首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cycloaddition reactions with α,β-unsaturated carbene complexes of the Fischer-type bearing the carbene carbon atom and the double bond incorporated in the same ring are described. Pentacarbonyl(2H-benzopyran-2- ylidene)chromium(0) complexes (2a-c) and pentacarbonyl(4-methoxy-3,3-dimethyl-2-oxacyclopentylidene)- chromium(0) (3) show a rather low reactivity towards 1,3-dipoles and 1,3-dienes. The reactions with diazomethane are regioselective but not chemoselective; compounds 2 and 3 show two sites of attack: the α,β carbon-carbon and the carbon-metal double bond. The crystal and molecular structures of 2a and 3 have been elucidated by single crystal X-ray analysis. Crystals of 2a are monoclinic, space group P21/c, a=7.614(3), b=14.033(3), c=12.766(3) Å, β=95.24°, V=1358.3(7) Å Z=4; crystals of 3 are triclinic, space group P , a=6.553(1), b=9.408(1), c=10.620(1) Å α=92.70(1), β=92.30(1), γ=92.12(1)°, V=653.0(1), Å3, Z=2. Final agreement indices for 2a and 3 are R=0.034 and 0.033, respectively. Vibrational properties of the Cr(CO)5 moiety were interpreted by FT-IR and FT-Raman spectroscopy. Electronic spectra and π electron distribution were interpreted by resonance Raman spectroscopy.  相似文献   

2.
Condensation of 2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-α- -galactopyranosyl bromide (3) with methyl 2,3,4-tri-O-acetyl-β- -galactopyranoside (4) gave a fully acetylated (1→6)-β- -galactobiose fluorinated at the 3′-position which was deacetylated to give the title disaccharide. The corresponding trisaccharide was obtained by reaction of 4 with 2,3,4-tri-O-acetyl-6-O-chloroacetyl-α- -galactopyranosyl bromide (5), dechloroacetylation of the formed methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β- -galactopyranosyl)-(1→6)- 2,3,4-tri-O-acetyl-β- -galactopyranoside to give methyl O-(2,3,4-tri-O-acetyl-β- -galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β- -galactopyranoside (14), condensation with 3, and deacetylation. Dechloroacetylation of methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β- -galactopyranosyl)-(1→6)-O-(2,3,4-tri-O-acetyl- β- -galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β- -galactopyranoside, obtained by condensation of disaccharide 14 with bromide 5, was accompanied by extensive acetyl migration giving a mixture of products. These were deacetylated to give, crystalline for the first time, the methyl β-glycoside of (1→6)-β- -galactotriose in high yield. The structures of the target compounds were confirmed by 500-MHz, 2D, 1H- and conventional 13C- and 19F-n.m.r. spectroscopy.  相似文献   

3.
In order to prepare 3-aminopropyl glycosides of Neu5Ac-α-(2→6′)-lactosamine trisaccharide 1, and its N-glycolyl containing analogue Neu5Gc-α-(2→6′)-lactosamine 2, a series of lactosamine acceptors with two, three, and four free OH groups in the galactose residue was studied in glycosylations with a conventional sialyl donor phenyl [methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio- -glycero-α- and β- -galacto-2-nonulopyranosid]onates (3) and a new donor phenyl [methyl 4,7,8,9-tetra-O-acetyl-5-(N-tert-butoxycarbonylacetamido)-3,5-dideoxy-2-thio- -glycero-α- and β- -galacto-2-nonulopyranosid]onates (4), respectively. The lactosamine 4′,6′-diol acceptor was found to be the most efficient in glycosylation with both 3 and 4, while imide-type donor 4 gave slightly higher yields with all acceptors, and isolation of the reaction products was more convenient. In the trisaccharides, obtained by glycosylation with donor 4, the 5-(N-tert-butoxycarbonylacetamido) moiety in the neuraminic acid could be efficiently transformed into the desired N-glycolyl fragment, indicating that such protected oligosaccharide derivatives are valuable precursors of sialo-oligosaccharides containing N-modified analogues of Neu5Ac.  相似文献   

