首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The somatodendritic release of dopamine in substantia nigra previously has been suggested to be nonvesicular in nature and thus to differ from the classical, exocytotic release of dopamine described for the dopaminergic nerve terminal in striatum. We have compared the effects of reserpine, a compound that disrupts vesicular sequestration of monoamines, on the storage and release of dopamine in substantia nigra and striatum of rats. Reserpine administration (5 mg/kg, i.p.) significantly decreased the tissue level of dopamine in substantia nigra pars reticulata, substantia nigra pars compacta, and striatum. In these brain areas, reserpine-induced reductions in tissue dopamine level occurred within 2 h and persisted at 24 h postdrug. In vivo measurements using microdialysis revealed that reserpine administration rapidly decreased the extracellular dopamine concentration to nondetectable levels in substantia nigra as well as in striatum. In both structures, it was observed that reserpine treatment significantly attenuated the release of dopamine evoked by a high dose of amphetamine (10 mg/kg, i.p.) given 2 h later. In contrast, dopamine efflux in response to a low dose of amphetamine (2 mg/kg, i.p.) was not altered by reserpine pretreatment either in substantia nigra or in striatum. The present data suggest the existence, both at the somatodendritic and at the nerve terminal level, of a vesicular pool of dopamine that is the primary site of transmitter storage and that can be displaced by high but not low doses of amphetamine. The physiological release of dopamine in substantia nigra and in striatum is dependent on the integrity of this vesicular store.  相似文献   

2.
The extracellular concentration of dopamine (DA) and 3,4-dihydroxyphenylacetic acid in the substantia nigra (SN) and striatum was estimated by microdialysis. The dialysate content of DA from the SN was recorded during infusion of a DA uptake blocker (nomifensine; 5 mumol/L) dissolved in the perfusion fluid. Perfusion of tetrodotoxin (1 mumol/L) produced a virtually complete disappearance of nigral and striatal DA release. Dendritic as well as terminal release of DA was inhibited for several hours when the nerve impulse flow in dopaminergic neurons was blocked by systemic administration of gamma-butyrolactone (750 mg/kg, i.p.). The systemic administration (0.3 mg/kg, i.p.) as well as infusion (1 mumol/L) of the D2 agonist (-)-N-0437 [2-(n-propyl-N-2-thienylethylamino)-5-hydroxytetralin] produced a significant decrease in the release of DA in both the striatum and the SN. DA levels were recorded in the striatum both with and without addition of nomifensine to the perfusion fluid. The decrease in the striatum after (-)-N-0437 was suppressed in the presence of nomifensine. Infusion (1 mumol/L) as well as systemic administration (40 mg/kg) of sulpiride caused a similar increase in the release of striatal DA; this increase was, in both experiments, potentiated by nomifensine coinfusion. Sulpiride administration induced a small increase in the release of nigral DA. Infusion of (-)-N-0437 or (-)-sulpiride into the nigra caused a moderate decrease and increase, respectively, of striatal DA level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Abstract: This study was undertaken, using microdialysis, to compare the extracellular concentration of 3-methoxytyramine and dopamine in dialysate from the striatum and substantia nigra, after pargyline (75 mg/kg), after pargyline plus amphetamine (3 mg/kg), and after pargyline plus reserpine (5 mg/kg) administration. Treatment with pargyline alone increased the extracellular dopamine concentration by 70% in the striatum and by 140% in the substantia nigra and induced in both regions a time-dependent accumulation of 3-methoxytyramine. The addition of d-amphetamine to pargyline increased the extracellular dopamine concentration, compared with pargyline-treated controls, to the same extent in both the substantia nigra (maximally by 360%) and the striatum (maximally by 400%), but the concomitant increase of 3-methoxytyramine accumulation in the dialysate was relatively smaller in the substantia nigra compared with the striatum. Reserpine treatment decreased the extracellular dopamine concentration in both regions below the detection level (<10% of basal value). When pargyline was added to reserpine, the striatal extracellular dopamine concentration increased to 50% of pargyline-treated controls and the striatal 3-methoxytyramine accumulation was less than in pargyline-treated controls. However, in the substantia nigra, the addition of pargyline to reserpine resulted in dopamine concentrations as high as after pargyline only and the 3-methoxytyramine accumulation was not changed compared with pargyline-treated controls. In summary, our results indicate that dopamine in the substantia nigra is released from reserpine-sensitive storage sites and that pargyline-induced 3-methoxytyramine accumulation is a poor indicator of the local dopamine release. The latter observation may be explained by the fact that the dopamine-metabolizing enzyme, catechol-O-methyltransferase, is located inter alia in the dopamine-containing cell bodies/dendrites in the substantia nigra, in contrast to the situation in the terminals in the striatum where catechol-O-methyltransferase is located only in nondopaminergic cells.  相似文献   

