首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Malonate decarboxylation by crude extracts of Malonomonas rubra was specifically activated by Na+ and less efficiently by Li+ ions. The extracts contained an enzyme catalyzing CoA transfer from malonyl-CoA to acetate, yielding acetyl-CoA and malonate. After about a 26-fold purification of the malonyl-CoA:acetate CoA transferase, an almost pure enzyme was obtained, indicating that about 4% of the cellular protein consisted of the CoA transferase. This abundance of the transferase is in accord with its proposed role as an enzyme component of the malonate decarboxylase system, the key enzyme of energy metabolism in this organism. The apparent molecular weight of the polypeptide was 67,000 as revealed from SDS-polyacrylamide gel electrophoresis. A similar molecular weight was estimated for the native transferase by gel chromatography, indicating that the enzyme exists as a monomer. Kinetic analyses of the CoA transferase yielded the following: pH-optimum at pH 5.5, an apparent Km for malonyl-CoA of 1.9mM, for acetate of 54mM, for acetyl-CoA of 6.9mM, and for malonate of 0.5mM. Malonate or citrate inhibited the enzyme with an apparent Ki of 0.4mM and 3.0mM, respectively. The isolated CoA transferase increased the activity of malonate decarboxylase of a crude enzyme system, in which part of the endogenous CoA transferase was inactivated by borohydride, about three-fold. These results indicate that the CoA transferase functions physiologically as a component of the malonate decarboxylase system, in which it catalyzes the transfer of acyl carrier protein from acetyl acyl carrier protein and malonate to yield malonyl acyl carrier protein and acetate. Malonate is thus activated on the enzyme by exchange for the catalytically important enzymebound acetyl thioester residues noted previously. This type of substrate activation resembles the catalytic mechanism of citrate lyase and citramalate lyase.Abbreviations DTNB 5,5 Dithiobis (2-nitrobenzoate) - MES 2-(N-Morpholino)ethanesulfonic acid - TAPS N-[Tris(hydroxymethyl)-methyl]-3-aminopropanesulfonic acid - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

2.
Malonate, Malonyl-Coenzyme A, and Acetyl-Coenzyme A in Developing Rat Brain   总被引:2,自引:2,他引:0  
Abstract: Free malonate, malonyl-coenzyme A (malonyl-CoA), and acetyl-CoA were assayed in rat brain at developmental ages from the 20th day of gestation to 60 days of postnatal life. The determination of malonate was based on its conversion to malonyl-CoA and decarboxylation to acetyl-CoA by enzyme extracts from Pseudo-monas fluorescens. The resulting acetyl-CoA reacted with [4-14C]oxaloacetate to form [5-14C]citrate, which was isolated by TLC. Malonyl-CoA in perchloric acid extracts from brain was converted to acetyl-CoA by rat liver mitochondrial malonyl-CoA decarboxylase (EC 4.1.1.9). Acetyl-CoA derived from this step was assayed by a modified CoA-cycling procedure. Brain acetyl-CoA was also assayed by CoA cycling. Prenatal brain contained no free malonate but malonyl-CoA was present. The acetyl-CoA level was relatively high just prior to birth and declined slightly with growth. Malonate concentrations after birth rose rapidly to reach 192 nmol/g wet weight at 60 days. Adult levels for malonyl-CoA and acetyl-CoA were 1.83 and 1.90 nmol/g wet weight, respectively. The origin and natural role of free malonate in brain are not known but deacylation of malonyl-CoA by reversal of the malonyl-CoA synthetase reaction is postulated. Rat liver and kidney also contain substantial concentrations of free malonate.  相似文献   

3.
Citrobacter diversus ATCC 27156 was able to grow by decarboxylation of malonate to acetate under strictly anaerobic conditions, in the presence of yeast extract. The growth yield, corrected for growth on yeast extract, was 2.03 g cell dry mass per mol malonate. The addition of malonate to ATP-depleted cell suspensions (less than 0.2 nmol ATP/mg cell protein) resulted in a rapid increase in cellular ATP levels to between 4.5 and 6.0 nmol/mg cell protein. Intact cells decarboxylated malonate at rates of up to 1.5 mumol/min.mg protein. Enzyme assays on malonate-grown cells indicated activation of malonate by an ATP-dependent ligase reaction and by CoA transfer from acetyl-CoA, followed by decarboxylation of malonyl-CoA to acetyl-CoA with subsequent recovery of the invested ATP by substrate level phosphorylation through the activity of acetate kinase. Net ATP synthesis is postulated to be mediated by gradient formation coupled to the decarboxylation of malonyl-CoA. The protonophore CCCP and H(+)-ATPase inhibitor DCCD significantly reduced cellular ATP levels, suggesting a role for proton gradients in the energy metabolism of this strain when growing an malonate. Inhibitors of sodium metabolism or ommission of sodium had no effect on ATP levels or malonate decarboxylation.  相似文献   

