首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Perl  D. Globerson 《Phytochemistry》1981,20(9):2289-2290
During the ripening of lettuce seeds, ATP, AMP + ADP, and moisture decrease to very low levels, and the ability to produce ATP from AMP + PEP (phosphoenolpyruvate) and the PEP-carboxylase (EC 4.1.1.38) activity is diminished. Malate dehydrogenase (EC 1.1.1.37) and pyruvate kinase (PK) (EC 2.7.1.40) decreased up to 10 days after anthesis, after which a sharp increase occurred.  相似文献   

2.
It was shown that pyruvate kinase (PK) in the supernatant fraction from Calicophoron ijimai is able to regulate the direction of metabolic flow at glucose break down from phosphoenolpyruvate (PEP) level. The enzyme for activity required substrate, dinucleotides, cations K+ and Mn++. The activity with Mg++ as divalent cation is low. The addition of fructose-1.6-diphosphate (FDP) did not affect the enzyme activity with Mn++, however, increased the affinity for PEP. The velocity of Mg++ activated reaction increased by 8.2 times in the presence of FDP. PK in C. ijimai is sensitive to ATP inhibition, being weakly inhibited by malate. L-alanine did not influence on the enzyme activity. The effect of some anthelminthic preparations on the PK activity was shown.  相似文献   

3.
J P Flikweert  R K Hoorn  G E Staal 《Biochimie》1975,57(6-7):677-681
Ca2+ ions have a biphasic effect on the allosteric pyruvate kinase (EC 2.7.1.40) from human erythrocytes: Ca2+ is an activator at low phosphoenolpyruvate (PEP) concentrations: at increased PEP concentrations Ca2+ behaves as an inhibitor. In the presence of ATP the same effect was observed and at low PEP concentrations Ca2+ ions can completely abolish the ATP inhibitory effect. At high Ca2+ concentrations there is a loss of the cooperativity towards PEP. The enzyme activated by fructose-1,6-diphosphate (FDP) is inhibited by Ca2+ ions at all concentrations of PEP tested. Mg2+ ions are not able to counteract the activation by Ca2+ ions at low PEP concentrations. The results are interpreted on the basis of the model of Monod.  相似文献   

4.
Pyruvate kinase (PK, EC 2.7.1.40) was partially purified from the plant cytosolic fraction of N2-fixing soybean ( Glycine max [L.] Merr.) root nodules. The partially purified PK preparation was completely free of contamination by phospho enol pyruvate carboxylase (PEPC, EC 4.1.1.31), the other major phospho enol pyruvate (PEP)-utilizing enzyme in legume root nodules. Latency experiments with sonicated nodule extracts showed that Bradyrhizobium japonicum bacteroids do not express either PK or PEPC activity in symbiosis. In contrast, free-living B. japonicum bacteria expressed PK activity, but not PEPC activity. Antibodies specific for the cytosolic isoform of PK from castor bean endosperm cross-reacted with a 52-kDa polypeptide in the partially purified PK preparation. At the optimal assay pH (pH 8.0 for PEPC and pH 6.9 for PK) and in the absence of malate, PEPC activity in crude nodule extracts was 2.6 times the corresponding PK activity. This would tend to favour PEP metabolism by PEPC over PEP metabolism by PK. However, at pH 7.0 in the presence of 5 m M malate, PEPC activity was strongly inhibited, but PK activity was unaffected. Thus, we propose that PK and PEPC activity in legume root nodules may be coordinately regulated by fluctuations in malate concentration in the plant cytosolic fraction of the bacteroid-containing cells. Reduced uptake of malate by the bacteroids, as a result of reduced rates of N2 fixation, may favour PEP metabolism by PK over PEP metabolism by PEPC.  相似文献   

5.
Summary A biphasic dependence of the exponential growth rate on the glucose concentration of the medium was observed in batch culture experiments for a strain of S. cerevisiae and one of its petit mutants. The data can be fitted to an equation of the Michaelis-Menten type with two sets of values of the growth parameters; the switch-over occurs at a glucose concentration of 4 mM. Another petit mutant did not show the biphasic character.Regulation of the energy metabolism in relation to the cell cycle is discussed. It is suggested that the observed shift in the growth parameters may be due to a change in the control point of glycolysis from phosphofructokinase to pyruvate kinase at higher glucose concentrations. This could reduce the duration of the G1 phase by permitting a faster synthesis of reserve carbohydrates required as intracellular energy reservoirs for DNA synthesis.Nonstandard Abbreviations Used F6P fructose-6-phosphate - FDP fructose-1,6-diphosphate - G1P glucose-6-phosphate - PEP Phosphoenolpyruvate - PYR pyruvate Enzymes PFK phosphofructokinase (EC 2.7.1.11) - PK phosphoenolpyruvate kinase (EC 2.7.1.40)  相似文献   

