首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Polyamine metabolism in mammalian cells in culture   总被引:1,自引:0,他引:1  
  相似文献   

4.
Pyridine nucleotide metabolism in mammalian cells in culture   总被引:2,自引:0,他引:2  
The biosynthesis of pyridine nucleotides has been examined in a number of mammalian cell lines in culture. In all lines examined, nicotinamide is incorporated by a biochemical pathway distinct from the Preiss-Handler pathway for nicotinic acid. In at least the human cell line D98/AH2, there is no detectable endogenous synthesis of the pyridine ring from tryptophan. Although most cell lines examined (hamster BHK 21/13, mouse L929 and human D98/AH2) use either nicotinic acid or nicotinamide as a precursor for DPN and TPN, two mouse cell lines, 3T3-4E and LM CIID, are unable to utilize nicotinic acid as a source of the pyridine ring. If nicotinic acid is present in the medium, substantial amounts of intracellular desamido DPN accumulate suggesting that the last step (desamido DPN→DPN) is limiting in the Preiss-Handler pathway. With nicotinamide, the only compound which accumulates in substantial amounts apart from DPN and TPN is nicotinamide ribose; there is no detectable NMN. The results of pulse-labeling experiments suggest that nicotinamide ribose may be an intermediate in the nicotinamide pathway. Following growth of D98/AH2 cells in high concentrations of niacin, biosynthesis of DPN from nicotinamide was completely inhibited for at least six hours. The converse experiment revealed no inhibition of niacin incorporation. This observation suggests that a niacin pathway intermediate, which present evidence indicates is desamido-DPN. can inhibit nicotinamide utilization. Newly synthesized DPN turns over with a half-life of two hours in azaserine-treated D98/AH2 cells. In the absence of azaserine, the nicotinamide moiety of newly synthesized DPN is lost from D98/AH2 cells to the medium with a half-life of eight hours. About 80% of the nicotinamide is lost to medium as nicotinamide ribose.  相似文献   

5.
It is shown that two steady states exist in certain regions of operation of a 2-liter continuous stirred tank biological reactor. Transition was made from one steady state to another by applying shock loads of either phenol substrate which is inhibitory to the culture at high concentrations or by adding large additional amounts of concentrated organisms. The existence of the multiple steady states is ascribed to the existence of wall growth, and their position is determined by the amount of wall growth. Transient behavior of the system did not follow the predictions of the simple wall growth model but the culture appeared to undergo a lag period immediately after applying the shock load to the system. It is concluded that the stability of a continuous culture utilizing an inhibitory substrate is improved by increasing the degree of wall growth and decreasing the substrate feed concentration. It is also concluded that small scale experiments can usually not be interpreted correctly unless the effect of wall growth is taken into account.  相似文献   

6.
7.
A clonal derivative of a transfectant of the SP2/O myeloma cell line producing a chimeric monoclonal antibody was maintained in steady-state, continuous culture at dilution rates ranging from 0.21 to 1.04 day(-1). The steady-state values for nonviable and total cell concentrations increased as the dilution rate decreased, while the viable cell concentration was roughly independent of the dilution rate. At steady state, the specific growth rate increased and the specific death rate decreased as the dilution rate increased. The maximum specific growth rate was 1.15 day(-1). Antibody production was growth associated and the specific rate of antibody production increased linearly as the specific growth rate increased.  相似文献   

8.
Primary irritancy in human and animal skin is characterized by an inflammatory reaction mediated, in part, by membrane-derived arachidonate metabolites. One of the mechanisms of this reaction was investigated in cultured mammalian cells using three surfactants: linear alkyl benzene sulfonate (LAS), alkyl ethoxylate sulfate (AEOS), and TWEEN 20. These compounds listed in order in vivo irritancy are LAS greater than AEOS greater than TWEEN 20. Each of these compounds was studied in C3H-10T1/2 cells and human keratinocytes which had been prelabeled with 3H-labeled arachidonic acid (AA). After labeling, media were removed, cells were washed, and fresh media with or without surfactant were added. Cells were then incubated for 2 hr, media were removed and centrifuged, and an aliquot was assayed by liquid scintillation for release of label. In C3H-10T1/2 cells LAS and AEOS in 5-50 microM concentration stimulated 2 to 10 times the release of [3H]AA as compared to controls. In contrast, concentrations of 50-100 microM of TWEEN were required to release [3H]AA. With keratinocytes the same rank order of surfactant concentrations necessary for release was obtained as found with C3H-10T1/2 cells. High-performance liquid chromatography of media extracts of both cell systems revealed surfactant stimulation of the production of cyclooxygenase AA metabolites. These results confirm the induction of release by primary irritants of fatty acid groups from membrane phospholipids. Subsequent metabolism of these fatty acid groups are an integral part of the primary irritant response. Data presented with three known irritants in this in vitro model show a direct correlation with in vivo studies.  相似文献   

