首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Japanese encephalitis virus (JEV) serocomplex, which also includes Murray Valley encephalitis virus (MVEV), is a group of antigenically closely related, mosquito-borne flaviviruses that are responsible for severe encephalitic disease in humans. While vaccines against the prominent members of this serocomplex are available or under development, it is unlikely that they will be produced specifically against those viruses which cause less-frequent disease, such as MVEV. Here we have evaluated the cross-protective values of an inactivated JEV vaccine (JE-VAX) and a live chimeric JEV vaccine (ChimeriVax-JE) against MVEV in two mouse models of flaviviral encephalitis. We show that (i) a three-dose vaccination schedule with JE-VAX provides cross-protective immunity, albeit only partial in the more severe challenge model; (ii) a single dose of ChimeriVax-JE gives complete protection in both challenge models; (iii) the cross-protective immunity elicited with ChimeriVax-JE is durable (≥5 months) and broad (also giving protection against West Nile virus); (iv) humoral and cellular immunities elicited with ChimeriVax-JE contribute to protection against lethal challenge with MVEV; (v) ChimeriVax-JE remains fully attenuated in immunodeficient mice lacking type I and type II interferon responses; and (vi) immunization with JE-VAX, but not ChimeriVax-JE, can prime heterologous infection enhancement in recipients of vaccination on a low-dose schedule, designed to mimic vaccine failure or waning of vaccine-induced immunity. Our results suggest that the live chimeric JEV vaccine will protect against other viruses belonging to the JEV serocomplex, consistent with the observation of cross-protection following live virus infections.Murray Valley encephalitis virus (MVEV) is a mosquito-borne flavivirus belonging to the Japanese encephalitis virus (JEV) serocomplex which can cause severe, sometimes fatal, disease in humans (reviewed in references 30, 31, 32, and 42). The virus is endemic in northern Australia and Papua New Guinea, where it causes a small number of human cases of encephalitis in most years. In symptomatic patients the case fatality rate is ∼20%, and among those who recover a large number (∼50%) will suffer from neuropsychiatric sequelae. Cases of Murray Valley encephalitis are more common in children or visitors in areas of endemic disease than in adult residents, who have preexisting immunity (7, 42, 46). Sporadically, MVEV spreads to central or southern regions of Australia (e.g., the Murray Valley of southeastern Australia) and causes epidemic viral encephalitis in humans (32). There are no vaccines or antiviral agents available against MVEV, and given the relatively small number of human cases, it is unlikely that a MVEV-specific vaccine for human use will be produced. However, it has been known for many years that at least in animal models, live viral infection with other members of the JEV serocomplex will give cross-protective immunity against heterologous viruses belonging to this group (10, 17, 33, 48, 52). MVEV is genetically and antigenically closely related to JEV (82% amino acid sequence identity in the envelope [E] protein), the most important encephalitic flavivirus in terms of human disease incidence and severity (reviewed in reference 4). A number of live and inactivated JEV vaccines have been licensed or are under development (reviewed in references 2, 16, and 34). If effective and long-lasting cross-protective immunity against MVEV was induced by one of the JEV vaccines, a strong case could be made for its prophylactic use in populations at risk of MVEV infection in Australia. A further reason for investigating the suitability of JEV vaccines in the Australian context is the recent emergence of JEV in northern Australia (18, 19, 41). This has raised the prospect that JEV may become established in enzootic cycles on the Australian mainland, necessitating the use of JEV vaccines in regions where MVEV is also endemic. The impact of MVEV infection in JEV vaccine recipients in terms of disease outcome remains unknown.In contrast to its protective value against heterologous flaviviruses, cross-reactive flavivirus immunity has also been associated with infection- and/or disease-enhancing consequences in natural and laboratory settings (1, 9, 20, 39). Antibody-dependent enhancement of infection is thought to account for the more severe forms of dengue sometimes associated with secondary, heterologous dengue virus infections by a mechanism putatively involving the increased uptake of virus bound with nonneutralizing antibody into Fc receptor-bearing cells (14, 15). For the MVEV/JEV pair, it has been reported that transfer of subneutralizing concentrations of JEV-immune serum or sera from mice suboptimally immunized with inactivated JEV vaccine (JE-VAX; Biken, Japan) can prime recipient mice for a more severe disease when challenged with MVEV (3, 50). We have demonstrated this potentially detrimental effect for the first time in the context of the full complement of the vaccine-primed immune response: the administration of an experimental UV-inactivated MVEV vaccine at a suboptimal dose greatly increased the susceptibility of mice (up to 75% mortality) to challenge with a dose of JEV, which was sublethal in unvaccinated animals (29). It is not clear if this phenomenon is an inherent property of inactivated vaccines, which provide relatively poor immunity in terms of quality, magnitude, and duration in comparison to live virus infections. Here we investigate the protective value and risk of disease potentiation of a recombinant, live JEV vaccine candidate (ChimeriVax-JE) and a licensed, inactivated JEV vaccine (JE-VAX) in mouse models of MVEV and West Nile virus (WNV) encephalitis. ChimeriVax-JE is constructed from yellow fever virus 17D vaccine cDNA by replacement of the viral structural prM and E proteins with those of an attenuated JEV strain; it has been shown to protect mice and monkeys from JEV challenge (12, 36) and has undergone phase 2 and phase 3 trials for safety and efficacy in humans (35, 37).  相似文献   

