首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNase II and RNase R are the two E. coli exoribonucleases that belong to the RNase II super family of enzymes. They degrade RNA hydrolytically in the 3' to 5' direction in a processive and sequence independent manner. However, while RNase R is capable of degrading structured RNAs, the RNase II activity is impaired by dsRNAs. The final end-product of these two enzymes is also different, being 4 nt for RNase II and 2 nt for RNase R. RNase II and RNase R share structural properties, including 60% of amino acid sequence similarity and have a similar modular domain organization: two N-terminal cold shock domains (CSD1 and CSD2), one central RNB catalytic domain, and one C-terminal S1 domain. We have constructed hybrid proteins by swapping the domains between RNase II and RNase R to determine which are the responsible for the differences observed between RNase R and RNase II. The results obtained show that the S1 and RNB domains from RNase R in an RNase II context allow the degradation of double-stranded substrates and the appearance of the 2 nt long end-product. Moreover, the degradation of structured RNAs becomes tail-independent when the RNB domain from RNase R is no longer associated with the RNA binding domains (CSD and S1) of the genuine protein. Finally, we show that the RNase R C-terminal Lysine-rich region is involved in the degradation of double-stranded substrates in an RNase II context, probably by unwinding the substrate before it enters into the catalytic cavity.  相似文献   

2.
Jain C 《Journal of bacteriology》2012,194(15):3883-3890
Escherichia coli contains multiple 3' to 5' RNases, of which two, RNase PH and polynucleotide phosphorylase (PNPase), use inorganic phosphate as a nucleophile to catalyze RNA cleavage. It is known that an absence of these two enzymes causes growth defects, but the basis for these defects has remained undefined. To further an understanding of the function of these enzymes, the degradation pattern of different cellular RNAs was analyzed. It was observed that an absence of both enzymes results in the appearance of novel mRNA degradation fragments. Such fragments were also observed in strains containing mutations in RNase R and PNPase, enzymes whose collective absence is known to cause an accumulation of structured RNA fragments. Additional experiments indicated that the growth defects of strains containing RNase R and PNPase mutations were exacerbated upon RNase PH removal. Taken together, these observations suggested that RNase PH could play a role in structured RNA degradation. Biochemical experiments with RNase PH demonstrated that this enzyme digests through RNA duplexes of moderate stability. In addition, mapping and sequence analysis of an mRNA degradation fragment that accumulates in the absence of the phosphorolytic enzymes revealed the presence of an extended stem-loop motif at the 3' end. Overall, these results indicate that RNase PH plays a novel role in the degradation of structured RNAs and provides a potential explanation for the growth defects caused by an absence of the phosphorolytic RNases.  相似文献   

3.
RNase II is a member of the widely distributed RNR family of exoribonucleases, which are highly processive 3'-->5' hydrolytic enzymes that play an important role in mRNA decay. Here, we report the crystal structure of E. coli RNase II, which reveals an architecture reminiscent of the RNA exosome. Three RNA-binding domains come together to form a clamp-like assembly, which can only accommodate single-stranded RNA. This leads into a narrow, basic channel that ends at the putative catalytic center that is completely enclosed within the body of the protein. The putative path for RNA agrees well with biochemical data indicating that a 3' single strand overhang of 7-10 nt is necessary for binding and hydrolysis by RNase II. The presence of the clamp and the narrow channel provides an explanation for the processivity of RNase II and for why its action is limited to single-stranded RNA.  相似文献   

4.
Nishio SY  Itoh T 《Plasmid》2008,59(2):102-110
Replication of the ColE2 plasmid requires a plasmid-coded initiator protein (Rep). Rep expression is controlled by antisense RNA (RNAI) against the Rep mRNA at a translational step. In this paper, we examined the effects of host RNA degradation enzymes on the degradation process of the Rep mRNA and its degradation intermediates especially those carrying the 5' untranslated region. We showed that the Rep mRNA is subjected to complex degradation pathways involving at least RNase I, RNase II, RNase III, RNase E, RNase G and PNPase. RNase II acts as a major exoribonuclease and PNPase plays a minor role. We also showed that the PcnB (polyA polymerase I) plays only a minor role in the Rep mRNA degradation process. The RNA degradation pathways of the Rep mRNA and RNAI of the ColE2 plasmid are quite different. Based on these results, we speculate that the ColE2 Rep mRNA and RNAI are endowed with individual RNA half lives required for the efficient copy number control by being subjected to different RNA degradation systems.  相似文献   

