidin produces a beaded fluorescence pattern along the chromatin loops that insert in the centromeric region of the synaptonemal complex (SC), the paired cores of homologous chromosomes. The number of fluorescent beads ranges from zero for centromeres without satellite DNA I homologous to probe p 93-50, to several hundred for satellite-rich centromeric regions. For the chromosomes that can be identified, the relative amount of satellite DNA is chromosome specific. No satellite DNA I was detected at the non-centromeric ends of the chromosomes or interstitially. DNase-digested nuclei or isolated SCs did not have detectable amounts of satellite DNA in the centromeric regions of the chromosomes or in the residual SCs. The fate of the satellite DNA was followed during spermiogenesis. In the round spermatid the centromeric regions, which appear to be attached to the nuclear envelope, are still distinct and have converging loops of fluorescent chromatin. At later stages there are fewer but still bright fluorescent patches. Satellite DNA I is still detectable in the mature sperm head. These results demonstrate the organization of satellite DNA I in the chromatin loops at the centromeric regions, and they forecast the analysis of chromosome organization in unprecedented detail with a variety of probes in surface spreads of meiotic prophase chromosomes.  相似文献   

13.
14.
Sex chromosomes in mammals are about 300 million years old and typically have a highly degenerated Y chromosome. The sex chromosomes in the dioecious plant Silene latifolia in contrast, represent an early stage of evolution in which functional X–Y gene pairs are still frequent. In this study, we characterize a novel tandem repeat called TRAYC, which has accumulated on the Y chromosome in S. latifolia. Its presence demonstrates that processes of satellite accumulation are at work even in this early stage of sex chromosome evolution. The presence of TRAYC in other species of the Elisanthe section suggests that this repeat had spread after the sex chromosomes evolved but before speciation within this section. TRAYC possesses a palindromic character and a strong potential to form secondary structures, which could play a role in satellite evolution. TRAYC accumulation is most prominent near the centromere of the Y chromosome. We propose a role for the centromere as a starting point for the cessation of recombination between the X and Y chromosomes.  相似文献   

15.
Summary Probe DNA that binds preferentially to the centromeric region of human chromosomes 8 was synthesized. Alpha satellite probe DNA molecules were selectively amplified from sorter-purified human chromosomes 8 by in vitro DNA amplification using the polymerase chain reaction (PCR). Probe labeling was performed during PCR by incorporation of biotinylated deoxyuridine. In situ hybridization of unpurified probe DNA comprised of alpha satellite monomer and higher molecular weight DNA fragments with metaphase chromosome spreads showed binding to the centromeric regions of numerous chromosomes. However, blocking with unlabeled total human alphoid DNA dramatically reduced crosshybridization to chromosomes other than 8. Under these conditions, the degenerate probe DNA allowed unambiguous visualization of domains occupied by centromeric DNA of chromosome 8 in metaphase spreads and interphase cell nuclei, thus greatly facilitating the detection of numerical chromosome aberrations in tumor cells. In situ hybridization of size-fractionated alpha satellite DNA identified the monomeric fraction as the major cause of crosshybridization. Alpha satellite dimers and higher molecular weight DNA fragments showed relatively high specificity for human chromosomes 8.  相似文献   

16.
Alterations in the organization of the microtubular cytoskeleton and chromosome alignment were examined by tubulin immunofluorescence and DAPI staining during in vivo ageing of naturally ovulated, metaphase-arrested oocytes of CBA/Ca mice in the fallopian tubes. In oocytes isolated from young mice on the day of oestrus, a few hours after ovulation, when they are still tightly surrounded by cumulus, the anti-tubulin fluorescence is almost exclusively restricted to the metaphase spindle. Only some faintly staining foci are observed in the cytoplasm, which presumably represent cytoplasmic MTOC not involved in spindle formation. The spindle is usually barrel-shaped or slightly pointed at its poles and does not possess astral fibres. In oocytes aged for more than 12 h in the fallopian tubes cytoplasmic asters develop, while microtubules seem to become gradually lost from the spindle, preferentially in its central area near the chromosomes. Astral fibres are observed radiating out from the polar centrosomes into the cytoplasm. In oocytes free of cumulus, and consequently more than 24 h post-ovulation, a pronounced shrinking of the spindle is observed. The mean pole-to-pole distance becomes significantly reduced in postovulatory aged cells. At the same time astral microtubules in the cytoplasm appear to become gradually depolymerized. Age-dependent alterations in the microtubular cytoskeleton do not seem to result from a changed pattern of the post-translational detyrosylation of -tubulin in certain sets of microtubules. In freshly ovulated oocytes chromosomes in most spindles are well ordered and precisely arranged at the equatorial plane. In 11% of the cells only, there was dislocation of one or several of the chromosomes from the spindle equator. By contrast, 61.4% of bipolar spindles of postovulatory aged oocytes have chromosomes displaced from the centre of the spindle towards one of the spindle poles. The implications of the observed alterations in the microtubular cytoskeleton, shrinking of the spindle and increased disorder of chromosome alignment are discussed with regard to predisposition to aneuploidy and reduction of developmental potential of postovulatory aged oocytes.  相似文献   