2.
森林脑炎研究进展   总被引:7,自引:0,他引:7  
马新英  彭文明  高轩 《病毒学报》2004,20(2):190-192
森林脑炎又名蜱传脑炎(TBE),是由森林脑炎病毒(tick-borne encephalitis virus,TBEV)引起,经蜱传播,以中枢神经病变为特征的急性传染病.1910年,在前苏联亚洲部分发现以中枢神经病变为主要特征的急性传染病.1936年,Tkachev氏首次用小白鼠从患者分离到病毒.1937年从当地主要蜱种全沟硬蜱体内分离到同一种病毒,提出并证实蜱为本病传播媒介.1938年证实了森林中的啮齿类动物为本病贮存宿主.第二次世界大战后,欧洲有关本病的报告越来越多,几乎大部分国家均有报告.1990年由Pletnev AG等人首次完成森林脑炎病毒全基因组序列测定.我国于1942年发现该病,1952年从患者及蜱中分离到森林脑炎病毒,近几年流行又有增强趋势[1].  相似文献   

3.
用RT-PCR方法分段扩增了乙型脑炎病毒SA14—14—2疫苗株5′、3′NCR,利用融合PCR技术在5′、3′NCR之间引入BamHⅠ酶切位点,将5′NCR置于T7启动子控制之下,构建乙脑病毒微复制子表达载体pMR。分别将绿色荧光蛋白(GFP)和汉滩病毒核蛋门编码区基因插入到pMR中,构建两种表达外源基因的乙脑病毒微复制子表达载体:pMR—GFP和pMR-84FliS。绎荧光显微镜直接观察、Western blot、ELISA等方法检测,证实外源基因能够在辅助病毒SA14—14—2感染的BHK-21细胞中表达。  相似文献   

4.
5.
乙型脑炎病毒研究进展   总被引:3,自引:0,他引:3  
从病毒的分类地位、病毒的生物学特性、病毒粒子的形态结构、病毒基因组结构与功能、病毒感染与复制、病毒致病机制及病毒引起的疾病诸方面对乙型脑炎病毒的研究进展作了综合评述,并对该领域的研究热点和方向作了探讨。  相似文献   

6.
7.
Phospholipid analyses of Venezuelan equine encephalitis virus showed that virus propagated in L-cell monolayers had a higher sphingomyelin content and a lower phosphatidylcholine content than virus grown in chick fibroblast monolayers. Virus of L-cell origin also was found to possess greater thermal stability than virus derived from the chick fibroblast cell.  相似文献   