4.
Dopamine (DA) is synthesized and released not only from the terminals of the nigrostriatal dopaminergic neuronal pathway, but also from the dendrites in the substantia nigra. We have investigated the regulation of the DA turnover, the DA synthesis rate, and the DA release in the substantia nigra pars compacts (SNpc) and pars reticulata (SNpr) in vivo. As a measure of DA turnover, we have assessed the concentrations of 3,4-dihydroxyphenylacetic acid and homovanillic acid. As a measure of the DA synthesis rate, we have determined the 3,4-dihydroxyphenylalanine accumulation after inhibition of aromatic L-amino acid decarboxylase by 3-hydroxybenzylhydrazine. As a measure of DA release, we have investigated the disappearance rate of DA after inhibition of its synthesis by alpha-methyl-p-tyrosine and the 3-methoxytyramine accumulation following monoamine oxidase inhibition by pargyline. Both the DA turnover and the DA synthesis rate increased following treatment with the DA receptor antagonist haloperidol and decreased following treatment with the DA receptor agonist apomorphine in the SNpc and in the SNpr, but the effects of the drugs were less pronounced than in the striatum. gamma-Butyrolactone treatment, which suppresses the firing of the dopaminergic neurons, increased the DA synthesis rate in the striatum (165%), but had no such effect in the SNpc or SNpr. Haloperidol, apomorphine, and gamma-butyrolactone increased, decreased, and abolished, respectively, the DA release in the striatum, but the drugs had no or only slight effects on the alpha-methyl-p-tyrosine-induced DA disappearance and on the pargyline-induced 3-methoxytyramine accumulation in the SNpc or SNpr. Taken together, these results indicate that the DA synthesis rate, but not the DA release, are influenced by DA receptor activity and neuronal firing in the SNpc and SNpr. This is in contrast to the situation in the striatum, where both the DA synthesis rate and the DA release are under such control.  相似文献   

5.
D1 and D2 receptor densities in human substantia nigra were examined by use of the specific binding of, respectively, [3H]SCH 23390 [R(+)-7-chloro-8-hydroxy-3-[3H]methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3- benzazepine] and [3H]spiperone. A unilateral loss of striato- and pallidonigral pathways by an infarction (n = 4) had no effect on the ipsilateral nigral D2 receptors, but reduced the ipsilateral nigral D1 receptors by 48-60% compared with the intact side. These data suggest that a substantial fraction of D1 receptors in human substantia nigra is located on terminals of striato- and/or pallidonigral neurons, whereas D2 receptors are confined to intrinsic nigral cells. We also examined the effect of aging on the D1 and D2 receptors in substantia nigra obtained from 25 postmortem human brains (age range 19-88 years). The densities of both receptor types were not affected by the aging process. Since nigrostriatal dopaminergic neurons degenerate with aging, these results suggest either that the nigral D2 receptors are up-regulated in response to a progressive depletion of dopamine in the substantia nigra or that, in contrast to the rat, they are not located on dopaminergic neurons.  相似文献   