4.
Mitochondria and high-speed supernatant were prepared from rat brain homogenates at 0–50 days of age. The development of malonyl-CoA synthetase, malonyl-CoA decarboxylase, coenzyme A-transferases and acetyl-CoA hydrolase was examined and compared to de novo fatty acid biosynthesis. The specific activity of malonyl-CoA synthetase rose steeply between 6 and 10 days, and this sudden increase coincided with peak specific activity of fatty acid synthetase. Similarly, malonate activation by coenzyme A-transfer from succinyl-CoA increased rapidly at the same time. Transfer of the coenzyme A moiety from acetoacetyl-CoA was only minimal during this period. Brain mitochondria had active malonyl-CoA decarboxylase which showed an almost linear increase of specific activity between 0 and 50 days. Acetyl-CoA resulting from malonyl-CoA decarboxylation underwent enzymatic hydrolysis to acetate and free coenzyme A. Only traces of acetoacetate were recovered. In mitochondria, acetyl-CoA hydrolase increased progressively whereas the cytosolic enzyme had high specific activity at birth which declined slowly during maturation.  相似文献   

5.
Rat brain contains substantial concentrations of free malonate (192 nmol/g wet weight) but origin and biological importance of the dicarboxylic acid are poorly understood. A dietary source has been excluded. A recently described malonyl-CoA decarboxylase deficiency is associated with malonic aciduria and clinical manifestations, including mental retardation. In an effort to study the metabolic origin of free malonate, several labeled acetyl-CoA precursors were administered by intracerebral injection. [2-14C]pyruvate or [1,5-14C]citrate produced radioactive glutamate but failed to label malonate. In contrast, [1-14C]acetate, [2-14C]acetate, and [1-14C]butyrate were converted to labeled glutamateand malonate after the same route of administration. The intracerebral injection of [1-14C]--alanine as a precursor of malonic semialdehyde and possibly free malonate did not give rise to radioactivity in the dicarboxylate. The labeling pattern of malonic acid is compatible with the reaction sequence: acetyl-CoAmalonyl-CoAmalonate. The final step is thought to occur by transfer of the CoA-group from malonyl-CoA to succinate and/or acetoacetate. Labeling of malonate from acetate is most effective at the age of 7 days when the net concentration of the dicarboxylic acid in rat brain is still very low. At this age, butyrate was a better precursor of malonate than acetate. It is proposed that fatty acid oxidation provides the acetyl-CoA which functions as the precursor of free brain malonate. Compartmentation of malonate biosynthesis is likely because the acetyl-CoA precursors citrate and pyruvate are ineffective.Presented before the 12th Biennial Meeting of the International Society for Neurochemistry, Algarve, Portugal, April 24, 1989.  相似文献   

6.
The filamentous fungus Aspergillus oryzae was recently used as a heterologous host for fungal secondary metabolite production. Here, we aimed to produce the plant polyketide curcumin in A. oryzae. Curcumin is synthesized from feruloyl-coenzyme A (CoA) and malonyl-CoA by curcuminoid synthase (CUS). A. oryzae expressing CUS produced curcumin (64 μg/plate) on an agar medium containing feruloyl-N-acetylcysteamine (a feruloyl-CoA analog). To increase curcumin yield, we attempted to strengthen the supply of malonyl-CoA using two approaches: enhancement of the reaction catalyzed by acetyl-CoA carboxylase (ACC), which produces malonyl-CoA from acetyl-CoA, and inactivation of the acetyl-CoA-consuming sterol biosynthesis pathway. Finally, we succeeded in increasing curcumin yield sixfold by the double disruption of snfA and SCAP; SnfA is a homolog of SNF1, which inhibits ACC activity by phosphorylation in Saccharomyces cerevisiae and SCAP is positively related to sterol biosynthesis in Aspergillus terreus. This study provided useful information for heterologous polyketide production in A. oryzae.  相似文献   