6.
The specific activity and the kinetic properties of partly purified pyruvate kinase (PK) (EC 2.7.1.40) from the Northern Krill, Meganyctiphanes norvegica, were investigated in relation to varying food resources. In order to evaluate the effect of starvation on the total energy metabolism, the respiration rates of fed and unfed krill were determined. The FPLC-elution profile of PK displayed two distinct peaks - PK I and II. The first isoform represented 80% of the total PK activity in the organism, and 20% was contributed by the second isoform. PK I was inhibited by ATP but was not influenced by fructose-1,6-bisphosphate (FBP). In contrast, PK II showed ATP inhibition and up to 2.5-fold increased activity by addition of 17 micromol.l(-1) FBP. The Michaelis-Menten constants of both isoforms were 2-10-fold higher for ADP than for phosphoenolpyruvate (PEP). Alanine showed no regulatory effect on PK I and II. In specimens starved for 7 days oxygen consumption decreased by 20%. Neither the feeding experiments nor the animals captured in the field during low and high productive seasons indicate that PK properties of M. norvegica are modified in relation to food supply. Accordingly, alternative mechanisms are involved in the depression of the metabolic rate in terms of oxygen consumption.  相似文献   

7.
F. hepatica pyruvate kinase and phosphoenolpyruvate (PEP) carboxykinase were found to have properties of regulatory enzymes in the dissimilation of PEP and the control of metabolic flow. Mn2+ and K+ were required for pyruvate kinase activity. In the presence of fructose-1, 6-diphosphate (FDP), Mg2+ could substitute for Mn2+. FDP caused a 4-fold increase in the Mn2+ activated pyruvate kinase activity. This was accompanied by a 12-fold decrease in apparent Km(PEP) and a 3-fold decrease in apparent Km (ADP). ATP markedly inhibited F. hepatica pyruvate kinase, but this inhibition was relieved by FDP. Estimates of metabolic levels indicated that the pyruvate kinase is saturated with PEP and ADP in vivo, but will be highly sensitive to fluctuations in the physiological concentrations of FDP and ATP. NADH doubled the activity of the PEP carboxykinase reaction and decreased the apparent Km (PEP) for this enzyme 3-fold. While the maximal activity of the PEP carboxykinase reaction was substantially higher than the pyruvate kinase reaction, the steady state concentration of PEP suggests that the PEP carboxykinase will not be saturated with this substrate.  相似文献   

8.
Pyruvate kinase (ATP: pyruvate phosphotransferase, EC 2.7.1.40) was partially purified from cotton seeds. The enzyme shows normal kinetics toward phosphoenol-pyruvate, ADP, and magnesium or manganese. Of nearly 50 metabolites tested, the enzyme is inhibited only by ATP, UTP, citrate, and malate, and activated by AMP, GMP, and fumarate. The inhibition by citrate and ATP is not due to metal chelation; both compounds appear to directly affect the enzyme. The kinetics of the activations by AMP and by fumarate suggest the existence of separate activator sites for the two compounds.It is suggested that cotton seed pyruvate kinase is a regulatory enzyme, although it differs markedly from the regulatory pyruvate kinases which have been described in animals and in microorganisms. This is the first instance in which regulatory properties have been reported for a pyruvate kinase from a higher plant.  相似文献   