4.
By a modification of a previously established reaction-sequence involving successive oxidation with methyl sulfoxide-acetic anhydride, oximation, and reduction with lithium aluminum hydride, 6-O-tritylamylose (1) was converted into a 6-O-tritylated (1→4)-α-D-linked glucan (3) containing 2-amino-2-deoxy-D-glucose residues and some O-(methylthio)methyl groups. Removal of the ether groups from this product gave a 2-aminated amylose (4) of degree of substitution (d.s.) by amine of 0.54 that underwent cleavage by fungal alpha-amylase to give oligosaccharides containing amino sugar residues. N-Trifluoroacetylation of 3 followed by removal of the ether groups, oxidation at C-6 with oxygen-platinum, and removal of the N-substituent, gave a (1 →4)-2-amino-2-deoxy-α-D-glucopyranuronan 7 having d.s. by amine of up to 0.65, and by carboxyl, of 0.46. Sulfation of this product with sulfur trioxide-pyridine and then with chlorosulfonic acid-pyridine gave a (1→4)-2-deoxy-2-sulfoamino-α-D-glucopyranuronan, isolated as its sodium salt 8, which showed appreciable blood-anticoagulant activity.  相似文献   

5.
The reaction of 2,3-di-O-acetyl-4-O-benzyl-α,β-d-xylopyranosyl bromide (2) with methyl 2,3-di-O-acetyl-β-d-xylopyranoside gave methyl O-(2,3-di-O-acetyl-4-O-benzyl-β-d-xylopyranosyl)-(1→4)-2,3-di-O-acetyl-β-d-xylopyranoside (22). Catalytic hydrogenolysis of 22 exposed HO-4′ which was then condensed with 2. This sequence of reactions was repeated three more times to afford, after complete removal of protecting groups, a homologous series of methyl β-glycosides of (1→4)-β-d-xylo-oligosaccharides. 13C-N.m.r. spectra of the synthetic methyl β-glycosides (di- to hexa-saccharide) are presented together with data for six other, variously substituted, homologous series of (1→4)-d-xylo-oligosaccharides.  相似文献   

6.
The reaction of methyl 2,3,4,6-tetra-O-acetyl-1-O-trimethylsilyl-β- (5) and -α-d-glucopyranuronate (6) severally with the dimethyl or diethyl acetals of formaldehyde, bromoacetaldehyde, propionaldehyde, 3-benzyloxypropionaldehyde, 5-carboxypentanal, and 2-bromohexanal in the presence of catalytic amounts of trimethylsilyl trifluoromethanesulfonate at −78° gave the corresponding (1-alkoxyalkyl) α- and β-glycosides (acetal-glucopyranosiduronates) with retention of configuration at C-1 in yields of 41–91%. Instead of the dialkyl acetals, the corresponding aldehydes and alkyl trimethylsilyl ether can be used. Deacetylation gave the corresponding methyl (acetal-β- and -α-d-glucopyranosid)uronates in good yield. De-esterification of methyl [(1R)-1-methoxybutyl β-d-glucopyranosid]uronate with esterase gave the acetal-β-d-glucopyranosiduronic acid which was an excellent substrate for β-d-glucuronidase.  相似文献   

7.
The reaction between the redox-active diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) and the dirhenium compound Re2(CO)8(μ-H)(μ-η12-C CPh) in CH2Cl2 at room temperature proceeds by CO loss to give the dirhenium complex Re2(CO)7(bpcd)(μ-H)(η1-C CPh) (1). This new complex was characterized in solution by IR and NMR (1H and 31P) spectroscopy and in the solid state by X-ray diffraction analysis. Re2(CO)7(bpcd)(μ-H)(η1-C CPh) crystallizes in the triclinic space group

