首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactate is provided to spermatogenic cells by Sertoli cells as an energy substrate and its transport is regulated by H(+)-monocarboxylate co-transporters (MCTs). In the case of several cell types it is known that MCT1 is associated with basigin and MCT2 with embigin. Here we demonstrate co-localization and co-immunoprecipitation of basigin with both MCT1 and MCT2 in sperm, whereas no interaction with embigin was detectable. An investigation of the functional activity of MCT proteins revealed that it was mainly the application of L-lactate which resulted in a decrease in pH(i) . The pH(i) changes were blocked with α-cyano-4-OH cinnamate and the preference for L-lactate-as opposed to D-Lactate-was demonstrated by the determination of ATP after exposure to both lactate isomers. We propose that basigin interacts with MCT1 and MCT2 to locate them properly in the membrane of spermatogenic cells and that this may enable sperm to utilize lactate as an energy substrate contributing to cell survival.  相似文献   

2.
Monocarboxylate transporter 7 (MCT7) is an orphan transporter expressed in the liver, brain, and in several types of cancer cells. It has also been reported to be a survival factor in melanoma and breast cancers. However, this survival mechanism is not yet fully understood due to MCT7’s unidentified substrate(s). Therefore, here we sought to identify MCT7 substrate(s) and characterize the transport mechanisms by analyzing amino acid transport in HEK293T cells and polarized Caco-2 cells. Analysis of amino acids revealed significant rapid reduction in taurine from cells transfected with enhanced green fluorescent protein-tagged MCT7. We found that taurine uptake and efflux by MCT7 was pH-independent and that the uptake was not saturated in the presence of taurine excess of 200 mM. Furthermore, we found that monocarboxylates and acidic amino acids inhibited MCT7-mediated taurine uptake. These results imply that MCT7 may be a low-affinity facilitative taurine transporter. We also found that MCT7 was localized at the basolateral membrane in polarized Caco-2 cells and that the induction of MCT7 expression in polarized Caco-2 cells enhanced taurine permeation. Finally, we demonstrated that interactions of MCT7 with ancillary proteins basigin/CD147 and embigin/GP70 enhanced MCT7-mediated taurine transport. In summary, these findings reveal that taurine is a novel substrate of MCT7 and that MCT7-mediated taurine transport might contribute to the efflux of taurine from cells.  相似文献   

3.
Monocarboxylate transporters MCT1-MCT4 require basigin (CD147) or embigin (gp70), ancillary proteins with a glutamate residue in their single transmembrane (TM) domain, for plasma membrane (PM) expression and activity. Here we use site-directed mutagenesis and expression in COS cells or Xenopus oocytes to investigate whether this glutamate (Glu218 in basigin) may charge-pair with a positively charged TM-residue of MCT1. Such residues were predicted using a new molecular model of MCT1 based upon the published structure of the E. coli glycerol-3-phosphate transporter. No evidence was obtained for Arg306 (TM 8) of MCT1 and Glu218 of basigin forming a charge-pair; indeed E218Q-basigin could replace WT-basigin, although E218R-basigin was inactive. No PM expression of R306E-MCT1 or D302R-MCT1 was observed but D302R/R306D-MCT1 reached the PM, as did R306K-MCT1. However, both were catalytically inactive suggesting that Arg306 and Asp302 form a charge-pair in either orientation, but their precise geometry is essential for catalytic activity. Mutation of Arg86 to Glu or Gln within TM3 of MCT1 had no effect on plasma membrane expression or activity of MCT1. However, unlike WT-MCT1, these mutants enabled expression of E218R-basigin at the plasma membrane of COS cells. We propose that TM3 of MCT1 lies alongside the TM of basigin with Arg86 adjacent to Glu218 of basigin. Only when both these residues are positively charged (E218R-basigin with WT-MCT1) is this interaction prevented; all other residue pairings at these positions may be accommodated by charge-pairing or stabilization of unionized residues through hydrogen bonding or local distortion of the helical structure.  相似文献   

