首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
The structures of two octasaccharides, one nonasaccharide, and one undecasaccharide, isolated from human milk, have been investigated by 1H- and 13C-nuclear magnetic resonance spectroscopy. The structures of these oligosaccharides are: beta-D-Galp-(1----4)-[alpha-L-Fucp- (1----3)]-beta-D-GlcpNAc-(1----3)-beta-D-Galp-(1----4)-[alpha-L-Fucp+ ++- (1----3)]-beta-D-GlcpNAc-(1----3)-beta-D-Galp-(1----4)-D-Glc; beta-D-GALp-(1----3)-[alpha-L-Fucp-(1----4)]-beta-D-GlcpNAc-(1---- 3)-beta-D - Galp-(1----4)-[alpha-L-Fucp-(1----3)]-beta-D-GlcpNAc-(1----3)-beta -D-Galp- (1----4)-D-Glc; beta-D-Galp-(1----4)-[alpha-L-Fucp-(1----3)]-beta-D-GlcpNAc-(1---- 6)-(alpha - L-Fucp-(1----2)-beta-D-Gal-(1----3)-[alpha-L-Fucp-(1----4)]- beta-D-GlcpNAc- (1----3))-beta-D-Galp-(1----4)-D-Glc; and alpha-L-Fucp-(1----2)-beta-D-Galp-(1----3)-beta-D-GlcpNAc-(1----3) -beta-D- Galp-(1----4)-[alpha-L-Fucp-(1----3)]-beta-D-GlcpNAc-(1----6)-[alp ha-L- Fucp-(1----2)-beta-D-Galp-(1----3)-beta-D-GlcpNAc-(1----3)]-beta-D -Galp- (1----4)-D-Glc. The two octasaccharides have been previously isolated from human milk as a mixture, and in a pure form from new-born feces, but the n.m.r. data were not provided. These two octasaccharides display the di-Lewis X and the composite Lewis A-Lewis X antigenic determinant, previously described as neo-antigens of adenocarcinoma cell lines.  相似文献   

2.
Regenerating rat liver microsomes contain a beta-D-galactoside alpha-(2----3)- and a 2-acetamido-2-deoxy-beta-D-glucoside alpha-(2----6)-sialyltransferase that are involved in the synthesis of the terminal alpha-NeuAc-(2----3)-beta-D-Galp-(1----3)-alpha-[NeuAc-(2----6)]-beta- D-GlcpNAc-(1----R) group occurring in human milk oligosaccharides and the glycan chains of several N-glycoproteins. Analysis by liquid chromatography and methylation of the products of sialylation obtained when lacto-N-tetraose [beta-D-Galp-(1----3)-beta-D-GlcpNAc-(1----3)-beta-D-Galp-(1----4) -D-Glc] was used as a substrate in the incubations in vitro indicated that the disialylated sequence is formed for greater than 95% through the tetrasaccharide alpha-NeuAc-(2----3)-beta-D-Gal-(1----3)-beta-D-GlcNAc-(1----3)-beta-D-G al- (1----4)-D-Glc as one of two possible intermediates. This indicates that in the synthesis of the disialylated sequence the alpha-(2----3)- and the alpha-(2----6)-sialyltransferase act in a highly preferred order in which the alpha-(2----3) enzyme acts first. This order is imposed by the specificity of the alpha-(2----6)-sialyltransferase, which requires an alpha-NeuAc-(2----3)-beta-D-Gal-(1----3)-beta-D-GlcNAc-(1----R) sequence for optimal activity, and shows very low and no activity with beta-D-Gal-(1----3)-beta-D-GlcNAc-(1----R) and beta-D-GlcNAc-(1----R) acceptor structures, respectively. Results obtained with normal rat, fetal calf, rabbit and human liver, and human placenta indicated that very similar or identical sialyltransferases occur in these tissues. It is suggested that these enzymes differ from the sialyltransferases that previously had been identified in fetal calf liver and human placenta.  相似文献   