γ = 69.240(6)°, V = 2024.9(3) Å3, Z = 2, dcalc = 1.862 g cm−3 R = 0.0221, Rw = 0.243 for 4066 observed reflections. The bpcd ligand in 1 adopts a chelating mode with a linear phenylacetylide ligand being located on the adjacent rhenium center cis to the bpcd ligand. This complex represents the first structurally characterized example of a hydrido-bridged dirhenium complex possessing both a linear acetylide ligand and a chelating diphosphine ligand.  相似文献   

8.
De-etherification of 6,6′-di-O-tritylsucrose hexa-acetate (2) with boiling, aqueous acetic acid caused 4→6 acetyl migration and gave a syrupy hexa-acetate 14, characterised as the 4,6′-dimethanesulphonate 15. Reaction of 2,3,3′4′,6-penta-O-acetylsucrose (5) with trityl chloride in pyridine gave a mixture containing the 1′,6′-diether 6 the 6′-ether 9, confirming the lower reactivity of HO-1′ to tritylation. Subsequent mesylation, detritylation, acetylation afforded the corresponding 4-methanesulphonate 8 1′,4-dimethanesulphonate 11. Reaction of these sulphonates with benzoate, azide, bromide, and chloride anions afforded derivatives of β- -fructofuranosyl α- -galactopyranoside (29) by inversion of configuration at C-4. Treatment of the 4,6′-diol 14 the 1,′4,6′-triol 5, the 4-hydroxy 1′,6′-diether 6 with sulphuryl chloride effected replacement of the free hydroxyl groups and gave the corresponding, crystalline chlorodeoxy derivatives. The same 4-chloro-4-deoxy derivative was isolated when the 4-hydroxy-1′,6′-diether 6 was treated with mesyl chloride in N,N-dimethylformamide.  相似文献   

9.
A problem typically encountered in the analysis of amino acids in chemical evolution experiments and in extracts of meteorites is the large number present. For example, α-, β-, and γ-amino acids, N-mono substituted α-amino acids, and dicarboxylic α-amino acids have been found in extracts of the Murchison meteorite, and many more amino acids are present than have been positively identified by computerized gas chromatographic mass spectrometry. This paper reports an analytical method to selectively destroy the α-amino acids, with only the β- and γ-amino acids remaining in the solution. It is based on the ability of Cu2+ to complex with amino acids, the order of stability of these complexes being α > β > γ, = δ, = ε = 0. Aqueous solutions of α-amino acid-Cu2+ chelates are known to be decomposed by 254 nm light as well as by nonmonochromatic uv light, yielding a precipitate of Cu2O. This paper shows that at 254 nm (ligand-metal charge transfer band) the rate of destruction of amino acids in Cu2+ aqueous solutions is in the following order, dicarboxylic α-amino acids > α-amino acids > N-monosubstituted α-amino acids β-amino acids ≈ γ-amino acids. Thus by irradiation with 254 nm light in the presence of Cu2+ all the amino acids can be destroyed except the β- and γ-amino acids. When almost 100% of the α-amino acids are destroyed, 80% of the β- and γ-amino acids still exist in solution. With this procedure, complex mixtures of amino acids can be simplified to make identification by gas chromatographic mass spectrometry casier.  相似文献   

10.
The biotransformation of sesquiterpenoids having an α,β-unsaturated carbonyl group, such as α-santonin (1), lancerodiol p-hydroxybenzoate (2), 8,9-dehydronootkatone (3), and nootkatone (4), with cultured suspension cells of Marchantia polymorpha was investigated. It was found that the CC double bond of 1 and 2 was hydrogenated to give 1,2-dihydro-α-santonin (5) and 3,4-dihydrolancerodiol p-hydroxybenzoate (6), respectively, while the allylic position of the CC double bond of 3 and 4 was hydroxylated to give 13-hydroxy-8,9-dehydronootkatone (7) and 9-hydroxynootkatone (8), respectively.  相似文献   