7.
1. [14C]Malonyl-CoA was incorporated into isoprenoids by cell-free yeast preparations, by preparations from pigeon and rat liver, and by Hevea brasiliensis latex. 2. In agreement with previous reports the incorporation of acetyl-CoA into isoprenoids was not inhibited by avidin and was not stimulated by HCO3. In a cell-free yeast preparation addition of HCO3 stimulated the formation of fatty acids from acetyl-CoA and decreased the incorporation into unsaponifiable lipids. 3. The labelling patterns of β-hydroxy-β-methylglutaryl-CoA formed from [2-14C]- and [1,3-14C]-malonyl-CoA in rat and pigeon liver preparations were those that would be expected if malonyl-CoA underwent decarboxylation to acetyl-CoA before incorporation. 4. The labelling pattern of ergosterol formed by cell-free yeast preparations from [2-14C]malonyl-CoA was also consistent with decarboxylation of malonyl-CoA before incorporation. 5. The incorporation of [2-14C]malonyl-CoA into mevalonate by rat liver preparations was related to the malonyl-CoA decarboxylase activity present in the preparation.  相似文献   

8.
METABOLISM OF MALONIC ACID IN RAT BRAIN AFTER INTRACEREBRAL INJECTION   总被引:4,自引:4,他引:0  
Labeled malonic acid ([1-14C] and [2-14C]) was injected into the left cerebral hemisphere of anesthetized adult rats in order to determine the metabolic fate of this dicarboxylic acid in central nervous tissue. The animals were allowed to survive for 2, 5, 10. 15 or 30min. Blood was sampled from the torcular during the experimental period and labeled metabolites were extracted from the brain after intracardiac perfusion. There was a very rapid efflux of unreacted malonate in the cerebral venous blood. Labeled CO2 was recovered from the venous blood and the respired air after the injection of [1-14C]malonate but not after [2-14C]malonate. The tissue extracts prepared from the brain showed only minimal labeling of fatty acids and sterols. Much higher radioactivity was present in glutamate, glutamine, aspartate, and GABA. The relative specific activities (RSA) of glutamine never rose above 1.00. Aspartate was labeled very rapidly and revealed evidence of 14CO2 fixation in addition to labeling through the Krebs cycle. GABA revealed higher RSA after [1-14C]malonate than after [2-14C]malonate. Sequential degradations of glutamate and aspartate proved that labeling of these amino acids occurred from [1-14C] acetyl-CoA and [2-14C] acetyl-CoA, respectively, via the Krebs cycle. Malonate activation and malonyl-CoA decarboxylation in vivo were similar to experiments with isolated mitochondria. However, labeled malonate was not incorporated into the amino acids of free mitochondria. The results were compared to data obtained after intracerebral injection of [1-14C]acetate and [2-14C]acetate.  相似文献   

9.
The production of 2,3-butanediol by fermentation of high test molasses   总被引:6,自引:0,他引:6  
Summary Klebsiella oxytoca fermented 199 g·l–1 high test or invert molasses using batch fermentation with substrate shift to produce 95.2–98.6 g 2,3-butanediol·l–1 and 2,4–4.3 g acetoin·l–1 with a diol yield of 96–100% of the theoretical value and a diol productivity of 1.0–1.1 g·l–1·h–1. Fermentation was performed numerous times with molasses in repeated batch culture with cell recovery. Such repeated batch fermentation, in addition to a high product yield, also showed a very high product concentration. For example, 118 g 2,3-butanediol·l–1 and 2.3 g acetoin·l–1 were produced from 280 g·l–1 of high test molasses. The diol productivity in this fermentation amounted to 2.4 g·l–1·h–1 and can undoubtedly be further increased by increasing the cell concentration. Because the Klebsiella cultures ferment 2,3-butanediol at an extremely high rate once the sugar has been consumed, the culture was inhibited completely by the addition of 15 g ethanol·l–1 and switching off aeration. Offprint requests to: A. S. Afschar  相似文献   

