首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
The molecular interactions between the bifidobacterial cell and its natural environment, namely, the gastrointestinal tract of its host, are particularly important in understanding the presumed positive effects of Bifidobacterium on the health status of the host. In this study an export-specific reporter system, designed for use in gram-positive organisms and based on the use of the staphylococcal nuclease (Nuc) as a reporter, was employed to identify exported proteins in Bifidobacterium breve UCC2003. A B. breve genomic library of translational fusions to the Nuc-encoding gene devoid of its own export signal was established in the shuttle vector pFUN (I. Poquet, S. D. Ehrlich, and A. Gruss, J. Bacteriol. 180:1904-1912, 1998) and screened for bifidobacterial export signals. Sequence analysis of the fusion proteins obtained that displayed a nuclease-producing phenotype in both Lactococcus lactis and B. breve predicted the presence of a classical signal peptide and/or single or multiple transmembrane domains, thus indicating that some of the export signals in B. breve are comparable to those used in L. lactis. Cell fractionation studies, zymograms, nuclease assays, and Western blotting were employed to confirm the function of the predicted signals and to determine the location and activity of the exported fusion proteins in B. breve and/or L. lactis.  相似文献   

10.
11.
The apuB gene of Bifidobacterium breve UCC2003 was shown to encode an extracellular amylopullulanase. ApuB is composed of a distinct N-terminally located alpha-amylase-containing domain which hydrolyzes alpha-1,4-glucosidic linkages in starch and related polysaccharides and a C-terminally located pullulanase-containing domain which hydrolyzes alpha-1,6 linkages in pullulan, allowing the classification of this enzyme as a bifunctional class II pullulanase. A knockout mutation of the apuB gene in B. breve UCC2003 rendered the resulting mutant incapable of growth in medium containing starch, amylopectin, glycogen, or pullulan as the sole carbon and energy source, confirming the crucial physiological role of this gene in starch metabolism.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Development of the human gut microbiota commences at birth, with certain bifidobacterial species representing dominant and early colonisers of the newborn gastrointestinal tract. The molecular basis of Bifidobacterium colonisation, persistence and presumed communication with the host has remained obscure. We previously identified tight adherence (Tad) pili from Bifidobacterium breve UCC2003 as an essential colonisation factor. Here, we demonstrate that bifidobacterial Tad pili also promote in vivo colonic epithelial proliferation. A significant increase in cell proliferation was detectable 5 days postadministration of B. breve UCC2003. Using advanced functional genomic approaches, bacterial strains either (a) producing the Tad2003 pili or (b) lacking the TadE or TadF pseudopilins were created. Analysis of the ability of these mutant strains to promote epithelial cell proliferation in vivo demonstrated that the pilin subunit, TadE, is the bifidobacterial molecule responsible for this proliferation response. These findings were confirmed in vitro using purified TadE protein. Our data imply that bifidobacterial Tad pili may contribute to the maturation of the naïve gut in early life through the production of a specific scaffold of extracellular protein structures, which stimulate growth of the neonatal mucosa.  相似文献   

19.
In this paper, we reveal and characterize cross-feeding behaviour between the common gut commensal Bacteroides cellulosilyticus (Baccell) and certain bifidobacterial strains, including Bifidobacterium breve UCC2003, when grown on a medium containing Larch Wood Arabinogalactan (LW-AG). We furthermore show that cross-feeding is dependent on the release of β-1,3-galacto-di/trisaccharides (β-1,3-GOS), and identified that the bga gene cluster of B. breve UCC2003 allows β-1,3-GOS metabolism. The product of bgaB is presumed to be responsible for the import of β-1,3-GOS, while the bgaA gene product, a glycoside hydrolase family 2 member, was shown to hydrolyse both β-1,3-galactobiose and β-1,3-galactotriose into galactose monomers. This study advances our understanding of strain-specific syntrophic interactions between two glycan degraders in the human gut in the presence of AG-type dietary polysaccharides.  相似文献   

20.
Several prebiotics, such as inulin, fructo‐oligosaccharides and galacto‐oligosaccharides, are widely used commercially in foods and there is convincing evidence, in particular for galacto‐oligosaccharides, that prebiotics can modulate the microbiota and promote bifidobacterial growth in the intestinal tract of infants and adults. In this study we describe the identification and functional characterization of the genetic loci responsible for the transport and metabolism of purified galacto‐oligosaccharides (PGOS) by Bifidobacterium breve UCC2003. We further demonstrate that an extracellular endogalactanase specified by several B. breve strains, including B. breve UCC2003, is essential for partial degradation of PGOS components with a high degree of polymerization. These partially hydrolysed PGOS components are presumed to be transported into the bifidobacterial cell via various ABC transport systems and sugar permeases where they are further degraded to galactose and glucose monomers that feed into the bifid shunt. This work significantly advances our molecular understanding of bifidobacterial PGOS metabolism and its associated genetic machinery to utilize this prebiotic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号