5.
RNase II is a 3'-5' exoribonuclease that processively hydrolyzes single-stranded RNA generating 5' mononucleotides. This enzyme contains a catalytic core that is surrounded by three RNA-binding domains. At its C terminus, there is a typical S1 domain that has been shown to be critical for RNA binding. The S1 domain is also present in the other major 3'-5' exoribonucleases from Escherichia coli: RNase R and polynucleotide phosphorylase (PNPase). In this report, we examined the involvement of the S1 domain in the different abilities of these three enzymes to overcome RNA secondary structures during degradation. Hybrid proteins were constructed by replacing the S1 domain of RNase II for the S1 from RNase R and PNPase, and their exonucleolytic activity and RNA-binding ability were examined. The results revealed that both the S1 domains of RNase R and PNPase are able to partially reverse the drop of RNA-binding ability and exonucleolytic activity resulting from removal of the S1 domain of RNase II. Moreover, the S1 domains investigated are not equivalent. Furthermore, we demonstrate that S1 is neither responsible for the ability to overcome secondary structures during RNA degradation, nor is it related to the size of the final product generated by each enzyme. In addition, we show that the S1 domain from PNPase is able to induce the trimerization of the RNaseII-PNP hybrid protein, indicating that this domain can have a role in the biogenesis of multimers.  相似文献   

6.
RNase R readily degrades highly structured RNA, whereas its paralogue, RNase II, is unable to do so. Furthermore, the nuclease domain of RNase R, devoid of all canonical RNA-binding domains, is sufficient for this activity. RNase R also binds RNA more tightly within its catalytic channel than does RNase II, which is thought to be important for its unique catalytic properties. To investigate this idea further, certain residues within the nuclease domain channel of RNase R were changed to those found in RNase II. Among the many examined, we identified one amino acid residue, R572, that has a significant role in the properties of RNase R. Conversion of this residue to lysine, as found in RNase II, results in weaker substrate binding within the nuclease domain channel, longer limit products, increased activity against a variety of substrates and a faster substrate on-rate. Most importantly, the mutant encounters difficulty in degrading structured RNA, pausing within a double-stranded region. Additional studies show that degradation of structured substrates is dependent upon temperature, suggesting a role for thermal breathing in the mechanism of action of RNase R. On the basis of these data, we propose a model in which tight binding within the nuclease domain allows RNase R to capitalize on the natural thermal breathing of an RNA duplex to degrade structured RNAs.  相似文献   

7.
RNase R is a processive, 3' to 5' hydrolytic exoribonuclease that together with polynucleotide phosphorylase plays an important role in the degradation of structured RNAs. However, RNase R differs from other exoribonucleases in that it can by itself degrade RNAs with extensive secondary structure provided that a single-stranded 3' overhang is present. Using a variety of specifically designed substrates, we show here that a 3' overhang of at least 7 nucleotides is required for tight binding and activity, whereas optimum binding and activity are achieved when the overhang is 10 or more nucleotides in length. In contrast, duplex RNAs with no overhang or with a 4-nucleotide overhang bind extremely poorly to RNase R and are inactive as substrates. A duplex RNA with a 10-nucleotide 5' overhang also is not a substrate. Interestingly, this molecule is bound only weakly, indicating that RNase R does not simply recognize single-stranded RNA, but the RNA must thread into the enzyme with 3' to 5' polarity. We also show that ribose moieties are required for recognition of the substrate as a whole since RNase R is unable to bind or degrade single-stranded DNA. However, RNA molecules with deoxyribose or dideoxyribose residues at their 3' termini can be bound and degraded. Based on these data and a homology model of RNase R, derived from the structure of the closely related enzyme, RNase II, we present a model for how RNase R interacts with its substrates and degrades RNA.  相似文献   

8.
RNase II is a key exoribonuclease involved in the maturation, turnover, and quality control of RNA. RNase II homologues are components of the exosome, a complex of exoribonucleases. The structure of RNase II unraveled crucial aspects of the mechanism of RNA degradation. Here we show that mutations in highly conserved residues at the active site affect the activity of the enzyme. Moreover, we have identified the residue that is responsible for setting the end product of RNase II. In addition, we present for the first time the models of two members of the RNase II family, RNase R from Escherichia coli and human Rrp44, also called Dis3. Our findings improve the present model for RNA degradation by the RNase II family of enzymes.  相似文献   