4.
Site-directed mutagenesis of MCT1 was performed on exofacial lysines Lys38, Lys45, Lys282, and Lys413. K38Q-MCT1 and K38R-MCT1 were inactive when expressed at the plasma membrane of Xenopus laevis oocytes, whereas K45R/K282R/K413R-MCT1 and K45Q/K282Q/K413Q-MCT1 were active. The former exhibited normal reversible and irreversible inhibition by DIDS, whereas the latter showed less reversible and no irreversible inhibition. K45Q/K413Q-MCT1 retained some irreversible inhibition, whereas K45Q/K282Q-MCT1 and K282Q/K413Q-MCT1 did not. These data suggest that the two DIDS SO3 groups interact with positively charged Lys282 together with Lys45 and/or Lys413. This positions one DIDS isothiocyanate group close to Lys38, leading to its covalent modification and irreversible inhibition. Additional mutagenesis revealed that DIDS cross-links MCT1 to its ancillary protein embigin using either Lys38 or Lys290 of MCT1 and Lys160 or Lys164 of embigin. We have modeled a possible structure for the outward facing (open) conformation of MCT1 by employing modest rotations of the C-terminal domain of the inner facing conformation modeled previously. The resulting model structure has a DIDS-binding site consistent with experimental data and locates Lys38 in a hydrophobic environment at the bottom of a substrate-binding channel. Our model suggests a translocation cycle in which Lys38 accepts a proton before binding lactate. Both the lactate and proton are then passed through the channel via Asp302− and Asp306+, an ion pair already identified as important for transport and located adjacent to Phe360, which controls channel selectivity. The cross-linking data have also been used to model a structure of MCT1 bound to embigin that is consistent with published data.Monocarboxylate transporter 1 (MCT1)3 is a member of the monocarboxylate transporter family (SLC16) of which there are 14 known members encoded by both the human and mouse genomes (1). All of the members of this family are thought to have 12 transmembrane alpha helices (TMs) with a large loop between TMs 6 and 7 and the C and N termini facing the cytosol (2, 3). The only members of the MCT family that have been shown to catalyze transport of monocarboxylates such as l-lactate across the plasma membrane are isoforms 1–4 (48). This transport is proton-linked and leads to the net uptake or release of lactic acid from cells, which is critical for metabolic pathways such as anaerobic glycolysis, gluconeogenesis, and lactate oxidation (9). MCT8 is a high affinity thyroid hormone transporter (10), whereas MCT10 (TAT1) is an aromatic amino acid transporter (11). The other members of the MCT family remain to be characterized.MCT1 is the most widely distributed member of the MCT family and was first identified as the lactate transporter present in red blood cells where its kinetics and substrate and inhibitor specificity were investigated in detail (9, 11, 12). These studies revealed that MCT1 can be inhibited by stilbene disulfonate derivatives such as DIDS and 4,4′-dibenzamido-stilbene-2,2′-disulfonate (DBDS). DIDS was shown to exhibit a rapid reversible inhibition of transport that was competitive with respect to l-lactate. This is followed by a slowly developing irreversible inhibition that is not exhibited by DBDS and is thought to be caused by one of the isothiocyanate groups of DIDS attacking a lysine residue on MCT1 (1315). Prolonged incubation with DIDS also led to a fraction of the MCT1 becoming cross-linked to a 70-kDa glycoprotein that was identified as embigin, also known as gp70 (16). Embigin has a short intracellular C terminus, a single TM sequence containing a glutamic acid residue, and a large extracellular N terminus containing two immunoglobulin domains (17, 18). Subsequent studies revealed that either embigin or, more frequently, the homologous protein basigin (also known as CD147) is required as a chaperone to take MCT1 to the membrane (19) where the two proteins must remain associated for transport activity to be maintained (20, 21).Expression of MCTs 1, 2, and 4 in Xenopus laevis oocytes has enabled their further characterization and the effects of site-directed mutagenesis to be investigated (4, 5, 7, 8, 2224). Such studies, together with homology modeling have enabled us to propose a three-dimensional structure of MCT1 based around the published structure of the Escherichia coli glycerol-3-phosphate transporter (Protein Data Bank 1PW4) (24). This model can account for the effects of mutating a range of amino acids, including some that disrupt the interaction with basigin, and has led to the proposal that the single TM of basigin or embigin lies between TMs 3 and 6 of MCT1. The model also reveals exofacial lysines that are present in MCT1 that might be responsible for the irreversible inhibition of MCT1 by DIDS and the cross-linking of MCT1 to embigin. In rat MCT1 these residues are Lys38, Lys45, Lys282, Lys284, Lys290, and Lys413. In this paper, we use site-directed mutagenesis of these lysine residues to identify which of them are involved in DIDS binding to MCT1. In addition we use site-directed mutagenesis of embigin to demonstrate that Lys160 and Lys164 are involved in its cross-linking to MCT1. Our new data allow us to propose a modified structural model of MCT1 in its outward facing conformation that binds DIDS. This model is consistent with the site-directed mutagenesis data and also suggests a mechanism for the translocation cycle that involves Lys38 as well as Asp302 and Arg306 that have already been identified as important for transport (23, 24). We have also been able to model a structure of MCT1 bound to embigin that is consistent with published data.  相似文献   