9.
The properties of pyruvate kinase (PK) and phosphoenol pyruvate carboxykinase (PEP CK), two enzymes that determine the preferrential accumulation of either succinate or lactate as endproducts of carbohydrate metabolism, are described in adult Hymenolepis diminuta. PK activity at Vmax and Km levels of PEP was unaffected by ATP, alanine, FDP4, OR H+ ions, but was inhibited by 50% at 6.3 mM L-lactate and 30 mM HCO3. The addition of 30 mM HCO3 increased the Km(PEP) by 6-fold but did not alter the Vmax. The inhibition of PK by HCO3 cannot be explained entirely by an effect of ionic strength, but probably represents a specific modulator-enzyme interaction. Under similar conditions PEP CK was maximally activated. Although L-lactate inhibited PEP CK (Ki(lac) = 1.8 mM), this effector may play a minor role in regulation of PEP flux. These results implicate the poise of the HCO3-:CO2 system as a major determiner of endproduct accumulation in H. diminuta.  相似文献   

10.
The occurrence of a Crabtree effect in HeLa cells was detected. Some properties of pyruvate kinase (PK) were also evaluated. Hexose phosphate, triose-phosphate and phosphoenolpyruvate (PEP) significantly decreased the oxygen consumption of digitonin-permeabilized HeLa cells, which were oxidizing succinate. The Crabtree effect promoted by PEP was concentration-dependent and was lowered by an increase of ADP concentration, suggesting a participation of PK. The dependence of fructose-1,6-bisphosphate (FDP) by HeLa cell PK was observed. The PK of HeLa cells was inhibited by L -alanine only in the absence of FDP, while in the presence of the metabolite, an increase in the activity was observed. PK was also inhibited in the presence of L -histidine and L -leucine, while L -serine promoted activation. L -Cysteine and L -phenylalanine also inhibited the PK of HeLa cells. This, together with the sigmoidal character in relation to substrate concentration, suggests the presence of the K-type of PK in HeLa cells. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
Plastidic pyruvate kinase (ATP: pyruvate phosphotransferase, EC 2.7.1.40) was purified to near homogeneity as judged by native PAGE with about 4% recovery from developing seeds of Brassica campestris using (NH4)2SO4 fractionation, DEAE-cellulose chromatography, gel filtration through Sepharose-CL-6B and affinity chromatography through reactive blue Sepharose-CL-6B. The purified enzyme having molecular mass of about 266 kDa was quite stable and showed a broad pH optimum between pH 6.8-7.8. Typical Michaelis-Menten kinetics was obtained for both the substrates with K(m) values of 0.13 and 0.14 mM for PEP and ADP, respectively. The enzyme could also utilize CDP, GDP or UDP as alternative nucleotide to ADP, but with lower Vmax and higher K(m). The enzyme had an absolute requirement for a divalent and a monovalent cation for activity and was inhibited by oxalate, fumarate, citrate, isocitrate and ATP, and activated by AMP, aspartate, 3-PGA, tryptophan and inorganic phosphate. ATP inhibited the enzyme competitively with respect to PEP and non-competitively with respect to ADP. Similarly, oxalate inhibition was also of competitive type with respect to PEP and non-competitive with respect to ADP. This inhibition by either ATP or oxalate was not due to chelation of Mg2+, as the inhibition was not relieved on increasing Mg2+ concentration even upto 30 mM. Initial velocity and product inhibition studies demonstrated the reaction mechanism to be compulsory ordered type. The enzyme seems to be regulated synergistically by ATP and citrate.  相似文献   

12.
The primary catabolic pathways in the fungi Penicillium notatum and P. duponti, and Mucor rouxii and M. miehei were examined by measuring the relative rate of 14CO2 production from different carbon atoms of specifically labelled glucose. It was found that these organisms dissimilate glucose predominantly via the Embden--Meyerhof pathway in conjunction with the tricarboxylic acid cycle and to a lesser extent by the pentose phosphate pathway. Phosphofructokinase (EC 2.7.1.11) activity could not be detected initially in Penicillium species because of the interference from mannitol-1-phosphate dehydrogenase (EC 1.1.1.17) and NADH oxidase (EC 1.6.99.3). A combination of differential centrifuging and a heat treatment of Penicillium cell-free extracts in the presence of fructose-6-phosphate removed the interfering enzymes. The kinetic characteristics of phosphofructokinase from P. notatum and M. rouxii are described. The enzyme presents highly cooperative kinetics for fructose-6-phosphate. The kinetics for ATP show no cooperativity and inhibition by excess ATP is observed. The addition of AMP activated the P. notatum enzyme, relieving ATP inhibition; slight inhibition by AMP was observed with the M. rouxii enzyme. In contrast M. rouxii pyruvate kinase (EC 2.7.1.40) is activated 50-fold by fructose-1,6-diphosphate whereas pyruvate kinase from P. notatum and P. duponti were unaffected by fructose-1,6-diphosphate.  相似文献   