3.
The isomeric sialyl-Lea-terminating pentasaccharide derivatives, alpha-Neup5Ac-(2----3)-beta-D-Galp-(1----3)-[alpha-L-Fucp-(1 ----4)]-beta- D-GlcpNAc-(1----3)-beta-D-Galp-O(CH2)8COOMe and alpha-Neup5Ac-(2----3)-beta-D-Galp-(1----3)-[alpha-L-Fucp-(1 ----4)]- beta-D-GlcpNAc-(1----6)-beta-D-Galp-O(CH2)8COOMe, have been prepared by the action in sequence of a porcine submaxillary (2----3)-alpha-sialyltransferase and a human-milk (1----3/4)-alpha-fucosyltransferase on the chemically synthesized trisaccharides beta-D-Galp-(1----3)-beta-D-GlcpNAc-(1----3)- and -(1----6)-beta-D-Galp- O(CH2)8COOMe, respectively.  相似文献   

4.
The oligosaccharide products resulting from treatment of mucin-type glycoproteins with alkali in the presence of the sulfite anion have been investigated. Treatment of fetuin and of tryptic glycopeptides from the human erythrocyte with this reagent resulted in the release of sulfited oligosaccharides identified as N-acetylsulfohexosamine (HexNAcSO3), alpha-NeuAc-(2----6)-HexNAcSO3, and alpha-NeuAc-(2----3)-Gal-(1----3 or 4)-[GlcNAc-(1----6)]-HexNAcSO3. In addition, 2.7 moles of sialic acid were released per mole of alpha-NeuAc-(2----6)-HexNAcSO3 from fetuin. The sulfohexosamine moiety is formed via unsaturated intermediates from a 3-O-substituted 2-acetamido-2-deoxy-D-galactosyl residue at the carbohydrate-peptide linkage site when this residue is not substituted at O-4 by another sugar residue. A reaction mechanism accounting for the release of the sulfited oligosaccharides from a 3-O- and 6-O-substituted hexosamine is proposed in which the oligosaccharide branch attached to O-6 is obtained as a specific fragment terminating in sulfohexosamine.  相似文献   

5.
On human erythrocytes, the membrane components associated with Pk and P1 blood-group specificity are glycosphingolipids that carry a common terminal alpha-D-Galp-(1----4)-beta-D-Gal unit, the biosynthesis of which is poorly understood. Human kidneys typed for P1 and P2 (non-P1) blood-group specificity have been assayed for (1----4)-alpha-D-galactosyltransferase activity by use of lactosylceramide [beta-D-Galp-(1----4)-beta-D-Glcp-ceramide] and paragloboside [beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)-beta-D-Galp- (1----4)-beta-D-Glcp-ceramide] as acceptor substrates. The linkage and anomeric configuration of the galactosyl group transferred into the reaction products were established by methylation analysis before and after alpha- and beta-D-galactosidase treatments, as well as by immunostaining using specific monoclonal antibodies directed against the Pk and P1 antigens. The results demonstrated that the microsomal proteins from P1 kidneys catalyze the synthesis of Pk [alpha-D-Galp-(1----4)-beta-D-Galp-(1----4)-beta-D-Glcp-ceramide] and P1 [alpha-D-Galp-(1----4)-beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)-beta -D-Galp-(1----4)-beta-D-Glcp-ceramide] glycolipids, whereas microsomes from P2 kidney catalyze the synthesis of the Pk glycolipid, but not of the P1 glycolipid. Competition studies using a mixture of two oligosaccharides (methyl beta-lactoside and methyl beta-lacto-N- neotetraoside) or of two glycolipids (lactosylceramide and paragloboside) as acceptors indicated that these substrates do not compete for the same enzyme in the microsomal preparation from P1 kidneys. The results suggested that the Pk and P1 glycolipids are synthesized by two distinct enzymes.  相似文献   

6.
A synthesis of alpha-D-Manp-(1----3)-[beta-D-GlcpNAc-(1----4)]-[alpha-D-Manp++ +-(1----6)]- beta-D-Manp-(1----4)-beta-D-GlcpNAc-(1----4)-[alpha-L-Fucp-( 1----6)]-D- GlcpNAc was achieved by employing benzyl O-(3,4,6-tri-O-benzyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl)-(1--- -4)-O- (2-O-benzyl-beta-D-mannopyranosyl)-(1----4)-O-(3,6-di-O-benzyl-2-deoxy-2 - phthalimido-beta-D-glucopyranosyl)-(1----4)-3-O-benzyl-2-deoxy-6-O-p- methoxyphenyl-2-phthalimido-beta-D-glucopyranoside as a key glycosyl acceptor. Highly stereoselective mannosylation was performed by taking advantage of the 2-O-acetyl group in the mannosyl donors. The alpha-L-fucopyranosyl residue was also stereoselectively introduced by copper(II)-mediated activation of methyl 2,3,4-tri-O-benzyl-1-thio-beta-L-fucopyranoside.  相似文献   