5.
Monocarboxylate transporters MCT1-MCT4 require basigin (CD147) or embigin (gp70), ancillary proteins with a glutamate residue in their single transmembrane (TM) domain, for plasma membrane (PM) expression and activity. Here we use site-directed mutagenesis and expression in COS cells or Xenopus oocytes to investigate whether this glutamate (Glu218 in basigin) may charge-pair with a positively charged TM-residue of MCT1. Such residues were predicted using a new molecular model of MCT1 based upon the published structure of the E. coli glycerol-3-phosphate transporter. No evidence was obtained for Arg306 (TM 8) of MCT1 and Glu218 of basigin forming a charge-pair; indeed E218Q-basigin could replace WT-basigin, although E218R-basigin was inactive. No PM expression of R306E-MCT1 or D302R-MCT1 was observed but D302R/R306D-MCT1 reached the PM, as did R306K-MCT1. However, both were catalytically inactive suggesting that Arg306 and Asp302 form a charge-pair in either orientation, but their precise geometry is essential for catalytic activity. Mutation of Arg86 to Glu or Gln within TM3 of MCT1 had no effect on plasma membrane expression or activity of MCT1. However, unlike WT-MCT1, these mutants enabled expression of E218R-basigin at the plasma membrane of COS cells. We propose that TM3 of MCT1 lies alongside the TM of basigin with Arg86 adjacent to Glu218 of basigin. Only when both these residues are positively charged (E218R-basigin with WT-MCT1) is this interaction prevented; all other residue pairings at these positions may be accommodated by charge-pairing or stabilization of unionized residues through hydrogen bonding or local distortion of the helical structure.  相似文献   

6.

Background

The neuroplastins np65 and np55 are two synapse-enriched immunoglobulin (Ig) superfamily adhesion molecules that contain 3 and 2 Ig domains respectively. Np65 is implicated in long term, activity dependent synaptic plasticity, including LTP. Np65 regulates the surface expression of GluR1 receptor subunits and the localisation of GABAA receptor subtypes in hippocampal neurones. The brain is dependent not only on glucose but on monocarboxylates as sources of energy. The. monocarboxylate transporters (MCTs) 1–4 are responsible for the rapid proton-linked translocation of monocarboxylates including pyruvate and lactate across the plasma membrane and require association with either embigin or basigin, proteins closely related to neuroplastin, for plasma membrane expression and activity. MCT2 plays a key role in providing lactate as an energy source to neurons.

Methodology/Findings

Here we use co-transfection of neuroplastins and monocarboxylate transporters into COS-7 cells to demonstrate that neuroplastins can act as ancillary proteins for MCT2. We also show that Xenopus laevis oocytes contain endogenous neuroplastin and its knockdown with antisense RNA reduces the surface expression of MCT2 and associated lactate transport. Immunocytochemical studies show that MCT2 and the neuroplastins are co-localised in rat cerebellum. Strikingly neuroplastin and MCT2 are enriched in the same parasagittal zebrin II-negative stripes.