9.
G Guarneros  C Portier 《Biochimie》1990,72(11):771-777
We review recent evidence on the in vivo and in vitro mRNA degradation properties of 2 3'-exonucleases, ribonuclease II and polynucleotide phosphorylase. Although secondary structures in the RNA can act as protective barriers against 3' exonucleolytic degradation, it appears that this effect depends on the stability of these structures. The fact that RNase II is more sensitive to RNA secondary structure than PNPase, could account for some differences observed in messenger degradation by the 2 enzymes in vivo. Terminator stem-loop structures are often very stable and 3' exonucleolytic degradation proceeds only after they have been eliminated by an endonucleolytic cleavage. Other secondary structures preceding terminator stem-loop seem to contribute to mRNA stability against exonucleolytic decay.  相似文献   

10.
G Guarneros  C Portier 《Biochimie》1991,73(5):543-549
We review recent evidence on the in vivo and in vitro mRNA degradation properties of 2 3'-exonucleases, ribonuclease II and polynucleotide phosphorylase. Although secondary structures in the RNA can act as protective barriers against 3' exonucleolytic degradation, it appears that this effect depends on the stability of these structures. The fact that RNase II is more sensitive to RNA secondary structure than PNPase, could account for some differences observed in messenger degradation by the 2 enzymes in vivo. Terminator stem-loop structures are often very stable and 3' exonucleolytic degradation proceeds only after they have been eliminated by an endonucleolytic cleavage. Other secondary structures preceding terminator stem-loop seem to contribute to mRNA stability against exonucleolytic decay.  相似文献   

11.
The hok/sok system of plasmid R1, which mediates plasmid stabilization by the killing of plasmid-free cells, codes for two RNA species, Sok antisense RNA and hok mRNA. Sok RNA, which is unstable, inhibits translation of the stable hok mRNA. The 64 nt Sok RNA folds into a single stem-loop domain with an 11 nt unstructured 5' domain. The initial recognition reaction between Sok RNA and hok mRNA takes place between the 5' domain and the complementary region in hok mRNA. In this communication we examine the metabolism of Sok antisense RNA. We find that RNase E cleaves the RNA 6 nt from its 5' end and that this cleavage initiates Sok RNA decay. The RNase E cleavage occurs in the part of Sok RNA that is responsible for the initial recognition of the target loop in hok mRNA and thus leads to functional inactivation of the antisense. The major RNase E cleavage product (denoted pSok-6) is rapidly degraded by polynucleotide phosphorylase (PNPase). Thus, the RNase E cleavage tags pSok−6 for further rapid degradation by PNPase from its 3' end. We also show that Sok RNA is polyadenylated by poly(A) polymerase I (PAP I), and that the poly(A)-tailing is prerequisite for the rapid 3'-exonucleolytic degradation by PNPase.  相似文献   

12.
In Escherichia coli, REP-stabilizers are structural elements in polycistronic messages that protect 5'-proximal cistrons from 3'-->5' exonucleolytic degradation. The stabilization of a protected cistron can be an important determinant in the level of gene expression. Our results suggest that RNase E, an endoribonuclease, initiates the degradation of REP-stabilized mRNA. However, subsequent degradation of mRNA fragments containing a REP-stabilizer poses a special challenge to the mRNA degradation machinery. Two enzymes, the DEAD-box RNA helicase, RhlB and poly(A) polymerase (PAP) are required to facilitate the degradation of REP-stabilizers by polynucleotide phosphorylase (PNPase). This is the first in vivo evidence that these enzymes are required for the degradation of REP-stabilizers. Furthermore, our results show that REP degradation by RhlB and PNPase requires their association with RNase E as components of the RNA degradosome, thus providing the first in vivo evidence that this ribonucleolytic multienzyme complex is involved in the degradation of structured mRNA fragments.  相似文献   