6.
Measurements of the turnover of dopamine (DA) and DA metabolites have been performed in the striatum and substantia nigra (SN) of the rat. Turnover rates of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid have been assessed from the disappearance rates after blocking their formation by inhibition of monoamine oxidase by pargyline and of catechol-O-methyltransferase by tropolone. DA turnover has been measured as 3-methoxytyramine (3-MT) plus DA accumulation rate after MAO inhibition by pargyline and as accumulation rate of 3,4-dihydroxyphenylalanine (DOPA) after inhibition of aromatic amino acid decarboxylase by NSD 1015 or NSD 1034. These measures of DA turnover have been compared with alpha-methyl-p-tyrosine (alpha-MT)-induced DA disappearance rate. In SN all the different measures of DA turnover are in the same range (55-62 nmol/g protein/h) whereas in striatum DOPA accumulation rate after NSD 1015 and alpha-MT-induced DA disappearance rate (16-23 nmol/g/h) are much lower than DOPAC disappearance rate after pargyline, 3-MT plus DA accumulation rate after pargyline, and DOPA accumulation rate after NSD 1034 (39-46 nmol/g/h). The data confirm our previous findings indicating that the fractional turnover rate of DA is more rapid in SN than in striatum and that O-methylation of DA is relatively more important in SN. In striatum at least two pools of DA with different turnover rates appear to exist, whereas in SN, DA behaves as if located in a single compartment.  相似文献   

7.
Abstract: High-speed chronoamperometric recordings were used to measure the uptake and clearance of locally applied dopamine (DA) within the substantia nigra (SN) of anesthetized rats. To establish that DA clearance within the SN was mediated primarily by the DA transporter (DAT) rather than the norepinephrine transporter (NET) or the serotonin transporter (SERT), we locally applied uptake inhibitors with different selectivity profiles for the various amine transporters. Nomifensine, a DAT/NET inhibitor, significantly potentiated both the amplitude and the time course of the DA signals. In contrast, neither the selective NET inhibitor desipramine, nor the selective SERT inhibitor citalopram affected the DA signal, suggesting that NET and SERT do not contribute to DA uptake and clearance within the regions of the SN studied over the concentration ranges (1–5 µ M ) used. In unilaterally 6-hydroxydopamine-lesioned rats, the time course of the DA signal was increased in both the lesioned SN and striatum, relative to the unlesioned hemisphere, indicating loss of DAT and decreased DA uptake and clearance. In addition, when identical amounts of DA were injected in the striatum and SN, peak signal amplitudes were larger in the SN, suggesting that the amplitudes are related to the number of DAT sites in a given region of brain tissue. For signals of equivalent amplitudes, clearance rates were lower in the SN than in the striatum, consistent with a lower capacity for DAT-mediated DA uptake within the SN. These results suggest that the DAT is the major transporter responsible for DA clearance within the rat SN.  相似文献   

8.
Abstract: In this study, we compare the electrically evoked, somatodendritic release of dopamine (DA) with axonal release of serotonin (5-HT) in the substantia nigra (SN) and ventral tegmental area (VTA) in vitro by using fast-scan cyclic voltammetry with carbon-fibre microelectrodes. Furthermore, we have examined transmitter release in these regions in guinea-pig compared with rat. Somatodendritic DA was released, as shown previously, in guinea-pig VTA, SN pars compacta (SNc), and occasionally in SN pars reticulata (SNr). 5-HT was rarely released, except in SNr, where nonetheless it only contributed to <30% of amine signals. In rat midbrain, somatodendritic DA release was evoked to a similar extent as in guinea-pig. However, a clear species difference was apparent; i.e., 5-HT and DA were detected equally in rat SNc, whereas in rat SNr, 5-HT was the predominant transmitter detected. Nevertheless, electrically evoked extracellular concentrations of 5-HT in SNc and SNr were, respectively, seven- and fourfold less than DA in SNc. 5-HT release was low in all regions in neonatal rat slices before the maturation of 5-HT terminals. Hence, axonal 5-HT transmission in midbrain exhibits both species and site selectivity. Moreover, whereas somatodendritic DA release is conventionally regarded as modest compared with axon terminal release in striatum, somatodendritic DA release can result in significantly greater extracellular levels than a transmitter released from axon terminals in the same locality.  相似文献   

9.
Unilateral 6-hydroxydopamine lesion of the substantia nigra reduced the volume of striatal necrosis and suppressed the increase in extracellular glutamate concentration in the striatum induced by middle cerebral artery occlusion in rats. These results indicate that the dopaminergic nigrostriatal pathway is highly involved in the vulnerability of the striatum to ischemia and suggest that glutamate-dopamine interactions may play a key role in the striatal ischemic insult.  相似文献   