Conclusions

These data strongly suggest that neuroplastins act as key ancillary proteins for MCT2 cell surface localisation and activity in some neuronal populations, thus playing an important role in facilitating the uptake of lactate for use as a respiratory fuel.  相似文献   

7.
Basigin belongs to the immunoglobulin superfamily and may be related to the primordial form of the superfamily. Human basigin cDNA was isolated and sequenced, and the predicted protein structure was compared with that of mouse basigin and two related molecules, embigin and the chicken blood-brain barrier antigen HT7. Between human and mouse basigin, 58% of the amino acids were identical and 80% of the changes were conservative. A stretch of 29 amino acid residues in the transmembrane and cytoplasmic domains was conserved not only in human and mouse basigin but also in HT7 antigen. The conserved structure may be required for interaction with a membranous protein. In addition, the relationship of basigin with other members of the immunoglobulin superfamily has been evaluated.  相似文献   

8.
9.
The rat equilibrative nucleoside transporters rENT1 and rENT2 belong to a family of integral membrane proteins with 11 potential transmembrane segments (TMs) and are distinguished functionally by differences in sensitivity to inhibition by nitrobenzylthioinosine (NBMPR). Structurally, the proteins have a large glycosylated extracellular loop between TMs 1 and 2 and a large cytoplasmic loop between TMs 6 and 7. In the present study, we have generated chimeras between NBMPR-sensitive rENT1 and NBMPR-insensitive rENT2, using splice sites at rENT1 residues 99 (end of TM 2), 171 (between TMs 4 and 5), and 231 (end of TM 6) to identify structural domains of rENT1 responsible for transport inhibition by NBMPR. Transplanting the amino-terminal half of rENT2 into rENT1 rendered rENT1 NBMPR-insensitive. Domain swaps within the amino-terminal halves of rENT1 and rENT2 identified two contiguous regions, TMs 3-4 (rENT1 residues 100-171) and TMs 5-6 (rENT1 residues 172-231), as the major sites of NBMPR interaction. Since NBMPR is a nucleoside analogue and functions as a competitive inhibitor of zero-trans nucleoside influx, TMs 3-6 are likely to form parts of the substrate translocation channel.  相似文献   

10.
Lactate release by astrocytes is postulated to be of importance for neuroenergetics but its regulation is poorly understood. Basigin, a chaperone protein for specific monocarboxylate transporters (MCTs), represents a putatively important regulatory element for lactate fluxes. Indeed, basigin knockdown by RNA interference in primary cultures of astrocytes partially reduced both proton-driven lactate influx and efflux. But more strikingly, enhancement of lactate efflux induced by glutamate was prevented while the effect of sodium azide was significantly reduced by treatment of cultured astrocytes with anti-basigin small interfering RNA. Enhancement of glucose utilization was unaffected under the same conditions. Basal lactate uptake and release were significantly reduced by MCT1 knockdown, even more so than with basigin knockdown, whereas glutamate-driven or sodium azide-induced enhancement of lactate release was not inhibited by either MCT1, 2, or 4 small interfering RNAs. In conclusion, MCT1 plays a pivotal role in the control of basal proton-driven lactate flux in astrocytes while basigin is only partly involved, most likely via its interaction with MCT1. In contrast, basigin appears to critically regulate the enhancement of lactate release caused by glutamate (or sodium azide) but via an effect on another unidentified transporter at least present in astrocytes in vitro.  相似文献   

11.
单羧酸转运泵基因家族研究进展   总被引:2,自引:0,他引:2  
单羧酸转运泵(monocarboxylate transporter,MCT)是哺乳动物细胞中的重要跨膜蛋白,涉及细胞的多种功能,包括胞内pH值调节及乳酸跨膜转运等.目前,已克隆出至少8个MCT亚型的cDNA,构成了哺乳动物细胞离子转运泵的一个新基因家族.各亚型具有底物和抑制剂的特异性以及组织学分布的差异性.因此,研究MCT的结构功能及调控机制,将可能为肿瘤等疾病诊治提供新的手段.  相似文献   