10.
The 3-hydroxypropionate cycle is a new autotrophic CO(2) fixation pathway in Chloroflexus aurantiacus and some archaebacteria. The initial step is acetyl-coenzyme A (CoA) carboxylation to malonyl-CoA by acetyl-CoA carboxylase, followed by NADPH-dependent reduction of malonyl-CoA to 3-hydroxypropionate. This reduction step was studied in Chloroflexus aurantiacus. A new enzyme was purified, malonyl-CoA reductase, which catalyzed the two-step reduction malonyl-CoA + NADPH + H(+) --> malonate semialdehyde + NADP(+) + CoA and malonate semialdehyde + NADPH + H(+) --> 3-hydroxypropionate + NADP(+). The bifunctional enzyme (aldehyde dehydrogenase and alcohol dehydrogenase) had a native molecular mass of 300 kDa and consisted of a single large subunit of 145 kDa, suggesting an alpha(2) composition. The N-terminal amino acid sequence was determined, and the incomplete gene was identified in the genome database. Obviously, the enzyme consists of an N-terminal short-chain alcohol dehydrogenase domain and a C-terminal aldehyde dehydrogenase domain. No indication of the presence of a prosthetic group was obtained; Mg(2+) and Fe(2+) stimulated and EDTA inhibited activity. The enzyme was highly specific for its substrates, with apparent K(m) values of 30 microM malonyl-CoA and 25 microM NADPH and a turnover number of 25 s(-1) subunit(-1). The specific activity in autotrophically grown cells was 0.08 micromol of malonyl-CoA reduced min(-1) (mg of protein)(-1), compared to 0.03 micromol min(-1) (mg of protein)(-1) in heterotrophically grown cells, indicating downregulation under heterotrophic conditions. Malonyl-CoA reductase is not required in any other known pathway and therefore can be taken as a characteristic enzyme of the 3-hydroxypropionate cycle. Furthermore, the enzyme may be useful for production of 3-hydroxypropionate and for a coupled spectrophotometric assay for activity screening of acetyl-CoA carboxylase, a target enzyme of potent herbicides.  相似文献   

11.
Cell suspensions or crude extracts of Malonomonas rubra grown anaerobically on malonate catalyze the decarboxylation of this substrate at a rate of 1.7-2.5 mumol.min-1.mg protein-1 which is consistent with the malonate degradation rate during growth. After fractionation of the cell extract by ultracentrifugation, neither the soluble nor the particulate fraction alone catalyzed the decarboxylation of malonate, but on recombination of the two fractions 87% of the activity of the unfractionated extract was restored. The decarboxylation pathway did not involve the intermediate formation of malonyl-CoA, but decarboxylation proceeded directly with free malonate. The catalytic activity of the enzyme was completely abolished on incubation with hydroxylamine or NaSCN. Approximately 50-65% of the original decarboxylase activity was restored by incubation of the extract with ATP in the presence of acetate, and the extent of reactivation increased after incubation with dithioerythritol. Reactivation of the enzyme was also obtained by chemical acetylation with acetic anhydride. These results indicate modification of the decarboxylase by deacetylation leading to inactivation and by acetylation of the inactivated enzyme specimens leading to reactivation. It is suggested that the catalytic mechanism involves exchange of the enzyme-bound acetyl residues by malonyl residues and subsequent decarboxylation releasing CO2 and regenerating the acetyl-enzyme. The decarboxylase was inhibited by avidin but not by an avidin-biotin complex indicating that biotin is involved in catalysis. A single biotin-containing 120-kDa polypeptide was present in the extract and is a likely component of malonate decarboxylase.  相似文献   

12.
We measured the concentrations of acetyl-CoA and malonyl-CoA in shoots and roots of corn (Zea mays, L., cv. “Peter Corn”). Acetyl-CoA and malonyl-CoA concentrations were found to be relatively constant in shoots and in roots under a light-dark cycle. Acetyl-CoA concentrations were lower in shoots than in roots, whereas malonyl-CoA concentrations were higher in shoots than in roots.  相似文献   

13.
Malonyl-coenzyme A (CoA) decarboxylase, malonyl-CoA synthetase, and malonate transporter mutants of Rhizobium leguminosarum bv. viciae and trifolii fixed N2 at wild-type rates on pea and clover, respectively. Thus, malonate does not drive N2 fixation in legume nodules.  相似文献   

