首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficiency of an original approach to involvement of the valuable genetic pool of wild diploid potato species from Mexico is estimated. The essence of this method is in generation of dihaploids (2n = 2x = 24) of tetraploid somatic hybrids (2n = 4x = 48) followed by backcrossing with dihaploids of Solanum tuberosum. A haploid producer, S. phureja IvP35, was used to generate ten dihaploids of S. tuberosum + S. pinnatisectum, all of which crossed with fertile S. tuberosum dihaploids and developed plump viable seeds. This gives the possibility of an efficient introgression of the genes valuable for breeding from wild species to the bred plants at a diploid level, which has several advantages compared with the corresponding procedure at a tetraploid level. A part of the dihaploids produced was compatible (the pollen tubes reached the ovary) with diploid and tetraploid forms of S. pinnatisectum; however, no viable seeds were developed. The attempt to generate the dihaploids of S. tuberosum + S. bulbocastanum somatic hydrides using the haploid producer S. phureja IvP35 was unsuccessful.  相似文献   

2.
T Gavrilenko  J Larkka  E Pehu  V M Rokka 《Génome》2002,45(2):442-449
GISH (genomic in situ hybridization) was applied for the analysis of mitotic chromosome constitutions of somatic hybrids and their derivatives between dihaploid clones of cultivated potato (Solanum tuberosum L.) (2n = 2x = 24, AA genome) and the diploid, non-tuberous, wild species Solanum brevidens Phil. (2n = 2x = 24, EE genome). Of the primary somatic hybrids, both tetraploid (2n = 4x) and hexaploid (2n = 6x) plants were found with the genomic constitutions of AAEE and AAEEEE, respectively. Androgenic haploids (somatohaploids) derived from the tetraploid somatic hybrids had the genomic constitutions of AE (2n = 2x = 24) and haploids originating from the hexaploid hybrids were triploid AEE (2n = 3x = 33 and 2n = 3x = 36). As a result of subsequent somatic hybridization from a fusion between dihaploid S. tuberosum (2n = 2x = 24, genome AA) and a triploid somatohaploid (2n = 3x = 33, genome AEE), second-generation somatic hybrids were obtained. These somatic hybrids were pentaploids (2n = 5x, genome AAAEE), but had variable chromosome numbers. GISH analysis revealed that both primary and second-generation somatic hybrids had lost more chromosomes of S. brevidens than of S. tuberosum.  相似文献   

3.
Solanum acaule Bitt., a wild potato species, is closely related to cultivated potato (Solanum. tuberosum L.). Incorporation of desirable traits from allotetraploid [2n=4x=48, 2 endosperm balance number (EBN)] S. acaule (acl) into autotetraploid (2n=4x=48, 4EBN) S. tuberosum (tbr) is difficult due to incongruity boundaries. In this study, three hybrid combinations, each with a specific genome constitution, were produced through protoplast fusion: (1) hexaploid 2x acl (+) 4x tbr, (2) tetraploid 2x acl (+) 2x tbr, and (3) hexaploid 4x acl (+) 2x tbr hybrids. In terms of glycoalkaloid aglycones, the hybrids produced demissidine, tomatidine and solanidine, similarly to the S. acaule parental species, but S. tuberosum synthesised only solanidine. Inoculations with Clavibacter michiganensis ssp. sepedonicus (Cms), which is the causal agent of bacterial ring rot in potato, yielded significantly lower total glycoalkaloid aglycone accumulation both in S. acaule plants and in interspecific hybrids in comparison with the corresponding mock-inoculated plants. However, in S. tuberosum the aglycone levels were either higher or unchanged as a result of infection by Cms. To incorporate the desirable traits of the interspecific somatic hybrids into 4EBN S. tuberosum, sexual backcrosses were carried out. The hexaploid 4x acl (+) 2x tbr hybrids with the hypothetical 4EBN showed the greatest capacity to undergo backcrosses with S. tuberosum.  相似文献   