10.
Abstract: The effect of tetanus toxin on the uptake and release of radiolabelled transmitters from slices prepared from substantia nigra (SN) and striatum of rats has been investigated. Tetanus toxin-500–750 mouse lethal doses (MLD)-injected into the SN 6 h before preparing the slices significantly reduced the calcium-dependent, potassium-evoked release of [3H]GABA. Endogenous GABA levels in the SN and [3H]GABA uptake by nigral slices were unaffected by pretreatment with the toxin. Injections of tetanus toxin (1000–2000 MLD) into the striatum significantly reduced the calcium-dependent, potassium-evoked release of [14C]GABA and also [3H]dopamine, but had no effect on the K+-evoked release of [3H]5-hydroxytryptamine or [14C]acetylcholine. It is concluded that tetanus toxin inhibits GABA release directly and not by interference with synthesis or inactivation processes.  相似文献   

11.
Abstract: ARPP-21 is a cyclic AMP-regulated phosphoprotein (Mr= 21,000) that has a distribution in brain similar to that of DARPP-32 (dopamine- and cyclic AMP-regulated phosphoprotein, Mr= 32,000). It is enriched in the medium-sized spiny neurons in the striatum and in the striatonigral nerve terminals in the pars reticulata of the substantia nigra. The present study shows that dopamine D1 agonist SKF 38393 increases the state of phosphorylation of ARPP-21 by 26% in nigral slices and that pretreatment of the slices with D1 antagonist SCH 23390 blocks this effect. These results demonstrate that ARPP-21 is a dopamine-regulated phosphoprotein. Because D1 receptors are localized on nerve terminals of striatonigral pathway, the phosphorylation of ARPP-21 is likely to mediate some of the intracellular effects of dopamine on these terminals.  相似文献   

12.
The release of gamma-[3H]aminobutyric acid ([3H]GABA) newly synthesized from [3H]glutamine was estimated in the superior colliculus of ketamine-anesthetized rats superfused via a push-pull cannula. A significant amount of [3H]GABA was spontaneously released in the superior colliculus (582 +/- 49 pCi/10 min). A major part of the large K(+)-evoked increase of the [3H]GABA release was Ca2+ dependent. When neuronal activity of the substantia nigra was enhanced by nigral application of K+ (30 mM) or bicuculline (10(-4) M), a persistent increase of the collicular [3H]GABA release was observed (60 and 80%, respectively). Conversely, when nigral activity was reduced by nigral application of GABA (10(-4) M) or superfusion with a Ca(2+)-free medium, a sustained decrease of the collicular [3H]GABA release was observed (-30 and -40%, respectively). Following the nigral application of a selective D2-receptor agonist. RU 24926 (10(-6) M), for 30 min in 6-hydroxydopamine-lesioned rats, a phasic increase (60%) of the collicular [3H]GABA release was detected. This effect could result from an activation of nigrocollicular GABAergic neurons by D2-receptor stimulation, because nigral activity and collicular release of [3H]GABA changed in a parallel direction.  相似文献   

13.
Abstract: Glial cell line-derived neurotrophic factor (GDNF) was identified on the basis of its ability to enhance the development of embryonic mesencephalic dopamine neurons. It remains unknown whether GDNF is a physiologically relevant trophic factor for these neurons. We have shown that natural cell death among dopamine neurons of the substantia nigra occurs largely postnatally. To investigate whether GDNF may have the ability to support these neurons during their period of natural cell death, we have used a postnatal primary culture model. We find that GDNF is able to support the viability of postnatal nigral dopamine neurons by inhibiting apoptotic death. This ability of GDNF shows both regional specificity for the nigra and cellular specificity for the dopamine phenotype. Among eight other neurotrophic factors previously reported to support embryonic dopamine neurons, GDNF was unique in this ability. Thus, GDNF meets this criterion for a physiologically relevant trophic factor for dopamine neurons of the substantia nigra.  相似文献   