14.
Malonyl-CoA decarboxylase was partially purified (nearly 1000-fold) from Mycobacterium tuberculosis H37Ra by ammonium sulfate precipitation, gel filtration with Sepharose 6B, and chromatography on DEAE Sephacel, carboxymethyl-Sephadex, and NADP-agarose. Polyacrylamide gel electrophoresis showed a major band (60–70%), which contained the enzymatic activity, and a minor band which had no decarboxylase activity. The molecular weight of the enzyme was 44,000, and the PI and pH optimum were 6.7 and 5.5, respectively. The enzyme showed a typical Michaelis-Menten substrate saturation, with an apparent Km and V of 0.2 mm and 3.85 μmol/min/mg, respectively. It catalyzed decarboxylation of methylmalonyl-CoA only at 5% of the rate observed with malonyl-CoA, whereas malonic acid and succinyl-CoA were not decarboxylated. Antibodies prepared against malonyl-CoA decarboxylase from the uropygial glands of goose and rat liver mitochondria did not inhibit the bacterial enzyme. Avidin did not inhibit the enzyme suggesting that biotin was not involved in the reaction. Thiol-directed reagents inhibited the enzyme as did CoA, acetyl-CoA, propionyl-CoA, methylmalonyl-CoA, and succinyl-CoA. Malonyl-CoA decarboxylase was also partially purified from malonate-grown Pseudomonas fluorescens. The molecular weight of this enzyme was 56,000 and the pH optimum and apparent Km were 5.5 and 1 mm, respectively. Unlike the mycobacterial enzyme, this enzyme was insensitive to p-hydroxymercuribenzoate, acetyl-CoA, and propionyl-CoA, and it was less sensitive to inhibition by succinyl-CoA and CoA than the mycobacterial enzyme. The size and properties of the two bacterial enzymes suggest that these are quite unlike the mammalian and avian enzymes and that they constitute a different class of malonyl-CoA decarboxylases.  相似文献   

15.
In recent years microorganisms have been engineered towards synthesizing interesting plant polyphenols such as flavonoids and stilbenes from glucose. Currently, the low endogenous supply of malonyl-CoA, indispensable for plant polyphenol synthesis, impedes high product titers. Usually, limited malonyl-CoA availability during plant polyphenol production is avoided by supplementing fatty acid synthesis-inhibiting antibiotics such as cerulenin, which are known to increase the intracellular malonyl-CoA pool as a side effect. Motivated by the goal of microbial polyphenol synthesis being independent of such expensive additives, we used rational metabolic engineering approaches to modulate regulation of fatty acid synthesis and flux into the tricarboxylic acid cycle (TCA cycle) in Corynebacterium glutamicum strains capable of flavonoid and stilbene synthesis. Initial experiments showed that sole overexpression of genes coding for the native malonyl-CoA-forming acetyl-CoA carboxylase is not sufficient for increasing polyphenol production in C. glutamicum. Hence, the intracellular acetyl-CoA availability was also increased by reducing the flux into the TCA cycle through reduction of citrate synthase activity. In defined cultivation medium, the constructed C. glutamicum strains accumulated 24 mg·L −1 (0.088 mM) naringenin or 112 mg·L −1 (0.49 mM) resveratrol from glucose without supplementation of phenylpropanoid precursor molecules or any inhibitors of fatty acid synthesis.  相似文献   

16.
Summary The parameters that control fermentation performance of butyrate production have been studied with a selected strain ofClostridium tyrobutyricum. Fed-batch supply of glucose increased productivity for butyrate. The ratio of butyrate to total acids was strongly influenced by the growth rate of the bacteria, acetate being produced along with butyrate at higher growth rates. In glucose-limited, fed-batch cultures, initially produced acetate was re-utilized, resulting in exclusive production of butyrate. In cultures with non-limiting glucose feeding, the butyrate concentration reached 42.5 g·1–1 with a selectivity of 0.90, a productivity of 0.82 g·–1 per hour and a yield of 0.36 g·g–1 The effects of the mode of supply of glucose on the production of butyrate and acetate are discussed in relation with the energy requirements for cell growth.  相似文献   

17.
Malonyl-CoA decarboxylase was purified (800-fold) from an erythromycin-producing strain of Streptomyces erythreus using DEAE-cellulose, Sephadex G-100, SP-Sephadex, and gel filtration with Sephadex G-75. The molecular weight of the native enzyme was 93,000 as determined by gel filtration and the subunit molecular weight was 45,000 as estimated by sodium dodecyl sulfate-polyacrylamide electrophoresis, suggesting an α2 subunit composition for the native enzyme. Evidence is presented that during the purification procedure and storage a proteolytic cleavage occurred resulting in the formation of 30- and 15-kDa peptides. The enzyme showed a pH optimum of about 5.0 whereas the vertebrate enzyme showed an optimum at alkaline pH. The enzyme decarboxylated malonyl-CoA with a Km of 143 μm and V of 250 nmol min?1 mg?1. For the decarboxylation of methylmalonyl-CoA this enzyme showed the opposite stereospecificity to that shown by vertebrate enzyme; the (R) isomer was decarboxylated at 3% of the rate observed with malonyl-CoA while the (S) isomer was not a substrate. Neither avidin nor biotin affected the rate of malonyl-CoA decarboxylation, suggesting that biotin is not involved in catalysis. Acetyl-CoA and free CoA were found to be competitive inhibitors. Propionyl-CoA, butyryl-CoA, succinyl-CoA, and methylmalonyl-CoA showed little inhibition, and neither thiol-directed reagents nor chelating agents inhibited the enzyme. High ionic strength and sulfate ions caused reversible inhibition of the enzymatic activity. Under two different cultural conditions the time course of appearance of malonyl-CoA decarboxylase was determined by measuring the enzyme activity and the level of the enzyme protein by an immunological method using rabbit antibodies prepared against the enzyme. In both cases the increase and decrease in the decarboxylase correlated with the rate of production of erythromycin, suggesting a possible role for this enzyme in the antibiotic production.  相似文献   