13.
The specific activity and the kinetic properties of partly purified pyruvate kinase (PK) (EC 2.7.1.40) from the Northern Krill, Meganyctiphanes norvegica, were investigated in relation to varying food resources. In order to evaluate the effect of starvation on the total energy metabolism, the respiration rates of fed and unfed krill were determined. The FPLC–elution profile of PK displayed two distinct peaks — PK I and II. The first isoform represented 80% of the total PK activity in the organism, and 20% was contributed by the second isoform. PK I was inhibited by ATP but was not influenced by fructose–1,6–bisphosphate (FBP). In contrast, PK II showed ATP inhibition and up to 2.5-fold increased activity by addition of 17 μmol·l−1 FBP. The Michaelis–Menten constants of both isoforms were 2–10-fold higher for ADP than for phosphoenolpyruvate (PEP). Alanine showed no regulatory effect on PK I and II. In specimens starved for 7 days oxygen consumption decreased by 20%. Neither the feeding experiments nor the animals captured in the field during low and high productive seasons indicate that PK properties of M. norvegica are modified in relation to food supply. Accordingly, alternative mechanisms are involved in the depression of the metabolic rate in terms of oxygen consumption.  相似文献   

14.
The short-term interactions of insulin and vasopressin on pyruvate kinase (PK) activity were studied in primary cultures of rat hepatocytes. (1) Vasopressin inhibited PK activity by approx. 30% within 15 s, but activity returned to control values by 5 min. The transient inhibition by vasopressin was mimicked by either 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) or ionophore A23187. (2) Insulin alone transiently inhibited PK activity at 1 min, but stimulated PK activity at 5 and 15 min. (3) Insulin completely antagonized the early inhibition by vasopressin, PMA or A23187 of PK activity at 15 s. (4) Insulin inhibited PK activity in the presence of vasopressin, PMA or A23187 at 5 min. (5) 8-Bromo cyclic AMP inhibited PK activity within 15 s, and this inhibition was maintained for at least 5 min. Insulin did not antagonized the inhibition by the cyclic AMP analogue. These results show that insulin under appropriate conditions can act as an inhibitor or activator of PK.  相似文献   

15.
1. In vitro glucose uptake and glycogen utilization by Hymenolepis microstoma decreased under high oxygen concentrations. 2. 5-Hydroxytryptamine did not stimulate in vitro glucose uptake but did increase glycogen utilizations by H. microstoma. 3. The reduced glucose uptake under high oxygen concentrations (21 and 95%) resulted in a reduction in excretory products. 4. 14CO2-incorporation studies confirmed that, under both 95% O2:5% CO2 and air-minus-CO2 (identical to 21% O2). CO2-fixation by phosphoenolpyruvate carboxykinase (EC 4.1.1.32) was inhibited. 5. The specific activity of hexokinase (EC 2.7.1.1), phosphofructokinase (EC 2.7.1.11) and pyruvate kinase (EC 2.7.1.40) was not stimulated by 5-HT. 6. The concentration of ATP required for optimal stimulation of phosphofructokinase activity was 0.67 mM. Activity was further significantly increased by the addition of cAMP and even greater by AMP.  相似文献   