8.
流行性乙型脑炎是由乙型脑炎病毒引起的、经蚊虫传播的严重危害中枢神经系统的人畜共患急性传染病,其重症病死率高,易造成永久性的神经系统后遗症,严重威胁着人类的健康。目前尚无特效的治疗流行性乙型脑炎的方法,控制蚊虫传播和免疫接种是当前的主要防御手段。简要综述了乙型脑炎病毒的基因组结构、结构蛋白与非结构蛋白功能、基因分型,以及流行性乙型脑炎疫苗的研究进展。  相似文献   

9.
10.
11.
In order to elucidate the molecular characteristics of Japanese encephalitis (JE) virus in Okinawa, 23 strains of JE virus isolated in a 25-year span were sequenced for the 240 nucleotides of the C-preM junction region and 111 nucleotides of the E gene region and compared with those of reference strains isolated in mainland Japan. The results of phylogenic analysis showed that although all the Okinawan isolates showed more than 96% homology in the nucleotide sequence in each region, they were chronologically divided into two groups: the old group (nine strains) and a new group (14 strains). On the other hand, in a comparison with reference strains in mainland Japan, the Okinawan isolates showed more than 94% nucleotide sequence homology in both regions, indicating that the Okinawan strains belong to the same genotype as that of JE strains in mainland Japan. The nucleotide homology of the old group was relatively higher than that of the new group. Among the 14 strains in the new group, 13 strains were isolated from mosquitoes collected from a pig farm from 1986 through 1992. These strains showed higher nucleotide divergence than the old group strains, isolated from mosquitoes and swine sera collected at several sites, in both regions. A nucleotide substitution at the position 1920 in the E gene was identified in three isolates. This substitution generated an asparagine-proline-threonine sequence capable of serving as an attachment site of carbohydrate.  相似文献   

12.
13.
根据JEV病毒减毒株SA14—14—2基因组序列,设计覆盖全长的4对重叠引物,以提取的活疫苗病毒RNA为模板,RT—PCR扩增出4个片段,并克隆到质粒载体中,进一步构建两个半端分子克隆,然后将全长cDNA序列克隆到一个新改造的低拷贝质粒载体pBR—kpn中,构建我国流行性乙型脑炎病毒(JEV)基因组全长cDNA克隆。经过体外转录后得到的转录子转染BHK-21细胞,重新获得JEV的恢复病毒,通过生物学特性、分子生物学水平、蛋白水平等几个方面对恢复病毒进行鉴定。结果获得了稳定的全长cDNA克隆,转录子转染BHK-21细胞后,第4天开始出现细胞病变(CPE),第6~7天时CPE为 ,经过Vero细胞进一步放大培养后,间接免疫荧光实验和RT—PCR实验均为阳性。证实了构建的JEV的全长cDNA克隆有感染性,为进一步的研究奠定了基础。  相似文献   

14.
我国分离的XJ-90260病毒鉴定为西方马脑炎病毒   总被引:7,自引:0,他引:7  
XJ-90260病毒是从新疆乌苏县境内采集的赫坎按蚊中分离到的一株病毒,病毒的鉴定结果显示:XJ-90260病毒可引起BHK-21细胞病变,表现为圆缩,脱落;可引起Vero细胞病变,表现为圆缩,破碎,脱落;可以在C6/36细胞中增殖,但不引起细胞病变。对3日龄小白鼠2-3天致死,对3周龄小白鼠3-4天致死。该病毒株对酸、乙醚敏感,抵抗5-氟脱氧尿苷。病毒与甲病毒组特异性免疫腹水起反应,与乙型脑炎病毒及布尼亚病毒组特异性免疫腹水不反应。进一步的分子生物学鉴定表明,该毒株基因组3′非编码区(ntranslated region,UTR)核苷酸序列具有典型的西方马脑炎病毒特征,与标准西方马脑炎病毒的首次报导,有重要的流行病学意义。我国9省区,886份血清的流行病学调查显示,该病毒抗体阳性血清24份,阳性率为2.71%。其中新疆(8/157),河南(6/76)、甘肃(5/94)三省区抗体阳性数较多,占总阳性数的79.2%(19/24)。  相似文献   