18.
Coenzyme A (CoA) and its thioester derivatives are important precursor molecules for many industrially useful compounds such as esters, PHBs, lycopene and polyketides. Previously, in our lab we could increase the intracellular levels of CoA and acetyl-Coenzyme A (acetyl-CoA) by overexpressing one of the upstream rate-controlling enzymes pantothenate kinase with a concomitant supplementation of the precursor pantothenic acid to the cell culture medium. In this study, we showed that the CoA/acetyl-CoA manipulation system could be used to increase the productivity of industrially useful compounds derived from acetyl-CoA. We chose the production of isoamyl acetate as a model system. Isoamyl acetate is an important flavor component of sake yeast and holds a great commercial value. Alcohol acetyl transferase (AAT) condenses isoamyl alcohol and acetyl-CoA to produce isoamyl acetate. The gene ATF2, coding for this AAT was cloned and expressed in Escherichia coli. This genetic engineered E. coli produces isoamyl acetate, an ester, from intracellular acetyl-CoA when isoamyl alcohol is added externally to the cell culture medium. In the current study, we showed that in a strain bearing ATF2 gene, an increase in intracellular CoA/acetyl-CoA by overexpressing panK leads to an increase in isoamyl acetate production. Additionally, the cofactor manipulation technique was combined with more traditional approach of competing pathway deletions to further increase isoamyl acetate production. The acetate production pathway competes with isoamyl acetate production for the common intracellular metabolite acetyl-CoA. Earlier we have shown that acetate pathway deletion (ackA-pta) increases isoamyl acetate production. The acetate production pathway was inactivated under elevated CoA/acetyl-CoA conditions, which lead to a further increase in isoamyl acetate production.  相似文献   

19.
Mechanistic details of mammalian metabolism in vivo and dynamic metabolic changes in intact organisms are difficult to monitor because of the lack of spatial, chemical, or temporal resolution when applying traditional analytical tools. These limitations can be addressed by sensitivity enhancement technology for fast in vivo NMR assays of enzymatic fluxes in tissues of interest. We apply this methodology to characterize organ-specific short chain fatty acid metabolism and the changes of carnitine and coenzyme A pools in ischemia reperfusion. This is achieved by assaying acetyl-CoA synthetase and acetyl-carnitine transferase catalyzed transformations in vivo. The fast and predominant flux of acetate and propionate signal into acyl-carnitine pools shows the efficient buffering of free CoA levels. Sizeable acetyl-carnitine formation from exogenous acetate is even found in liver, where acetyl-CoA synthetase and acetyl-carnitine transferase activities have been assumed sequestered in different compartments. In vivo assays of altered acetate metabolism were applied to characterize pathological changes of acetate metabolism upon ischemia. Coenzyme pools in ischemic skeletal muscle are reduced in vivo even 1 h after disturbing muscle perfusion. Impaired mitochondrial metabolism and slow restoration of free CoA are corroborated by assays employing fumarate to show persistently reduced tricarboxylic acid (TCA) cycle activity upon ischemia. In the same animal model, anaerobic metabolism of pyruvate and tissue perfusion normalize faster than mitochondrial bioenergetics.  相似文献   

20.
Malonate decarboxylase from Pseudomonas putida is composed of five subunits, α, β, γ, δ, and ε. Two subunits, δ and ε, have been identified as an acyl-carrier protein (ACP) and malonyl-CoA:ACP transacylase, respectively. Functions of the other three subunits have not been identified, because recombinant subunits expressed in Escherichia coli formed inclusion bodies. To resolve this problem, we used a coexpression system with GroEL/ES from E. coli, and obtained active recombinant subunits. Enzymatic analysis of the purified recombinant subunits showed that the α subunit was an acetyl-S-ACP:malonate ACP transferase and that the βγ-subunit complex was a malonyl-S-ACP decarboxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号