11.
In recent years several 15β-hydroxysteroids have emerged pathognomonic of adrenal disorders in human neonates of which 3α,15β,17α-trihydroxy-5β-pregnan-20-one (2) was the first to be identified in the urine of newborn infants affected with congenital adrenal hyperplasia. In this investigation we report the synthesis of the three remaining 3ξ,5ξ-isomers, namely 3α,15β,17α-trihydroxy-5α-pregnan-20-one (3), 3β,15β,17α-trihydroxy-5α-pregnan-20-one (7) and 3β,15β,17α-trihydroxy-5β-pregnan-20-one (8) for their definitive identification in pathological conditions in human neonates. 3β,15β-Diacetoxy-17α-hydroxy-5-pregnen-20-one (11), a product of chemical synthesis was converted to the isomeric 3 and 7, while conversion of 15β,17α-dihydroxy-4-pregnen-3,20-dione (4), a product of microbiological transformation, resulted in the preparation of 8. In brief, selective acetate hydrolysis of 11 gave 15β-acetoxy-3β,17α-dihydroxy-5-pregnen-20-one (12) which on catalytic hydrogenation gave 15β-acetoxy-3β,17α-dihydroxy-5α-pregnan-20-one (13) a common intermediate for the synthesis of the 3β(and α),5α-isomers. Hydrolysis of the 15β-acetate gave 7, whereas oxidation with pyridinium chlorochromate gave 15β-acetoxy-17α-hydroxy-5α-pregnan-3,20-dione (14) which on reduction with -Selectride and hydrolysis of the 15β-acetate gave 3. Finally, hydrogenation of 4 gave 15β,17α-dihydroxy-5β-pregnan-3,20-dione (10) which on reduction with -Selectride gave 8.  相似文献   

12.
Reactions of [CpCo(PPh3)2](Cp=η5-cyclopentadienyl) with conjugated diacetylenes were investigated in terms of the synthesis of π-conjugated organometallic polymers. The reaction of an α,β-diyne, PhCC---CCPh, gave three geometric isomers of dialkynylcobaltacyclopentadienes, 1a-c, and an insoluble polymeric product, 1d. A 2,4-dialkynyl complex, 2, and a 2,5-dialkynyl complex, 3, were obtained solely from Me3SiCC---CCSiMe3 and MeCC---CCMe, respectively. 1,1′-Bis(trimethylsilylethynyl)-4,4′-biphenyl afforded two isomers of 1,3-dialkynylcyclobutadiene complexes, 4a and 4b. The stability of the one-electron oxidized forms of the cobalacyclopentadiene and cyclobutadiene complexes was examined by cyclic voltammetry.  相似文献   

13.
Methyl 2,4-di-O-acetyl-3-deoxy-3-fluoro-β- -galactopyranoside was synthesized by sequential tritylation, acetylation, and detritylation of methyl 3-deoxy-3-fluoro-β- -galactopyranoside, and used as the initial nucleophile in the synthesis of methyl β-glycosides of (1→6)-β- -galacto-biose, -triose (20), and -tetraose (22) having a 3-deoxy-3-fluoro-β- -galactopyranoside end-residue. The extension of the oligosaccharide chais, to form the internal units in 20 and 22, was achieved by use of 2,3,4-tri-O-acetyl-6-O-bromoacetyl-α- -galactopyranosyl bromide as a glycosyl donor, and mercuric cyanide or silver triflate as the promotor. While fewer by-products were formed in the reactions involving mercuric cyanide, the reactions catalyzed by silver triflate were stereospecific and yielded only the desired β (trans) products.  相似文献   