15.
目的:制备乙型脑炎病毒(JEV)可视化分型基因芯片。方法:根据JEV的基因组序列,应用生物学软件设计JEV分型引物及探针,制备其可视化分型基因芯片;用生物素标记的引物PCR扩增目的片段,并与固定于玻片上的探针杂交,加入链霉亲和素标记的纳米金,银增强实现可视化;进行特异性、灵敏性及重复性试验。结果:探针特异地与相应的标记目的基因片段杂交,并在芯片上呈现较强的阳性杂交信号;2号探针能特异性检出JEV,3、4号探针可分别对Ⅰ型和Ⅲ型JEV进行分型;芯片对JEV质粒检测的灵敏度达105拷贝/mL;以蓝耳病病毒等5种病毒为对照,芯片只对JEV响应,具有特异性;制备的基因芯片具有批间、批内重复性。结论:制备的基因芯片具有高特异性、灵敏性及重复性,可以快速、准确、高通量地对JEV进行可视化分型检测。  相似文献   

16.
Vesicular stomatitis virus (VSV) has long been regarded as a promising recombinant vaccine platform and oncolytic agent but has not yet been tested in humans because it causes encephalomyelitis in rodents and primates. Recent studies have shown that specific tropisms of several viruses could be eliminated by engineering microRNA target sequences into their genomes, thereby inhibiting spread in tissues expressing cognate microRNAs. We therefore sought to determine whether microRNA targets could be engineered into VSV to ameliorate its neuropathogenicity. Using a panel of recombinant VSVs incorporating microRNA target sequences corresponding to neuron-specific or control microRNAs (in forward and reverse orientations), we tested viral replication kinetics in cell lines treated with microRNA mimics, neurotoxicity after direct intracerebral inoculation in mice, and antitumor efficacy. Compared to picornaviruses and adenoviruses, the engineered VSVs were relatively resistant to microRNA-mediated inhibition, but neurotoxicity could nevertheless be ameliorated significantly using this approach, without compromise to antitumor efficacy. Neurotoxicity was most profoundly reduced in a virus carrying four tandem copies of a neuronal mir125 target sequence inserted in the 3′-untranslated region of the viral polymerase (L) gene.Vesicular stomatitis virus (VSV) is a nonsegmented, negative-strand rhabdovirus widely used as a vaccine platform as well as an anticancer therapeutic. While VSV is predominantly a pathogen of livestock (34), it has a very broad species tropism. The cellular tropism of VSV is determined predominantly at postentry steps, since the G glycoprotein of the virus mediates entry into most tissues in nearly all animal species (10).Though viral entry can take place in nearly all cell types, in vivo models of VSV infection have revealed that the virus is highly sensitive to the innate immune response, limiting its pathogenesis (4). VSV is intensively responsive to type I interferon (IFN), as the double-stranded RNA (dsRNA)-dependent PKR (2), the downstream effector of pattern recognition receptors MyD88 (32), and other molecules mediate shutdown of viral translation and allow the adaptive immune response to clear the virus. The vulnerability of the virus to the type I IFN response, typically defective in many cancers, has been exploited to generate tumor-selective replication (49), such that the virus is now poised to enter phase I trials. However, the virus remains potently neurotoxic, causing lethal encephalitis not only in rodent models (7, 22, 53) but also in nonhuman primates (25).VSV very often infiltrates the central nervous system (CNS) through infection of the olfactory nerves (41). When administered intranasally, the virus replicates rapidly in the nasal epithelium and is transmitted to olfactory neurons, from which it then moves retrograde axonally to the brain and replicates robustly, causing neuropathogenesis. While intranasal inoculation does cause neuropathy in mice, neurotoxicity following viral administration also occurs when the virus is delivered intravascularly (47), intraperitoneally (42), and (not surprisingly) intracranially (13). Previously, other groups have modified the VSV genome to be more sensitive to cellular IFNs (49) and have actually encoded IFN in the virus (36). However, the former can result in attenuation of the virus, such that it has reduced anticancer potential, while the latter still results in lethal encephalitis (unpublished results). In order to mitigate the effects of VSV infection on the brain without perturbing the potent oncolytic activity of the virus, we utilized a microRNA (miRNA) targeting paradigm, whereby viral replication is restricted in the brain without altering the tropism of the virus for other tissues.To redirect the tissue tropism of anticancer therapeutics, we (26) and others (11, 14, 55) have previously