14.
Extracellular concentrations of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid were measured by microdialysis in rat striatum 1 month after a unilateral infusion via a dialysis probe of a high concentration (10 mM) of 1-methyl-4-phenylpyridinium ion (MPP+) into the substantia nigra. The basal extracellular DA concentration at the lesioned side was about 20% of the concentration at the nonlesioned side. However, basal DOPAC dialysate levels from the lesioned striatum represented only 2.4% of those from the contralateral side. Intrastriatal infusion with nomifensine increased the dialysate content of DA about twofold and eightfold at the lesioned and nonlesioned sides, respectively. Co-infusion of nomifensine with (-)-sulpiride caused an additional pronounced rise of the DA output on top of the nomifensine-induced increase at the nonlesioned side, whereas no effect was observed at the lesioned side. Finally, MPP+ (10 mM) was infused for 45 min into both striata. The increase in the dialysate content of DA in response to MPP+ (considered as an index of the total striatal DA content) from the lesioned side was only 0.6% of the MPP(+)-induced DA increase from the nonlesioned side. A strong compensatory response to increased extracellular dopamine was observed in the ipsilateral striatum. This effect was achieved by a severe suppression of reuptake mechanisms, as well as of the autoreceptor feedback response. It is concluded that infusion of MPP+ into the substantia nigra can be used as a chronic biochemical model for clinically manifest parkinsonism.  相似文献   

15.
Abstract: The effectiveness of intranasal drug administration to stimulate central neuronal systems is well known from drug addiction and has also been considered as an alternative pharmacokinetic approach to treat brain disorders such as Parkinson's disease. In the present study, the possible neurochemical effects of intranasal administration of the psychostimulants cocaine and amphetamine and of the antiparkinsonian drug l -DOPA were analyzed. By using in vivo microdialysis in the urethane-anesthetized rat, it was found that unilateral intranasal administration of either of the psychostimulants led to huge and rapid increases of extracellular dopamine levels in the neostriatum followed by decreases of its metabolites dihydroxyphenylacetic acid and homovanillic acid. Furthermore, intranasal administration of l -DOPA, but not of the saline vehicle, also led to increased extracellular levels of neostriatal dopamine and to increases of its metabolites. Because the effect of intranasal l -DOPA on neostriatal dopamine was observed only ipsilaterally but not contralaterally to the side of intranasal drug administration, it can be hypothesized that l -DOPA was not effective via passage through the circulation but may have acted through a neuronal or an extraneuronal route. These data provide neurochemical evidence that the intranasal route may not only be efficient in drug abuse, but may also be useful to target the brain therapeutically, as in the case of neurodegenerative brain disorders.  相似文献   

16.
Abstract: Fast scan cyclic voltammetry with carbon fiber electrodes has been used to investigate the dynamics of the neurotransmitter 5-hydroxytryptamine (5-HT) in the extracellular fluid of two brain regions: the dorsal raphe and the substantia nigra reticulata. The method used previously was shown to be optimized to allow the time course of 5-HT concentration changes to be measured rapidly. Measurements were made in slices prepared from the brains of rats with the carbon fiber electrode inserted into the tissue and a bipolar stimulating electrode placed on the slice surface. Identification of 5-HT as the detected substance in both regions was based on voltammetric, anatomical, physiological, and pharmacological evidence. Autoradiography using [3H]paroxetine revealed highest 5-HT transporter binding densities in the regions in which voltammetric measurements were made. Evaluation of the pharmacological actions of tetrodotoxin and tetrabenazine, as well as the effects of calcium removal, suggested that 5-HT storage was vesicular and that the release process was exocytotic. The effects of fluoxetine (0.5 µM) were typical of a competitive uptake inhibitor, changing Km with little effect on Vmax. Release of 5-HT was found to be maximal with wide (2-ms) stimulus pulses in both regions, as expected for release from small unmyelinated processes, and to increase linearly with the number of pulses when high frequencies (100 Hz) were used. At lower frequencies, the concentration observed was a function of both release and uptake. Kinetic simulations of the data revealed that the major difference in 5-HT neurotransmission between the two regions was that release and uptake rates are twice as large in the dorsal raphe ([5-HT] per pulse = 100 ± 20 nM, Vmax = 1,300 ± 20 nM/s for dorsal raphe; [5-HT] per pulse = 55 ± 7 nM, Vmax = 570 ± 70 nM/s for substantia nigra reticulata). When normalized to tissue content, uptake rates in both regions were identical and similar to rates previously reported for dopamine in dopamine terminal regions. Nonetheless, compared with dopaminergic transmission in terminal regions such as the striatum, the absolute clearance rates in the substantia nigra reticulata and dorsal raphe were lower, resulting in a longer lifetime of 5-HT in the extracellular fluid and allowing long-range interactions.  相似文献   