14.
The syntheses are described of 2,3-di-O-glycosyl derivatives of methyl α- and β- -glucopyranoside having α- -manno-, β- -galacto-, α- -rhamno-, α- -fuco-, and β- -fuco-pyranosyl substitutents at O-2 and O-3. The syntheses involved glycoslation of methyl 4,6-O-(benzylidene-α- (24) and β- -glucopyranoside (21), and substituted derivatives of 21 bearing 2-O-(2,3,4,6-tetra-O-benzyl-α- -mannopyranosyl)-, -(2,3,4,6-tetra-O-acetyl-β- -galactopyranosyl)-, -(2,3,4-tri-O-benzyol-α- -rhamnopyranosyl)-, and-(2,3,4-tri-O-benzoyl-β- -fucopyranosyl) groups.  相似文献   

15.
The circular dichroism spectra of a number of N-acetylneuraminic acid derivatives in aqueous solution were studied. For all compounds, the Cotton effects were found to be in the spectral range of the acetamido and carboxyl chromophores. The c.d. curves of the methyl, ethyl, and allyl α- -ketosides are characterized by a broad, positive band centered at λ ≈ 195 nm with a slight skew towards the higher wavelengths and weak bands between λ 225 and 255 nm, whereas the methyl β- -ketoside and the corresponding methyl ester show only an intense positive band with a broad shoulder in the same spectral range. 5-Acetamido-3,5-dideoxy- -glycero-β- -galacto-nonulopyranose, its methyl β- -ketoside, and 5-acetamido-3,5-dideoxy- -glycero- -galacto-nonulopyranosonamide containing only the acetamido chromophore showed one single positive Cotton effect centered at λ ≈ 192 nm. The c.d. spectrum of 5-acetamido-3,5-dideoxy- -glycero- -galacto-nonulopyranosonic acid confirms the β- configuration of the free acid in aqueous solution, whereas the shape of the c.d. curve of O-(N-acetyl-α- -neuraminopyranosyl)-(2→3)-O-β- -galactopyranosyl-(1→4)- -glucopyranose resembles that of the methyl, ethyl, and allyl α- -ketosides 2-4.  相似文献   

16.
O-α- -Rhamnopyranosyl-(1→3)- -rhamnopyranose (19) and O-α- -rhamnopyranosyl-(1→2)- -rhamnopyranose were obtained by reaction of benzyl 2,4- (7) and 3,4-di-O-benzyl-α- -rhamnopyranoside (8) with 2,3,4-tri-O-acetyl-α- -rhamnopyranosyl bromide, followed by deprotection. The per-O-acetyl α-bromide (18) of 19 yielded, by reaction with 8 and 7, the protected derivatives of the title trisaccharides (25 and 23, respectively), from which 25 and 23 were obtained by Zemplén deacetylation and catalytic hydrogenolysis, With benzyl 2,3,4-tri-O-benzyl-β- -galactopyranoside, compound 18 gave an ≈3:2 mixture of benzyl 2,3,4-tri-O-benzyl-6-O-[2,4-di-O-acetyl-3-O-(2,3,4-tri-O-acetyl-α- -rhamnopyranosyl)-α- -rhamnopyranosyl]-β- -galactopyranoside and 4-O-acetyl-3-O-(2,3,4-tri-O-acetyl-α- -rhamnopyranosyl)-β- -rhamnopyranose 1,2-(1,2,3,4-tetra-O-benzyl-β- -galactopyranose-6-yl (orthoacetate). The downfield shift at the α-carbon atom induced by α- -rhamnopyranosylation at HO-2 or -3 of a free α- -rhamnopyranose is 7.4-8.2 p.p.m., ≈1 p.p.m. higher than when the (reducing-end) rhamnose residue is benzyl-protected (6.6-6.9 p.p.m.). α- -Rhamnopyranosylation of HO-6 of gb- -galactopyranose deshields the C-6 atom by 5.7 p.p.m. The 1 2-orthoester ring structure [O2,C(me)OR] gives characteristic resonances at 24.5 ±0.2 p.p.m. for the methyl, and at 124.0 ±0.5 p.p.m. for the quaternary, carbon atom.  相似文献   