9.
10.
Summary Glycogen metabolism was studied in human hormone-producing trophoblastic cells (BeWo line). Cells supplemented daily with high glucose (3 g per liter in medium) contained 5.5% glycogen and utilized glucose at an initial rate of 12.2 mμmoles per min per mg of protein. In cells supplemented daily with low glucose (1 g per liter), the initial rate of glucose consumption was 23 mμmoles per min per mg of protein and the glycogen content reached only 0.4% of wet weight 24 hr after medium replenishment. When glycogen-depleted cultures were refed glucose, an accumulation of glycogen was observed, with initial deposition occurring in areas near the cell surface. After exhaustion of extracellular glucose, cytoplasmic glycogen was utilized at a rate of 2.8 mμmoles per min per mg of protein. Addition of either low or high glucose to glycogen-depleted cells resulted in the same rate of glycogen synthesis (approximately 8 mμmoles per min per mg of protein). It was suggested that unique regulatory mechanisms function in the control of glycogen metabolism in glycoprotein hormone-producing cytotrophoblastic cells. This work was supported in part by Public Health Service Research Contract PH43-68-1010, Research Grant CA 05524 from the National Cancer Institute, and by grants from the Milwaukee Division of the American Cancer Society, Inc., and the Damon Runyon Memorial Fund for Cancer Research, Inc.  相似文献   

11.
12.
Continuous culture is frequently used in the cultivation of mammalian cells for the manufacturing of recombinant protein pharmaceuticals. In such operations a large volume of medium is turned over each day, especially in the case where cell recycle, or perfusion cultivation, is practiced. In principle, the volumetric throughput of medium can be reduced by using a more concentrated feed while maintaining the same nutrient provision rate. Overall, the medium components are divided into two categories: ‘consumable nutrients' and ‘unconsumable inorganic bulk salts’. In such fortified medium, the concentrations of consumable nutrients, but not bulk salts, are increased. With a stoichiometrically-balanced medium, the large amount of nutrients fed into the culture is largely consumed by cells to give rise to residual concentrations of these nutrients in their optimal range. However, unless care is taken to initiate the continuous culture, overshoot of nutrients may occur during the transient period. The high nutrient concentration during overshoot may be inhibitory by itself, or the resulting high osmolality may retard the growth. Using a mathematical model that incorporates the growth inhibitory effect of high osmolality we demonstrate such a potentially catastrophic effect of nutrient and osmolality overshoot by simulation. To avoid overshoot a controlled nutrient feeding scheme should be devised at the initiation of continuous culture. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
14.
Summary For the past 60 years, fundamental discoveries in eukaryotic biology using mammalian cell cultures have been significant but modest relative to the enormous potential. Combined with advances in technologies of cell and molecular biology, mammalian cell culture technology is becoming a major, if not essential tool, for fundamental discovery in eukaryotic biology. Reconstruction of the milieu for cells has progressed from simple salt solutions supporting brief survival of tissues outside the body to synthesis of the complete set of structurally defined nutrients, hormones and elements of the extracellular matrix needed to reconstruct complex tissues from cells. The isolation of specific cell types in completely defined environments reveals the true complexity of the mammalian cell and its environment as a dynamic interactive physiological unit. Cell cultures provide the tool for detection and dissection of the mechanism of action of cellular regulators and the genes that determine individual aspects of cell behavior. The technology underpins advances in virology, somatic cell genetics, endocrinology, carcinogenesis, toxicology, pharmacology, hematopoiesis and immunology, and is becoming a major tool in develomental biology, complex tissue physiology and production of unique mammalian cell-derived biologicals in industry. This article is the first of a series of invited reviews aimed at identifying fundamental contributions and current challenges associated with research activities in subdiscriplines of cell and developmental biology in vitro. This treatise is dedicated to Dr. Brian Kimes, Program Director at the National Cancer Institute, whose vision, encouragement and support have contributed significantly to modern developments in mammalian cell culture.  相似文献   

15.
16.
Three distinct DNA ligases in mammalian cells   总被引:17,自引:0,他引:17  
The major DNA ligase of proliferating mammalian cells, DNA ligase I, catalyzes the joining of single strand breaks in double stranded DNA and is active on a synthetic substrate of oligo(dT) hybridized to poly(dA). DNA ligase I does not catalyze the joining of an oligo(dT).poly(rA) substrate. Two additional DNA ligases, II and III, which can act on the latter substrate have been purified from calf thymus. DNA ligase II, which has been described previously, is a 72-kDa protein. DNA ligase III migrates as a 100-kDa protein in denaturing gel electrophoresis. Structural, immunochemical, and catalytic studies on the three DNA ligase activities strongly indicate that they are the products of three different genes.  相似文献   