17.
Potassium chloride (25 mM) and (+)-amphetamine (100 microM) both stimulated the release of radioactivity from slices of substantia nigra preincubated with [3H]3,4-dihydroxyphenylethylamine [( 3H]dopamine). Potassium chloride (25 mM) released radioactivity from slices of both zona compacta and zona reticulata. Prior 6-hydroxydopamine (6-OHDA) lesions of one nigrostriatal pathway did not reduce the spontaneous release of radioactivity, or the potassium chloride- or amphetamine-induced release of radioactivity from slices of nigra ipsilateral to the lesion after preincubation with [3H]dopamine. The accumulation of radioactivity following incubation of nigral slices from 6-OHDA-lesioned animals with [3H]dopamine was increased when compared to uptake into slices from intact tissue. In synaptosomal preparations of striatum, nomifensine but not desipramine or fluoxetine inhibited [3H]dopamine uptake. In contrast, nomifensine, desipramine, and fluoxetine all inhibited [3H]dopamine uptake in nigral synaptosomal preparations. Following 6-OHDA lesions of one nigrostriatal pathway the uptake of [3H]dopamine into nigral synaptosomal preparations was unchanged but uptake into striatal preparations was substantially decreased. In contrast, bilateral electrolesions of the dorsal and medial raphe nuclei reduced [3H]dopamine uptake into nigral preparations but not into striatal synaptosomes. The uptake of [3H]5-hydroxytryptamine ([3H]5-HT) into synaptosomal preparations of substantia nigra was abolished by fluoxetine and reduced by desipramine, but was unaffected by nomifensine. In contrast, fluoxetine, desipramine, and nomifensine all inhibited [3H]5-HT uptake into striatal synaptosomal preparations. Following 6-OHDA lesions of one nigro-striatal pathway the uptake of [3H]5-HT into nigral synaptosomal preparations was unchanged but uptake into striatal preparations was reduced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Marked reductions in opiate receptor binding (-42%), "enkephalinase" activity (-39%), and Met5-enkephalin levels (-72%) accompanied the well-established dopamine depletion in the substantia nigra pars compacta of Parkinsonian subjects. In contrast, enkephalinergic markers were not significantly modified in caudate nucleus.  相似文献   

19.
In an attempt to estimate the pool size of glutamate and other amino acids in γ-aminobutyric acid (GABA)-containing neurons, we determined the content of 12 amino acids in the bilateral substantia nigra of rats, in which unilateral striatal lesions had been made with kainic acid two weeks earlier. The assay of the amino acids (including glutamate, aspartate, glutamine, asparagine, glycine, and GABA) and ethanolamine was based on HPLC and fluorimetric detection after precolumn derivatization with o-phthaldialdehyde. The levels of all measured amino acids (except those of tyrosine, threonine, and ethanolamine) were decreased in the affected striatum, but only the levels of aspartate, taurine, and GABA were lowered in the ipsilateral substantia nigra. These results indicate that the pool size of the various amino acids in the striatonigral GABAergic pathway is small compared to their nigral content, and that in addition to GABA a significant fraction of aspartate and taurine may be confined to nerve terminals in the substantia nigra.  相似文献   

20.
Abstract: Monoamine-uptake blockers were applied focally (0.1–1,000 µ M ) through a dialysis probe in the nucleus accumbens of freely moving rats, and the extracellular concentrations of dopamine, norepinephrine, and serotonin were measured. The selective dopamine-uptake blocker GBR 12935 increased dopamine preferentially with only a small effect on norepinephrine, whereas the selective serotonin-uptake blocker fluoxetine increased serotonin output preferentially. In contrast, the selective norepinephrine-uptake blockers desipramine and nisoxetine enhanced not only norepinephrine, but also serotonin and dopamine appreciably. Cocaine increased all three amines with the greatest effects on dopamine and serotonin. As in our previous study on the ventral tegmental area, there was a positive association between dopamine and norepinephrine output when all blocker data were taken together. The present results suggest a contribution of the increase in norepinephrine, but not serotonin, to the enhancement of dopamine after cocaine applied focally in the nucleus accumbens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号