7.
An efficiently stereocontrolled total synthesis of GM3 alpha-D-Neup5Ac-(2----3)-beta-D-Galp-(1----4)-beta-D-Glcp-(1----1) -Cer was achieved by employing both methyl 5-acetamido-4,7,8,9-tetra-O-benzyl-2-bromo-2,3,5-trideoxy-3- phenylthio-D-erythro-beta-L-gluco-2-nonulopyranosonate for the key sialylation step, and O-[methyl(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha -D-galacto-2-nonulopyranosyl)onate]-(2----3)-O-(2,4,6-tri-O- acetyl-beta-D-galactopyranosyl-(1----4)-3,6-di-O-acetyl-2-O-pivaloyl- alpha-D-glucopyranosyl trichloroacetimidate and fluoride for the key coupling step with a ceramide derivative. These two steps were significantly altered and improved in comparison with our previous synthesis that had been executed without use of stereocontrolling auxiliaries. GM3 was obtained in 4.5% overall yield in 19 steps starting from allyl O-(2,6-di-O-acetyl-3,4-O-isopropylidene-beta-D-galactopyranosyl)-(1----4 )-2,3,6-tri-O-acetyl-beta-D-glucopyranoside.  相似文献   

8.
Microsomal preparations from human kidney were found to contain enzymic activity capable to transfer N-acetylgalactosamine from UDP-N-acetylgalactosamine to native bovine fetuin. The acceptor structures on the fetuin molecules were identified as N- as well as O-linked glycans with a markedly higher incorporation into the N-linked carbohydrate chains. Analysis of the alkali-labile transferase products by thin-layer chromatography indicated that the enzyme is able to synthesize structures having mobilities identical with those found on glycophorin from Cad erythrocytes. Mild acid treatment and enzymic hydrolysis with N-acetylhexosaminidase from jack beans of the N-linked transferase products suggested that beta-D-GalpNAc-(1----4)-[alpha-NeuAc-(2----3)]-beta-D-Galp-(1----s tructures were formed by the enzymic reaction on both N- and O-linked acceptors. The enzyme might, therefore, be involved in the biosynthesis of Sda (and Cad) antigenic structures. By use of various oligosaccharides, glycopeptides, and glycolipids having well characterized carbohydrate sequences, the acceptor-substrate specificity of the N-acetylgalactosaminyltransferase was determined. The enzyme generally recognized alpha-NeuAc-(2----3)-beta-D-Gal groups as acceptors, but in a certain conformation. Thus, tri- and tetra-saccharide alditols, native human glycophorin A, and GM3 were not acceptor substrates although they carry the potential disaccharide acceptor unit. When these structures were presented as sialyl-(2----3)-lactose or as a tryptic peptide from glycophorin A, they were shown to be rather good acceptor substrates for the N-acetyl-beta-D-galactosaminyltransferase from human kidney.  相似文献   

9.
The production of glycosylated forms of the human T cell growth factor (interleukin-2, IL-2) has been studied after transfection of a mouse L cell line and a chinese hamster ovary cell line with a plasmid containing the human chromosomal interleukin-2 gene. Both cell lines produced IL-2 constitutively. Based on their behavior in reversed-phase l.c. and their sodium dodecyl sulfate-gel-electrophoresis pattern, human IL-2 protein secreted by L cells showed a similar distribution of glycosylated (Mr 16 500) and nonglycosylated (Mr 14 500) forms as the natural protein secreted by human peripheral lymphocytes, whereas the hamster cell line secreted preponderantly the glycosylated forms. Exoglycosidase digestion of the 16 500 Mr IL-2 protein shifted the gel electrophoretic mobility towards the low-molecular weight form as is true for the natural glycosylated IL-2, which contains the usual tetrasaccharide alpha-NeuAc-(2----3)-beta-D-Galp-(1----3)-[alpha-NeuAc-(2----6)]-D-GalNAc (IL-2 N2) and the trisaccharide alpha-NeuAc-(2----3)-beta-D-Galp-(1----3)-D-GalNAc (IL-2 N1) as the major carbohydrate constituents. These results support the applicability of recombinant DNA technology as a tool for studying glycoprotein biosynthesis in mammalian cells.  相似文献   