17.
Decarboxylative elimination of methyl 2,3-di-O-benzyl-α-D-glucopyranosiduronic acid (1) with N,N-dimethylformamide dineopentyl acetal in N,N-dimethylformamide gave methyl 2,3-di-O-benzyl-4-deoxy-β-L-threo-pent-4-enopyranoside (3). Debenzylation of 3 was effected with sodium in liquid ammonia to give methyl 4-deoxy-β-L-threo-pent-4-enopyranoside (4). Hydrogenation of 3 catalyzed by palladium-on-barium sulfate afforded methyl 2,3-di-O-benzyl-4-deoxy-β-L-threo-pentopyranoside (5), whereas hydrogenation of 3 over palladium-on-carbon gave methyl 4-deoxy-β-L-threo-pentopyranoside (6). An improved preparation of methyl 4,6-O-benzylidene-α-D-glucopyranoside is also described.  相似文献   

18.
Type 3 17β-hydroxysteroid dehydrogenase (17β-HSD), a key steroidogenic enzyme, transforms 4-androstene-3,17-dione (Δ4-dione) into testosterone. In order to produce potential inhibitors, we performed solid-phase synthesis of model libraries of 3β-peptido-3α-hydroxy-5α-androstan-17-ones with 1, 2, or 3 levels of molecular diversity, obtaining good overall yields (23–58%) and a high average purity (86%, without any purification steps) using the Leznoff's acetal linker. The libraries were rapidly synthesized in a parallel format and the generated compounds were tested as inhibitors of type 3 17β-HSD. Potent inhibitors were identified from these model libraries, especially six members of the level 3 library having at least one phenyl group. One of them, the 3β-(N-heptanoyl- -phenylalanine- -leucine-aminomethyl)-3α-hydroxy-5α-androstan-17-one (42) inhibited the enzyme with an IC50 value of 227 nM, which is twice as potent as the natural substrate Δ4-dione when used itself as an inhibitor. Using the proliferation of androgen-sensitive (AR+) Shionogi cells as model of androgenicity, the compound 42 induced only a slight proliferation at 1 μM (less than previously reported type 3 17β-HSD inhibitors) and, interestingly, no proliferation at 0.1 μM.  相似文献   

19.
A general method for the preparation of 2′-azido-2′-deoxy- and 2′-amino-2′-deoxyarabinofuranosyl-adenine and -guanine nucleosides is described. Selective benzoylation of 3-azido-3-deoxy-1,2-O-isopropylidene-α-d-glucofuranose afforded 3-azido-6-O-benzoyl-3-deoxy-1,2-O-isopropylidene-α-d-glucofuranose (1). Acid hydrolysis of 1, followed by oxidation with sodium metaperiodate and hydrolysis by sodium hydrogencarbonate gave 2-azido-2-deoxy-5-O-benzoyl-d-arabinofuranose (3), which was acetylated to give 1,3-di-O-acetyl-2-azido-5-O-benzoyl-2-deoxy-d-arabinofuranose (4). Compound 4 was converted into the 1-chlorides 5 and 6, which were condensed with silylated derivatives of 6-chloropurine and 2-acetamido-hypoxanthine. The condensation reaction gave α and β anomers of both 7- and 9-substituted purine nucleosides. The structures of the nucleosides were determined by n.m.r. and u.v. spectroscopy, and by correlation of the c.d. spectra of the newly prepared nucleosides with those published for known purine nucleosides.  相似文献   

20.
A series of m-alkyl α,α,α-trifluoroacetophenones (1–5) was synthesized and evaluated as inhibitors of acetylcholinesterase from Torpedo california. All ketones (1–5) were found to be potent inhibitors of the enzyme; m-t-butyl α,α,α-trifluoroacetophenone (4) was the most potent inhibitor with a Ki value of 3.7 pM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号