12.
Many solute transporters are heterodimers composed of non-glycosylated catalytic and glycosylated accessory subunits. These transporters are specifically polarized to the apical or basolateral membranes of epithelia, but this polarity may vary to fulfill tissue-specific functions. To date, the mechanisms regulating the tissue-specific polarity of heteromeric transporters remain largely unknown. Here, we investigated the sorting signals that determine the polarity of three members of the proton-coupled monocarboxylate transporter (MCT) family, MCT1, MCT3 and MCT4, and their accessory subunit CD147. We show that MCT3 and MCT4 harbor strong redundant basolateral sorting signals (BLSS) in their C-terminal cytoplasmic tails that can direct fusion proteins with the apical marker p75 to the basolateral membrane. In contrast, MCT1 lacks a BLSS and its polarity is dictated by CD147, which contains a weak BLSS that can direct Tac, but not p75 to the basolateral membrane. Knockdown experiments in MDCK cells indicated that basolateral sorting of MCTs was clathrin-dependent but clathrin adaptor AP1B-independent. Our results explain the consistently basolateral localization of MCT3 and MCT4 and the variable localization of MCT1 in different epithelia. They introduce a new paradigm for the sorting of heterodimeric transporters in which a hierarchy of apical and BLSS in the catalytic and/or accessory subunits regulates their tissue-specific polarity.  相似文献   

13.
Basigin (Bsg) is a transmembrane glycoprotein with two immunoglobulin-like domains, and forms a family with embigin and neuroplastin. In these proteins a conserved glutamic acid is present in the middle for the transmembrane domain. Bsg is also called CD147 and EMMPRIN, and the symbol for the human basigin gene is BSG. BSG is located in chromosome 19 band p13. 3. Knockout mice deficient in the Bsg gene are sterile and show various neurological abnormalities. Bsg-deficient embryos are also difficult to implant. Bsg has been found to participate in the cell-surface orientation of monocarboxylic acid transporters (MCTs) to the plasma membrane. Dysfunction of the retina in Bsg-deficient mice is ascribed to the failure of plasma membrane integration of MCTs in the tissue. Bsg is also involved in inflammatory processes and is proposed to be a receptor of cyclophilin A; it is also likely to participate in HIV infection. Bsg in tumor cells triggers the production or release of matrix metalloproteinases in the surrounding mesenchymal cells and tumor cells, thereby contributing to tumor invasion. Furthermore, the association of Bsg with integrins might be important in signaling through Bsg.  相似文献   

14.
Translocation of monocarboxylate transporters MCT1 and MCT4 to the plasma membrane requires CD147 (basigin) with which they remain tightly associated. However, the importance of CD147 for MCT activity is unclear. MCT1 and MCT4 are both inhibited by the cell-impermeant organomercurial reagent p-chloromercuribenzene sulfonate (pCMBS). Here we demonstrate by site-directed mutagenesis that removal of all accessible cysteine residues on MCT4 does not prevent this inhibition. pCMBS treatment of cells abolished co-immunoprecipitation of MCT1 and MCT4 with CD147 and enhanced labeling of CD147 with a biotinylated-thiol reagent. This suggested that CD147 might be the target of pCMBS, and further evidence for this was obtained by treatment of cells with the bifunctional organomercurial reagent fluorescein dimercury acetate that caused oligomerization of CD147. Site-directed mutagenesis of CD147 implicated the disulfide bridge in the Ig-like C2 domain of CD147 as the target of pCMBS attack. MCT2, which is pCMBS-insensitive, was found to co-immunoprecipitate with gp70 rather than CD147. The interaction between gp70 and MCT2 was confirmed using fluorescence resonance energy transfer between the cyan fluorescent protein- and yellow fluorescent protein-tagged MCT2 and gp70. pCMBS strongly inhibited lactate transport into rabbit erythrocytes, where MCT1 interacts with CD147, but not into rat erythrocytes where it interacts with gp70. These data imply that inhibition of MCT1 and MCT4 activity by pCMBS is mediated through its binding to CD147, whereas MCT2, which associates with gp70, is insensitive to pCMBS. We conclude that ancillary proteins are required to maintain the catalytic activity of MCTs as well as for their translocation to the plasma membrane.  相似文献   