17.
Cytologically, the centromere is found at the very end of most Mus musculus chromosomes, co-localizing with an array of minor satellite sequences. It is separated from the euchromatin of the long arm by a large domain of heterochromatin, composed in part of arrays of major satellite sequences. We used oligonucleotide probes that specifically detect regions of sequence variation found in certain cloned minor satellite sequences. They detect a limited subset of the minor satellite arrays in the mouse genome, based on both pulsed-field gel electrophoresis and in situ hybridization data, and provide direct molecular genetic markers for individual centromeres in some inbred mouse strains. Array size polymorphisms detected by these probes map to positions consisten with the centromeres of chromosomes 1 and 14 in the BXD recombinant inbred (RI) strains. The genetic distances between these minor satellite arrays and loci on the long arms of chromosomes 1 and 14 are consistent with repression of meiotic recombination in the heterochromatic domains separating them. The existence of chromosome-specific minor satellite sequences implies that the rate of sequence exchange between non-homologous chromosomes relative to the rate between homologous chromosomes is much lower than has previously been postulated. We suggest that the high degree of sequence homogeneity of mouse satellite sequences may instead reflect recent common ancestry.  相似文献   

18.
It is demonstrated that either general staining of the centromeric regions of all primate chromosomes, or selective staining of the centromeric region of specific chromosomes, may be obtained in preparations of metaphase chromosomes by probing specifically for different regions within the alpha satellite DNA monomer. In order to exploit observed patterns of sequence variation within the monomer for this purpose, we have developed two new DNA analysis methods. In PRimed IN Situ labelling (PRINS), synthetic oligonucleotides derived from subsections of the monomer are hybridized to the chromosomes. The oligonucleotides then serve as primers for the in situ incorporation of biotin-labelled nucleotides catalysed by Klenow polymerase. Incorporated biotin is visualized with fluorescein isothiocyanate-labelled avidin (FITC-avidin). In Primed Amplification Labelling (PAL), biotin-labelled hybridization probes are produced in a polymerase chain reaction (PCR, Saiki et al. 1985), in which two synthetic oligonucleotide primers anneal within the same monomer. With the right choice of primers libraries of labelled probes derived from most monomers present as templates are produced. If DNA from a specific chromosome is used as template, then the resulting probe mixture gives stronger and more chromosome-specific signals in in situ hybridization experiments than does a cloned alpha satellite DNA probe derived from the same chromosome. The results obtained indicate that the alpha-repeat monomer is composed of regions with different degrees of chromosome specificity.  相似文献   

19.
The early phylogeny of the 137 species in the Bovidae family is difficult to resolve; knowledge of the evolution and relationships of the tribes would facilitate comparative mapping, understanding chromosomal evolution patterns and perhaps assist breeding and domestication strategies. We found that the study of the presence and organization of two repetitive DNA satellite sequences (the clone pOaKB9 from sheep, a member of the 1.714 satellite I family and the pBtKB5, a 1.715 satellite I clone from cattle) on the X and autosomal chromosomes by in situ hybridization to chromosomes from 15 species of seven tribes, was informative. The results support a consistent phylogeny, suggesting that the primitive form of the X chromosome is acrocentric, and has satellite I sequences at its centromere. Because of the distribution of the ancient satellite I sequence, the X chromosome from the extant Tragelaphini (e.g. oryx), rather than Caprini (sheep), line is most primitive. The Bovini (cow) and Tragelaphini tribes lack the 1.714 satellite present in the other tribes, and this satellite is evolutionarily younger than the 1.715 sequence, with absence of the 1.714 sequence being a marker for the Bovini and Tragelaphini tribes (the Bovinae subfamily). In the other tribes, three (Reduncini, Hippotragini and Aepycerotini) have both 1.714 and 1.715 satellite sequences present on both autosomes and the X chromosome. We suggest a parallel event in two lineages, leading to X chromosomes with the loss of 1.715 satellite from the Bovini, and the loss of both 1.714 and 1.715 satellites in a monophyletic Caprini and Alcelaphini lineage. The presence and X chromosome distribution of these satellite sequences allow the seven tribes to be distributed to four groups, which are consistent with current diversity estimates, and support one model to resolve points of separation of the tribes.  相似文献   

20.
It is now known that partial deletions of the satellite sequences in X-chromosome heterochromatin result in a significant decrease in intrachromosomal recombination in the proximal region of the X chromosome of D. melanogaster (YAMAMOTO and MIKLOS 1978). It is important to ask then if the loss or gain of heterochromatin on the X also alters recombination in other chromosomes of the genome (interchromosomal effects). I have looked for such alterations by measuring recombination in chromosome 3. The results clearly indicate that the partial loss of X-chromosome heterochromatin not only decreases crossing over in the proximal region of the X chromosome itself, but also increases the frequency in chromosome 3, especially in the euchromatic regions around the centromere. Furthermore, the greater the deficiency of X heterochromatin, the higher is recombination in chromosome 3. This finding not only provides further evidence in support of the hypothesis that heterochromatin, in this case mainly composed of satellite DNA, regulates the recombination system, but it demonstrates that when the satellite content of one chromosome of the D. melanogaster genome is altered, there is an alteration in the crossover characteristics of other chromosomes in the same complement. If the amount of satellite DNA in a genome is being continuously altered, then one can predict that the recombination system is also being continually perturbed. Thus, the changing gene combinations produced indirectly by increases or decreases of heterochromatin are among the components available to organisms to break up or form new gene combinations upon which selection can act.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号