13.
RNase R and RNase II are the two representatives from the RNR family of processive, 3′ to 5′ exoribonucleases in Escherichia coli. Although RNase II is specific for single-stranded RNA, RNase R readily degrades through structured RNA. Furthermore, RNase R appears to be the only known 3′ to 5′ exoribonuclease that is able to degrade through double-stranded RNA without the aid of a helicase activity. Consequently, its functional domains and mechanism of action are of great interest. Using a series of truncated RNase R proteins we show that the cold-shock and S1 domains contribute to substrate binding. The cold-shock domains appear to play a role in substrate recruitment, whereas the S1 domain is most likely required to position substrates for efficient catalysis. Most importantly, the nuclease domain alone, devoid of the cold-shock and S1 domains, is sufficient for RNase R to bind and degrade structured RNAs. Moreover, this is a unique property of the nuclease domain of RNase R because this domain in RNase II stalls as it approaches a duplex. We also show that the nuclease domain of RNase R binds RNA more tightly than the nuclease domain of RNase II. This tighter binding may help to explain the difference in catalytic properties between RNase R and RNase II.Ribonucleases (RNases) play important roles in RNA metabolism. They are responsible for the maturation of stable RNA and the degradation of RNA molecules that are defective or no longer required by the cell. Both maturation and degradation are initiated by endoribonucleolytic cleavage(s) and completed by the action of exoribonucleases (1). In Escherichia coli, three, relatively nonspecific, 3′ to 5′ processive exoribonucleases are responsible for degradation of RNA: RNase II, RNase R, and polynucleotide phosphorylase (PNPase).3 RNase II and PNPase appear to be primarily responsible for mRNA decay (2), although their precise functions may differ (3). However, mRNAs containing extensive secondary structure, such as repetitive extragenic palindromic sequences, are degraded by PNPase (4, 5) or RNase R (5). Likewise, degradation of highly structured regions of rRNA (6) and tRNA (7),4 is carried out by PNPase and/or RNase R. These findings suggest that PNPase and RNase R are the universal degraders of structured RNAs in vivo, leaving RNase II to act on relatively unstructured RNAs.Whether or not an RNase acts upon a particular RNA appears to depend upon the specificity of the RNase and the accessibility of the RNA to that RNase (1). Purified RNase R readily degrades both single- and double-stranded RNA molecules (5, 8), and it is the only known 3′ to 5′ exoribonuclease able to degrade through double-stranded RNA without the aid of helicase activity. To degrade RNA molecules containing double-stranded regions, RNase R requires a 3′ single-stranded overhang at least 5 nucleotides long to serve as a binding site from which degradation can be initiated (5, 8, 9).5 How RNase R then proceeds through the RNA duplex is of great interest. An important step toward elucidating the mechanism of action of RNase R is to determine the contribution that each of its domains makes to substrate binding and exoribonuclease activity.Despite differences in their physiological roles and intrinsic substrate specificities, RNase R and RNase II both belong to the widely distributed RNR family of exoribonucleases (1012). RNR family members are all large multidomain proteins with processive 3′ to 5′ hydrolytic exoribonuclease activity that share a common linear domain organization. RNase R contains two cold-shock domains (CSD1 and CSD2) near its N terminus, a central nuclease, or RNB domain, an S1 domain near the C terminus, and a low complexity, highly basic region at the C terminus (Fig. 1A). The nuclease domain contains four highly conserved sequence motifs (10, 11). Motif I contains four conserved aspartate residues that are thought to coordinate two divalent metal ions that facilitate a two-metal ion mechanism similar to that of DEDD family exoribonucleases and the proofreading domains of many polymerases (13, 14). CSDs (1517) and S1 domains (18, 19) are well known examples of RNA-binding domains. Interestingly, there are reports that both of these domains can act as nucleic acid chaperones and unwind RNA (2029), providing a possible explanation for the ability of RNase R to degrade structured RNAs. The role of the basic region at the C terminus of RNase R is unknown, but it may act as an RNA-binding domain and/or a mediator of protein-protein interactions.Open in a separate windowFIGURE 1.Linear domain organization of RNase R and RNase II proteins. The CSDs are colored in cyan and blue for CSD1 and CSD2, respectively, the nuclease domains are in green, the S1 domains are red, and the low complexity, highly basic region, found in RNase R only, is in magenta. A, RNase R. RNase R full-length is the full-length wild-type RNase R protein. RNase RΔCSDs lacks both CSD1 and CSD2. RNase RΔBasic is missing the low complexity, highly basic region. RNase RΔS1 is missing both the S1 domain and the low complexity, highly basic region. RNase RΔCSDsΔS1 consists of the nuclease domain alone. B, RNase II. RNase II full-length is the full-length wild-type RNase II protein. RNase IIΔCSDsΔS1 contains the nuclease domain alone.Crystal structures of E. coli wild-type RNase II and a D209N catalytic site mutant in complex with single-stranded RNA have recently been solved (14, 30). In these structures the two CSDs and the S1 domain come together to form an RNA-binding clamp that directs RNA to the catalytic center at the base of a narrow, basic channel within the nuclease domain (14, 30). Only single-stranded RNA can be accommodated by the RNA-binding clamp and the nuclease domain channel, which explains the single strand specificity of RNase II. It is expected that RNase R will adopt a similar structure.In this study, we determine the contribution that each of the domains of RNase R makes to RNA-binding and exoribonuclease activity. We show that the CSDs and the S1 domain are important for substrate binding, although their roles differ. Of most interest, we show that the nuclease domain alone of RNase R is sufficient to degrade through double-stranded RNA, whereas the nuclease domain of RNase II is unable to carry out this reaction. The nuclease domain of RNase R also binds RNA more tightly, which may explain the difference in catalytic properties between RNase R and RNase II.  相似文献   