10.
Partial reactions catalyzed by a (1----3)-N-acetyl-beta-D- glucosaminyltransferase (EC2.4.1.149), known to be present in human serum, were studied by use of biantennary "backbone" saccharides of oligo-N-acetyllactosamine-type as acceptors. Incubation of the radiolabeled blood-group I-active hexasaccharide, beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)-[beta-D-Galp- (1----4)-beta-D-GlcpNAc-(1----6)]-beta-D-Galp-(1----4)-D-GlcNAc (1) and UDP-GlcNAc with serum gave first a transient 1:1 mixture of two isomeric heptasaccharides, beta-D-GlcpNAc-(1----3)-beta-D-Galp-(1----4)-beta-D- GlcpNAc-(1----3)-[beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----6)]-beta-D- Galp-(1----4)-D-GlcNAc (2) and beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)-[beta-D-GlcpNAc-(1----3)- beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----6)]-beta-D-Galp-(1----4)-D-Glc NAc (3), showing that both branches of 1 react equally well. The two heptasaccharides reacted further in the incubation mixture to form the radiolabeled octasaccharide, beta-D-GlcpNAc-(1----3)-beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)-[be ta-D- GlcpNAc-(1----3)-beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----6)]-beta-D-Ga lp- (1----4)-D-GlcNAc (4); during this second reaction, the composition of the heptasaccharide mixture remained unchanged, indicating that 2 and 3 reacted at approximately equal rates. The heptasaccharides 2 and 3 could not be separated from each other, but they could be detected, identified, and quantitatively determined by stepwise enzymic degradations. Partial (1----3)-N-acetyl-beta-D-glucosaminylation reactions, carried out with another acceptor, the branched pentasaccharide, beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)-[beta-D-Galp-(1----4)-beta- D- GlcpNAc-(1----6)]-beta-D-Gal (11), revealed that it reacted also equally well at both branches.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Described are total syntheses of O-[sodium (5-acetamido-3,5-dideoxy-D -glycero-alpha-D-galacto-2-nonulopyranosyl)onate]-(2----3)-O -beta-D -galactopyranosyl-(1----1)-(2R,3S,4E)-2-N-tetracosanoylsphingen ine,O-[sodium (5-acetamido-3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl+ ++)onate] -(2----3)-O-alpha-D-galactopyranosyl-(1----1)-(2R,3S,4E)-2-N -tetracosanoylsphingenine, O-[sodium (5-acetamido-3,5-dideoxy-D-glycero-beta -D-galacto-2-nonulopyranosyl)onate]-(2----3)-O-beta-D-gal act opyranosyl -(1----1)-(2R,3S,4E)-2-N-tetracosanoylsphingenine, and O-[sodium (5-acetamido-3,5-dideoxy-D-glycero-beta-D-galacto-2-nonulopyranosyl++ +)onate] -(2----3)-O-alpha-D-galactopyranosyl-(1----1)-(2R,3S,4E)-2-N -tetracosanoylsphingenine by using O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D -galacto-2-nonulopyranosyl)onate]-(2----3)-2,3,4,6-tetra-O-a cetyl-D -galactopyrano-syl trichloroacetimidate and O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-beta -D-galacto-2-nonulopyranosyl)onate]-(2----3)-2,4,6-tri-O-ace tyl-D-galactopyranosyl trichloroacetimidate as key glycosyl donors, and (2S,3R,4E)-3 -O-benzoyl-2-N-tetracosanoylsphingenine as a key glycosyl acceptor.  相似文献   

12.
Three neutral trisaccharides, which comprise 25.1% of the neutral oligosaccharide other than lactose, were isolated from bovine colostrum, obtained 6 h after parturition, by l.c. on amino silica gel. The chemical structures were identified, by methylation analysis with direct m.s. and g.l.c.-m.s., and by structural analysis with 13C-n.m.r., as beta-D-Galp-(1----4)-[alpha-L-Fucp-(1----3)-]-D-GlcNAc (3-fucosyl-N-acetyllactosamine), beta-D-Galp-(1----3)-beta-D-Galp-(1----4)-D-Glc (3'-galactosyllactose), and beta-D-Galp-(1----6)-beta-D-Galp-(1----4)-D-Glc (6'-galactosyllactose). The The first-named compound was a novel oligosaccharide from mammalian milk.  相似文献   