4.
Andigena potatoes (Solanum tuberosum L. subsp. andigena Hawkes) (2n = 4x = 48) are important, native-farmer-selected cultivars in the Andes, which form a primary gene pool for improving a worldwide grown potato (S. tuberosum subsp. tuberosum). To elucidate the origin of Andigena, 196 Andigena accessions were compared with 301 accessions of 33 closely related cultivated and wild species using several types of chloroplast DNA (ctDNA) markers and nuclear DNA (nDNA) restriction fragment length polymorphism (RFLP) markers. Fourteen ctDNA types (haplotypes) and 115 RFLP bands were detected in Andigena, of which the main haplotypes and frequent RFLP bands were mostly shared with a cultivated diploid species, S. stenotomum Juz. et Buk. Principal component analysis of nDNA polymorphisms revealed a progressive and continuous variation from Peruvian wild species with C-type ctDNA to a group of wild species having S-type ctDNA in its variation range (S. bukasovii, S. canasense, S. candolleanum, and S. multidissectum), to cultivated diploid potatoes (S. phureja and S. stenotomum), and to cultivated tetraploid potatoes (Andigena and Chilean S. tuberosum subsp. tuberosum). These results suggest that the initial Andigena population arose with multiple origins exclusively from S. stenotomum. The overall evolutionary process toward the present-day Andigena was discussed.  相似文献   

5.
The present study reports the chromosome number of 12 accessions belonging to 10 species of Salvia from the Sichuan Province in China. Most accessions have the chromosome number 2n=2x=16. However, three species ( S. evansiana, S. przewalskii and S. brevilabra ) are tetraploid with a chromosome number of 2n=4x=32. A B-chromosome was observed in S. tricuspis . The basic chromosome number x=8 was inferred for all accessions studied. The chromosome number of all the species was determined for the first time, except for S. evansiana, S. przewalskii , S. flava and S. miltiorrhiza . The chromosomes in this genus are mostly small (0.46–2.94 μm). The small size of the chromosomes, together with their unclear centromeres, has hampered a detailed karyotype analysis.  相似文献   

6.
The cultivated potato Solanum tuberosum Dunal has many wild related species with desirable traits. Some of these wild tetraploids have disomic chromosome pairing, ready selfing with little inbreeding depression, but have strong crossing barriers with cultivars. They hybridize most easily with 2EBN forms (which include most diploid species). Chromosome doubling to the 8x level, use of 2n gametes, use of 2n gametes of 4x-2x triploid hybrids, and embryo rescue have been proposed to overcome the crossability barrier of these species with S. tuberosum. In this study, 2x S. commersonii (cmm) was used as a bridge species with S. acaule and series Longipedicellata species. Synthetic tetraploid 4x-cmm crossed readily to disomic 4x species, resulting in fertile F1 and F2 hybrids. Some of these had 2n gametes, which enabled direct crossing to tuberosum, resulting in 6x hybrids. The benefits of this scheme are (i) hybrids are relatively fertile, so many progeny may be produced for selection at each step, (ii) hybridization with cmm results in 2n gametes needed for crossing to tuberosum, and breaks up restricted recombination within disomic genomes, and (iii) simple techniques and tools are employed.  相似文献   

7.
Microsporogenesis was analyzed in five accessions of Brachiaria dictyoneura presenting x = 6 as the basic chromosome number. All accessions were tetraploid (2n = 4x = 24) with chromosome pairing in bi-, tri-, and quadrivalents. The recorded meiotic abnormalities were those typical of polyploids, including precocious chromosome migration to the poles, laggard chromosomes, and micronucleus formation. The frequency of these abnormalities, however, was lower than those reported for other polyploid accessions previously analyzed for other Brachiaria species. Cell fusion and absence of cytokinesis were also recorded in some accessions, leading to restitutional nucleus formation in some cells. Genetically unbalanced microspores, binucleate, and 2n microspores were found among normal meiotic products as results from these abnormalities. The limitation in using these accessions as pollen donor in interspecific crosses with sexual species with x = 7 or x = 9 in breeding programs is discussed.  相似文献   