17.
Glutamine is a major source of energy, carbon, and nitrogen for mammalian cells. The amount of glutamine present in commercial mammalian cell media is, however, not necessarily balanced with cell requirements. Therefore, the effects of glutamine limitation on the physiology of two mammalian cell lines were studied in steady-state chemostat cultures fed with IMDM medium with 5% serum. The cell lines used were MN12, a mouse-mouse hybridoma, and SP2/0-Ag14, a mouse myeloma often used in hybridoma fusions. Cultures, grown at a fixed dilution rate of 0.03 h(-1), were fed with media containing glutamine concentrations ranging from 0.5 to 4 mmol L(-1). Biomass dry weight and cell number were linearly proportional to the glutamine concentrations fed, between 0.5 and 2 mmol L(-1), and glutamine was completely consumed by both cell lines. From this it was concluded that glutamine was the growth-limiting substrate in this concentration range and that the standard formulation of IMDM medium contains a twofold excess of glutamine. In glutamine-limited cultures, the specific rates of ammonia and alanine production were low compared to glutamine-excess cultures containing 4 mmol L(-1) glutamine in the feed medium. The specific consumption rates of nearly all amino acids decreased with increasing glutamine feed, indicating that, in their metabolic function, they may partially be replaced by glutamine. Both cell lines reacted similarly to differences in glutamine feeding in all aspects investigated, except for glucose metabolism, In SP2/0-Ag14 glutamine feed concentrations did not affect the specific glucose consumption, whereas in MN12 this parameter increased with increasing amounts of glutamine fed. This systematic study using controlled culture conditions together with a detailed analysis of culture data shows that, although cells may react similarly in many aspects, cell-line-specific characteristics may be encountered even with respect to fundamental physiological responses like the interaction of the glutamine and glucose metabolism. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 272-286, 1997.  相似文献   

18.
The purpose of this work was to validate experimentally that multiple steady states may be achieved in a continuous stirred tank reactor (CSTR) during hydrolysis of sucrose by invertase. Experiments were done with four initial sucrose concentrations (0.1, 0.175, 0.584 and 1 M) to study their effect on residual sucrose and reaction rate at steady state. Two different steady states (S=0.7 M, r=9×10−4 mol/l min and S=0.135 M, r=1.54×10−3 mol/l min) were found depending on initial concentration of sucrose in the reactor. Two stable steady states were possible in a CSTR using invertase for the hydrolysis of sucrose. A third possible steady state can be derived theoretically, but it should be a metastable condition because any small disturbance in the system will result in transitory states stabilizing at sugar concentrations of either 0.135 or 0.7 M.  相似文献   

19.
Short-period (40-50 min) synchronized metabolic oscillation was found in a continuous culture of yeast Saccharomyces cerevisiae under aerobic conditions at low-dilution rates. During oscillation, many parameters changed cyclically, such as dissolved oxygen concentration, respiration rate, ethanol and acetate concentrations in the culture, glycogen, ATP, NADH, pyruvate and acetate concentrations in the cells. These changes were considered to be associated with glycogen metabolism. When glycogen was degraded, the respiro-fermentative phase was observed, in which ethanol was produced and the respiration rate decreased. In this phase, the levels of intracellular pyruvate and acetate became minimum, ATP became high and intracellular pH at its lowest level. When glycogen metabolism changed from degradation to accumulation, the respiratory phase started, during which ethanol was re-assimilated from the culture and the respiration rate increased. Intracellular pyruvate and acetate became maximum, ATP decreased and the intracellular pH appeared high. These findings may indicate new aspects of the control mechanism of glycogen metabolism and how respiration and ethanol fermentation are regulated together under aerobic conditions.  相似文献   

20.
The steady-state behavior of a glucose-limited, aerobic, continuous cultivation of Saccharomyces cerevisiae CEN.PK113-7D was investigated around the critical dilution rate. Oxido-reductive steady states were obtained at dilution rates up to 0.09 h(-1) lower than the critical dilution rate by operating the bioreactor as a productostat, where the dilution rate was controlled on the basis of an ethanol measurement. Thus, the experimental investigations revealed that multiple steady states exist in a region of dilution rates below the critical dilution rate. The existence of multiple steady states was attributed to two distinct physiological effects occurring when growth changed from oxidative to oxido-reductive: (i) a decrease in the efficiency of ATP production and utilization (at ethanol concentrations below 3 g/L) and (ii) repression of the oxidative metabolism (at higher ethanol concentrations). The first effect was best observed at low ethanol concentrations, where multiple steady states were observed even when no repression of the oxidative metabolism was evident, i.e., the oxidative capacity was constant. However, at higher ethanol concentrations repression of the oxidative metabolism was observed (the oxidative capacity decreased), and this resulted in a broader range of dilution rates where multiple steady states could be found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号