13.
N-Phthaloylation of lactosamine gave various glycosyl donors (beta-chloride, beta-trichloroacetimidate) and glycosyl acceptors (3',4'-diol). Coupling of the chloride with a methyl beta-D-glycoside led to the tetrasaccharide fragment, beta-D-Galp-(1----4)-beta-D-GlcpNac-(1----3)-beta-D-Galp-(1----4)- beta-D-GlcpNAcOMe. Acetolysis of the protected tetrasaccharide, followed by treatment with hydrogen chloride, gave a tetrasaccharide chloride which was coupled with the methyl beta-glycoside of lactosamine. A hexasaccharide fragment, [beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)]2-beta-D-Galp-(1----4)-bet a- D-GlcpNAcOMe, was thus obtained by this ("n + 1") method. A more efficient ("n + n") method was applied for the synthesis of an octasaccharide fragment, [beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)]3-beta-D-Galp- (1----4)-beta-D-GlcpNAcOMe (38), where di- and tetra-saccharide intermediates having a 3,4-O-isopropylidene-beta-D-galactopyranosyl nonreducing terminal group and a benzyl beta-D-glycoside group were precursors, either as glycosyl donors (beta-trichloroacetimidates) or glycosyl acceptors (3,4-diols as nonreducing terminal groups). Thus, doubling the length of the repetitive oligosaccharide sequence could be efficiently accomplished at each glycosylation step.  相似文献   

14.
The asparagine-linked sugar chains of bovine brain ribonuclease were quantitatively released as oligosaccharides from the polypeptide backbone by hydrazinolysis. After N-acetylation, they were converted into radioactively-labeled oligosaccharides by NaB3H4 reduction. The radioactive oligosaccharide mixture was fractionated by ion-exchange chromatography, and the acidic oligosaccharides were converted into neutral oligosaccharides by sialidase digestion. The neutral oligosaccharides were then fractionated by Bio-Gel P-4 column chromatography. Structural studies of each oligosaccharide by sequential exoglycosidase digestion in combination with methylation analysis revealed that bovine brain ribonuclease showed extensive heterogeneity. It contains bi- and tri-antennary, complex-type oligosaccharides having alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Manp -(1----4)-beta-D- GlcpNAc-(1----4)-[alpha-L-Fucp-(1----6)]-D-GlcNAc as their common core. Four different outside oligosaccharide chains, i.e., beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----, alpha-Neu5Ac-(2----6)-beta-D- Galp-(1----4)-beta-D-GlcpNAc-(1----, alpha-Neu5Ac-(2----3)-beta-D-Galp-(1----4)- beta-D-GlcpNAc-(1----, and alpha-D-Galp-(1----3)-beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----, were found. The preferential distribution of the alpha-D-Galp-(1----3)-beta-D-Galp-(1----4)-beta-D-GlcpNAc group on the alpha-D-Manp-(1----6) arm is a characteristic feature of the sugar chains of this enzyme.  相似文献   

15.
O-(alpha-D-Mannopyranosyl)-(1----2)-O-(alpha-D-mannopyranosyl)-(1----3)- O- [(alpha-D-mannopyranosyl)-(1----2)-O-(alpha-D-mannopyranosyl)-(1----6)]- O- (alpha-D-mannopyranosyl)-(1----6)-O-(beta-D-mannopyranosyl)-(1----4)-O-( 2- acetamido-2-deoxy-beta-D-glucopyranosyl)-(1----4)-2-acetamido-2-deoxy- glucopyranose, an octasaccharide fragment of high-mannose type glycan of glycoproteins, was synthesized. Crucial glycosylation of trisaccharide intermediate, benzyl O-(2,4-di-O-benzyl-beta-D-mannopyranosyl)-(1----4)-O-(2-acetamido-3,6-di -O- benzyl-2-deoxy-beta-D-glucopyranosyl)-(1----4)-2-acetamido-3,6-di-O-benz yl-2- deoxy-beta-D-glucopyranoside, was successful only with a di-O-acetyltetradeca-O-benzyl-D-mannopentaosyl chloride. The use of the corresponding hexadeca-O-acetyl-D-mannopentaosyl bromide did not give the desired product.  相似文献   