16.
Chicken hepatocytes synthesize glucose and fatty acids at rates which are faster than rat hepatocytes. The former also consume exogenous lactate and pyruvate at a much faster rate and, in contrast to rat hepatocytes, do not accumulate large quantities of lactate and pyruvate by aerobic glycolysis. α-Cyano-4-hydroxycinnamate, an inhibitor of pyruvate transport, causes lactate and pyruvate accumulation by chicken hepatocytes. Glucagon and N6,O2′-dibutyryl adenosine 3′,5′-monophosphate (dibutyryl cyclic AMP) convert pyruvate kinase (EC 2.7.1.40) of rat hepatocytes to a less active form. This effect explains, in part, inhibition of glycolysis, inhibition of lipogenesis, stimulation of gluconeogenesis, and inhibition of the transfer of reducing equivalents from the mitochondrial compartment to the cytoplasmic compartment by these compounds. In contrast, pyruvate kinase of chicken hepatocytes is refractory to inhibition by glucagon or dibutyryl cyclic AMP. Rat liver is known to have predominantly the type L isozyme of pyruvate kinase and chicken liver predominantly the type K. Thus, only the type L isozyme appears subject to interconversion between active and inactive forms by a cyclic AMP-dependent, phosphorylation-dephos-phorylation mechanism. This explains why the transfer of reducing equivalents from the mitochondrial compartment to the cytoplasmic compartment of chicken hepatocytes is insensitive to cyclic AMP. However, glucagon and dibutyryl cyclic AMP inhibit net glucose utilization, inhibit fatty acid synthesis, inhibit lactate and pyruvate accumulation in the presence of α-cyano-4-hydroxycinnamate, and stimulate gluconeogenesis from lactate and dihydroxyacetone by chicken hepatocytes. Thus, a site of action of cyclic AMP distinct from pyruvate kinase must exist in the glycolytic-gluconeogenic pathway of chicken liver.  相似文献   

17.
A pyruvate kinase (EC 2.7.1.40) variant inhibited by L-cysteine has been found in Ehrlich ascites tumour and Morris hepatoma 7777, but not in normal mouse and rat livers used for comparison. Chromatin extracts of all materials studied contained three pyruvate kinase isoenzymes (alpha, beta, gamma) which showed the greatest electrophoretic mobility in normal mouse and rat livers. The isoenzyme mobility diminished in both tumour chromatin extracts, and the slow migrating gamma isoenzyme exhibited sensitivity to L-cysteine inhibition. This gamma isoenzyme sensitive to L-cysteine might be considered as a tumour marker. All tumour pyruvate kinase isoenzymes were insensitive to normal signal molecules, i.e., to ATP and fructose 1,6-diphosphate, which regulate liver pyruvate kinase activity. It was, however, noted that the binding of pyruvate kinase isoenzymes to DNA is connected with a diminution in their catalytic activity.  相似文献   

18.
Summary D-Glucose and D-xylose addition to not-growing Rhodotorula gracilis cells brings about alterations in pyruvate kinase and phosphoenolpyruvate carboxykinase activities characteristic for glycolysis and gluconeogenesis, respectively.Abbreviations used PK Pyruvate kinase (EC 2.7.1.40) - PEPCK Phosphoenolpyruvate carboxykinase (EC 4.1.1.32) - PFK Phosphofructokinase (EC 2.7.1.11)  相似文献   

19.
The two forms of pyruvate kinase (ATP:pyruvate 2-O-phosphotransferase, EC 2.7.1.40) present in Escherichia coli have been purified from the same cultures and crystallized. A modified procedure for the purification of type I pyruvate kinase is described. Molecular weight, subunit structure, amino acid composition, NH2-terminal amino acid, maps of tryptic peptides and conditions for crystallization have been determined for the two forms. A comparison of these data shows that the two forms are different proteins, each being a tetramer of identical subunits.  相似文献   

20.
Hormone-stimulated lipolysis in adipose tissue was inhibited by fluoroacetate and there was a concomitant decrease in both the basal and hormone-stimulated cyclic AMP levels. Adenylate cyclase (EC 4.6.1.1) activity in membrane preparations was inhibited by fluoroacetate. There was no influence of fluoroacetate on the low Km cyclic AMP phosphodiesterase (EC 3.1.4.17) activity. The rate of glucose conversion to fatty acids was increased when adipose tissue was incubated in the presence of fluoroacetate. The outputs of pyruvate and lactate into the incubation medium were decreased at this time, suggesting decreased tissue pyruvate levels and a site of activation of lipogenesis distal to pyruvate formation. Pyruvate dehydrogenase (EC 1.2.4.1) activity was increased twofold in adipose tissue incubated in the presence of fluoroacetate. This was attributed to a fluoroacetate-induced inhibition of pyruvate dehydrogenase kinase, the enzyme responsible for inactivating the pyruvate dehydrogenase complex. Glucose transport was increased to a small but significant degree by fluoroacetate. In addition, both the tissue content of citrate and its release into the incubation medium were increased, suggesting that fluoroacetate resulted in an inhibition of aconitase (EC 4.2.1.3). The tissue ATP content was unchanged. Because the antilipolytic and lipogenic effects of fluoroacetate parallel those of insulin, they may share a common mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号