14.
Nishio SY  Itoh T 《Plasmid》2008,60(3):174-180
Replication of the ColE2 plasmid requires a plasmid-coded initiator protein (Rep). Rep expression is controlled by antisense RNA (RNAI), which prevents the Rep mRNA translation. In this paper, we examined the effects of RNA degradation enzymes on the degradation pathways of RNAI of the ColE2 plasmid. In the DeltapcnB strain lacking the poly(A) polymerase I (PAP I) the RNAI degradation intermediate (RNAI(*)) accumulates much more than that in the wt strain. RNAI(*) is produced by the RNase E cleavage. RNase II and PNPase are involved in further degradation of RNAI(*) and PAP I is necessary for efficient degradation. The degradation process of ColE2 RNAI is similar to those of R1 CopA RNA and ColE1 RNAI, although the nucleotide sequences and fine secondary structures of these three RNAs are different. ColE2 RNAI is cleaved at multiple positions in the 5' end region by RNase E. The degradation pathway of ColE2 RNAI shown here is quite different from that of the ColE2 Rep mRNA which we have previously reported. In the DeltapcnB strain used for RNA analysis the copy number of the ColE2 plasmid decreases to about a half as compared with that in the isogenic wt strain.  相似文献   

15.
16.
Degradation intermediates of the estrogen-regulated apolipoprotein (apo) II mRNA were identified by S1 nuclease mapping and primer extension analysis. S1 mapping of poly(A)-RNA detected a series of mRNAs truncated at specific sites in the 3'-noncoding region. Many of these sites were also detected by primer extension analysis indicating that truncated molecules resulted from endonucleolytic cleavage in the 3'-noncoding region. Identical cleavage sites were seen with RNA from estrogen-treated animals or from animals withdrawn from hormone under conditions where apoII mRNA degraded in the slow (t1/2 = 13 h) or rapid (t1/2 = 1.5 h) decay mode. No differences were seen in poly(A) tail length or heterogeneity among these conditions. These results indicate that the estrogen-induced alteration in apoII mRNA turnover does not involve a new pathway of degradation, but, more likely, involves an increased targeting of the mRNA for degradation by a preexisting pathway. These data are consistent with a mechanism in which the initial step in apoII mRNA degradation is an endonucleolytic cleavage in the 3'-noncoding region without prior removal of the poly(A) tail. The endonucleolytic cleavage sites occurred predominantly at 5'-AAU-3' or 5'-UAA-3' trinucleotides found in single-stranded domains in a secondary structure model of the naked mRNA (Hwang, S-P. L., Eisenberg, M., Binder, R., Shelness, G. S., and Williams, D. L. (1989) J. Biol. Chem. 264, 8410-8418). The structure of the 3'-noncoding region in polyribosomal messenger ribonucleoprotein was examined by titrations of liver homogenates with dimethyl sulfate and cobra venom RNase. The results suggest that the typical cleavage site is a 5'-AAU-3' or 5'-UAA-3' trinucleotide in an accessible single-stranded loop domain. Single-stranded domains alone or accessible domains alone are not sufficient for cleavage. Similarly, 5'-AAU-3' or 5'-UAA-3' trinucleotides alone are not sufficient for cleavage. Localization of these trinucleotides to accessible single-stranded domains in the polyribosomal messenger ribonucleoprotein may provide the specificity for cleavage during targeted degradation.  相似文献   

17.
18.
Mechanisms of mRNA decay in bacteria: a perspective   总被引:100,自引:0,他引:100  
J G Belasco  C F Higgins 《Gene》1988,72(1-2):15-23
  相似文献   

19.
RNase J is an essential enzyme in Bacillus subtilis with unusual dual endonuclease and 5'-to-3' exonuclease activities that play an important role in the maturation and degradation of mRNA. RNase J is also a component of the recently identified "degradosome" of B. subtilis. We report the crystal structure of RNase J1 from B. subtilis to 3.0?? resolution, analysis of which reveals it to be in an open conformation suitable for binding substrate RNA. RNase J is a member of the β-CASP family of zinc-dependent metallo-β-lactamases. We have exploited this similarity in constructing a model for an RNase J1:RNA complex. Analysis of this model reveals candidate-stacking interactions with conserved aromatic side chains, providing a molecular basis for the observed enzyme activity. Comparisons of the B. subtilis RNase J structure with related enzymes reveal key differences that provide insights into conformational changes during catalysis and the role of the C-terminal domain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号