16.
The presence of N-acetyl-beta-D-glucosaminyltransferases in microsome preparations from human ovarian tissues was investigated with UDP-GlcNAc and several synthetic oligosaccharides as acceptors. The products were identified by paper chromatography and the linkage of the 2-acetamido-2-deoxy-beta-D-glucopyranosyl group incorporated into oligosaccharides was determined by exoglycosidase digestions, 1H-n.m.r. spectroscopy, and methylation analysis. These results showed that ovarian microsome preparations contain both beta-(1----3)- and beta-(1----6)-N-acetyl-D-glucosaminyltransferase activities which might be involved in the synthesis of mucin-type glycoproteins. Substrate competition tests suggested that both UDP-GlcNAc:-Bn glycoside of beta-D-GlcpNAc-(1----6)-alpha-D-GalpNAc [GlcNAc to GalNAc] and -Bn glycoside of beta-D-Galp-(1----3)-[beta-D-GlcNAc-(1----6)]-alpha-D-GalpNAc [GlcNAc to Gal] beta-(1----3)-N-acetyl-D-glucosaminyltransferase activities reside in a single enzyme species.  相似文献   

17.
Total synthesis of O-beta-D-galactopyranosyl-(1----3)-O-[(5-acetamido-3,5-dideoxy- D-glycero-alpha-D-galacto-2-nonulopyranosylonic acid)-(2----6)]-O-(2-acetamido-2-deoxy-alpha-D-galactopyranosyl)-(1----3 )-L- serine was achieved by use of the key glycosyl donor O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O- [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha-D- galactopyranosyl trichloroacetimidate and the key glycosyl acceptor N-(benzyloxycarbonyl)-L- serine benzyl ester in a regiocontrolled way.  相似文献   

18.
A new procedure for isolating a L-fucose-specific lectin from the mushroom Aleuria aurantia is described. The fine specificity of the purified lectin was determined by inhibition of agglutination of human red blood cells by various glycopeptides and oligosaccharides, and by studying the affinity of the immobilized lectin towards glycopeptides and oligosaccharides. Results of inhibition of hemagglutination showed that the lectin presents the highest affinity towards alpha-(1----6)-linked L-fucosyl groups. Immobilized Aleuria aurantia agglutinin interacts strongly with all N-glycosylpeptides or related glycans possessing an alpha-L-fucopyranosyl group linked to O-6 of the 2-acetamido-2-deoxy-beta-D-glucopyranosyl residue involved in the glycosylamine linkage. In addition, presence of alpha-(1----3)-linked L-fucosyl groups greatly enhances the affinity of the lectin for the alpha-(1----6)-L-fucosylated glycans. The immobilized Aleuria lectin is a powerful tool for the resolution of the microheterogeneity of L-fucosylated glycopeptides and glycans of the N-acetyl-lactosamine type.  相似文献   

19.
N-(Benzyloxycarbonyl)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate]-(2----3)-O-(2,4,6-tri-O-acetyl-beta-D - galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-O-(2-acetamido-4-O-acetyl-2- deoxy-alpha-D- galactopyranosyl)-(1----3)-L-serine benzyl ester was synthesized by using O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5- di-deoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl)onate]- (2----3)-O-(2,4,6- tri-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha- and -beta-D-galactopyranosyl trichloroacetimidate as a key glycotetraosyl donor which, upon reaction with N-(benzyloxycarbonyl)-L-serine benzyl ester, afforded a 44% yield of a mixture of the alpha- and beta-glycosides in the ratio of 2:5.  相似文献   

20.
The capsule of Bacteroides fragilis is unusual in that it consists of two distinct capsular polysaccharides. Using a combination of high-resolution NMR spectroscopy, theoretical calculations, and as few chemical procedures as required, the structure of both polysaccharide antigens (polysaccharides A and B) was elucidated. Using the above procedures, it was possible to obtain the complete structures using minimal quantities of polysaccharides A and B (8 and 5 mg, respectively). Only small amounts of each subjected to chemical analysis were not recoverable. Polysaccharide A is composed of the following repeating unit: [----3)alpha-D-AATp(1----4)[beta-D-Galf(1----3)]alpha-D- GalpNAc(1----3)beta-D-Galp(1----], where AAT is 2-acetamido-4-amino-2,4,6-trideoxygalactose. A pyruvate substituent having the R configuration spans O-4 and O-6 of the beta-D-galactopyranosyl residue. Polysaccharide B is composed of the following repeating unit: [----4)alpha-L-QuipNAc(1----3)beta-D-QuipNAc(1----4)[alpha-L - Fucp(1----2)beta-D-GalpA(1----3)beta-D-GlcpNAc(1----3)]alpha -D-Galp(1----]. A 2-aminoethylphosphonate substituent is situated on O-4 of the N-acetyl-beta-D-glucopyranosyl residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号