exploited the tissue-specific expression of cellular miRNAs. miRNAs are ∼22-nucleotide (nt) regulatory RNAs that regulate a diverse and expansive array of cellular activities. Through recognition of sequence-complementary target elements, miRNAs can either translationally suppress or catalytically degrade both cellular (6) and viral (50) RNAs. We have determined that cellular miRNAs can potentially regulate numerous steps of a virus life cycle and that this regulation of the virus by endogenous miRNAs can then abrogate toxicities of replication-competent viruses (27; E. J. Kelly et al., unpublished data).miRNAs are known to be highly upregulated in many different tissues, including (but not limited to) muscle (40), lung (44), liver (15, 44), spleen (44, 46), and kidney (51). In addition, the brain has a number of upregulated miRNAs, with each different subtype of cell having a unique miRNA profile. miR-125 is highly upregulated in all cells in the brain (neurons, astrocytes, and glia cells), while miR-124 is found predominantly in neuronal cells (48). Glial cells and glioblastomas are thought to have decreased expression of miR-128 compared to neurons (17), while miR-134 is particularly abundant in dendrites of neurons in the hippocampus (43). In addition to these miRNAs, the tumor suppressor miRNA let-7 and miRs 9, 26, and 29 (51) are also found to be enriched in the brain, with expression varying not only between different cell types and regions of the brain but also temporally (48).MicroRNAs have previously been exploited to modulate the tissue tropism of nonreplicating lentiviral vectors (8, 9), as well as curbing known toxicities of replication-competent picornaviruses (5, 26), adenoviruses (11), herpes simplex virus 1 (33), and influenza A virus (39). In addition, a recombinant VSV encoding a tumor suppressor target was found to be responsive to sequence-complementary miRNAs in vitro, possibly by affecting expression of the matrix (M) protein (14), and evidence from Dicer-deficient mice suggests that endogenously expressed microRNA targets within the P and L genes of VSV could restrict enhanced pathogenicity of the virus (37). However, in vivo protection from neuropathogenesis by this means has not been demonstrated for VSV.Here we evaluate the efficiencies of different brain-specific miRNAs for shutting down gene expression and extensively characterize the ability of miRNA targeting to attenuate the neurotoxicity of vesicular stomatitis virus in vivo. We constructed and evaluated recombinant VSVs with miRNA target (miRT) insertions at different regions of the viral genome, with special focus upon those affecting viral L expression. In addition, we looked at the regulatory efficiency of different brain-specific miRNAs and the impact of miRT orientation on VSV replication and determined the impact of the virus on oncolytic activity in vivo.  相似文献   

17.
18.
19.
20.
Analysis of purified Saint Louis encephalitis (SLE) virus by acrylamide gel electrophoresis revealed that the virions contained three structural proteins designated SP-1, SP-2, and SP-3 which had molecular weights of 63,000, 18,000, and 8,500, respectively. The envelope contained proteins SP-1 and SP-3 which were removed from the nucleocapsid by nonionic detergent treatment. Nucleocapsids prepared by deoxycholate treatment of complete virions had a density of 1.301 in potassium tartrate and contained SP-2 and SP-3. Brij-58-prepared SLE nucleocapsids had a density of 1.321 and contained only SP-2. Cycloheximide treatment for 1 hr in the presence of actinomycin irreversibly inhibited BHK cellular protein synthesis and reversibly inhibited the synthesis of SLE viral protein and ribonucleic acid. Three structural proteins and five virus-specific nonstructural proteins were detectable in SLE virus-infected BHK cells treated with actinomycin and pulse-inhibited with cycloheximide. Formation of each individual viral structural protein was detectable within 30 min after cycloheximide removal and continued with only minor changes from 12 to 18 hr after infection. Late in the infection cycle, synthesis of the nucleocapsid structural protein SP-2 and SP-3, the small envelope protein, was no longer detectable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号