15.
Embigin and basigin are highly glycosylated transmembrane glycoproteins with two immunoglobulin domains and form a subgroup in the immunoglobulin superfamily. Previous studies have demonstrated the functional significance of these molecules. In the present study, in situ hybridization analysis of their expression was performed during mouse embryogenesis. Embigin was strongly expressed in the endoderm during early postimplantation embryogenesis, and in the somite stage in the gut and visceral endoderm. Embryonic ectoderm and its derivative tissues weakly to moderately expressed this molecule. From day 10 to 15 of gestation, no embigin signal was detected. Basigin was more broadly expressed. During the organogenesis period, basigin was expressed in various epithelial tissues, brain ventricles, the spinal cord and dorsal root ganglion. The modes of expression of these two proteins throughout the egg cylinder stage correlated with the expression of the carbohydrate markers that they carry; embigin with Dolichos biflorus agglutinin binding sites and basigin with Lex antigen and more closely with fucosyltransferase IV, which forms the antigenic epitope. These findings imply that proteins with specific carbohydrate epitopes play roles in early postimplantation embryogenesis.  相似文献   

16.
The ubiquitous enzyme carbonic anhydrase isoform II (CAII) has been shown to enhance transport activity of the proton-coupled monocarboxylate transporters MCT1 and MCT4 in a non-catalytic manner. In this study, we investigated the role of cytosolic CAII and of the extracellular, membrane-bound CA isoform IV (CAIV) on the lactate transport activity of the high-affinity monocarboxylate transporter MCT2, heterologously expressed in Xenopus oocytes. In contrast to MCT1 and MCT4, transport activity of MCT2 was not altered by CAII. However, coexpression of CAIV with MCT2 resulted in a significant increase in MCT2 transport activity when the transporter was coexpressed with its associated ancillary protein GP70 (embigin). The CAIV-mediated augmentation of MCT2 activity was independent of the catalytic activity of the enzyme, as application of the CA-inhibitor ethoxyzolamide or coexpressing the catalytically inactive mutant CAIV-V165Y did not suppress CAIV-mediated augmentation of MCT2 transport activity. Furthermore, exchange of His-88, mediating an intramolecular H(+)-shuttle in CAIV, to alanine resulted only in a slight decrease in CAIV-mediated augmentation of MCT2 activity. The data suggest that extracellular membrane-bound CAIV, but not cytosolic CAII, augments transport activity of MCT2 in a non-catalytic manner, possibly by facilitating a proton pathway other than His-88.  相似文献   

17.
18.
The human equilibrative nucleoside transporter hENT1, the first identified member of the ENT family of integral membrane proteins, is the primary mechanism for the cellular uptake of physiologic nucleosides, including adenosine, and many anti-cancer nucleoside drugs. We have produced recombinant hENT1 in Xenopus oocytes and used native and engineered N-glycosylation sites in combination with immunological approaches to experimentally define the membrane architecture of this prototypic nucleoside transporter. hENT1 (456 amino acid residues) is shown to contain 11 transmembrane helical segments with an amino terminus that is intracellular and a carboxyl terminus that is extracellular. Transmembrane helices are linked by short hydrophilic regions, except for a large glycosylated extracellular loop between transmembrane helices 1 and 2 and a large central cytoplasmic loop between transmembrane helices 6 and 7. Sequence analyses suggest that this membrane topology is common to all mammalian, insect, nematode, protozoan, yeast, and plant members of the ENT protein family.  相似文献   

19.
20.
Monocarboxylate transporters (MCTs) are proton-linked membrane carriers involved in the transport of monocarboxylates such as lactate, pyruvate, as well as ketone bodies. They belong to a larger family of transporters composed of 14 members in mammals based on sequence homologies. MCTs are found in various tissues including the brain where three isoforms, MCT1, MCT2 and MCT4, have been described. Each of these isoforms exhibits a distinct regional and cellular distribution in rodent brain. At the cellular level, MCT1 is expressed by endothelial cells of microvessels, by ependymocytes as well as by astrocytes. MCT4 expression appears to be specific for astrocytes. By contrast, the predominant neuronal monocarboxylate transporter is MCT2. Interestingly, part of MCT2 immunoreactivity is located at postsynaptic sites, suggesting a particular role of monocarboxylates and their transporters in synaptic transmission. In addition to variation in expression during development and upon nutritional modifications, new data indicate that MCT expression is regulated at the translational level by neurotransmitters. Understanding how transport of monocarboxylates is regulated could be of particular importance not only for neuroenergetics but also for areas such as functional brain imaging, regulation of food intake and glucose homeostasis, or for central nervous system disorders such as ischaemia and neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号