8.
Y Samitsu  K Hosaka 《Génome》2002,45(3):577-583
Clones with 24 or 25 chromosomes were obtained by pollinating an Andean cultivated tetraploid potato (Solanum tuberosum subsp. andigena clone 94H94, 2n = 4x = 48) with the Solanum phureja haploid-inducer clone 1.22. Their genetic composition was analyzed in an RAPD assay using 135 decamer primers and in an RFLP assay using 45 single-copy DNA probes. In total, 22 RAPD and 20 RFLP markers were found to be specific to S. phureja. None of these markers were found in the 24- and 25-chromosome clones. RFLP genotypes for the 45 RFLP loci were further determined for each clone. Genotypes of the 24-chromosome clones were characterized using two alleles randomly selected from four alleles of the parental tetraploid clone for almost all RFLP loci. Five 25-chromosome clones had extra alleles for all of the RFLP loci of chromosomes 4, 8, 10, 11, and 12, respectively, suggesting primary trisomy for one of these chromosomes. Clones with genotypes showing double reduction were also identified. Therefore, the obtained clones likely originated from random samples of female gametes, and hence are euhaploids or aneuhaploids of S. tuberosum subsp. andigena, strongly supporting parthenogenesis to be a primary mechanism for haploid induction in potato.  相似文献   

9.
The genus Brachiaria comprises more than 100 species and is the single most important genus of forage grass in the tropics. Brachiaria brizantha, widely used in Brazilian pastures for beef and dairy production, is native to tropical Africa. As a subsidy to the breeding program underway in Brazil, cytological studies were employed to determine the chromosome number and to evaluate microsporogenesis in 46 accessions of this species available at Embrapa Beef Cattle (Brazil). Thirty-four accessions presented 2n = 36; seven had 2n = 45, and five had 2n = 54 chromosomes. Based on the higher level of chromosome association observed in diakinesis, in tetra-, penta-, and hexavalents, respectively, it was concluded that they are derived from x = 9; consequently, these accessions are tetra- (2n = 4x = 36), penta- (2n = 5x = 45), and hexaploids (2n = 6x = 54). The most common meiotic abnormalities were irregular chromosome segregation due to polyploidy. Chromosome stickiness, abnormal cytokinesis, non-congressed bivalents in metaphase I and chromosomes in metaphase II, and chromosome elimination were recorded at varying frequencies in several accessions. The mean percentage of meiotic abnormalities ranged from 0.36 to 95.76%. All the abnormalities had the potential to affect pollen viability by generating unbalanced gametes. Among the accessions, only the tetraploid ones with less than 40% of abnormalities are suitable as pollen donors in intra- and interspecific crosses. Currently, accessions with a high level of ploidy (5 and 6n) cannot be used as male genitors in crosses because of the lack of sexual female genitors with the same levels of ploidy.  相似文献   

10.
Segregation of restriction fragment length polymorphism (RFLP) loci was monitored to determine the degree of homeologous pairing and recombination in a hexaploid somatic hybrid, A206, the result of protoplast fusion between Solanum tuberosum (PI 203900, a tetraploid cultivated potato) and Solanum brevidens (PI 218228), a diploid, sexually incompatible, distant relative harboring several traits for disease resistance. Somatic hybrid A206 was crossed to Katahdin, a tetraploid potato cultivar, to generate a segregating population of pentaploid progeny. Although the clones of the tetraploid S. tuberosum lines PI 203900 and Katahdin were highly polymorphic, the diploid S. brevidens clone was homozygous at all but two of the tested RFLP loci. Thus, homeologous recombination could be detected only when S. tuberosum and S. brevidens chromosomes paired and the S. brevidens homologs then segregated into separate gametes. A bias toward homologous pairing was observed for all 12 chromosomes. At least four and perhaps six chromosomes participated in homologous pairing only; each of 24 progeny contained all S. brevidens-derived RFLP markers for chromosomes 4, 8, 9 and 10. The remaining six chromosomes paired with their homolog(s) about twice as often as expected if hexaploid pairings were completely random. Where detectable with RFLPs, homeologous recombinations (both single and double) occurred at a frequency of 1.31 per chromosome. Cytological observations of meiosis I in the somatic hybrid indicated that homeologous pairing had occurred. Enhanced recombinational activity was observed for chromosome 2. A specific small deletion from chromosome 4 was detected in A206 and 11 other somatic hybrids out of 14 screened. These hybrids represent 13 independent fusion events between the same clones of S. brevidens and S. tuberosum. In one instance, this deletion occurred in one of two plants resulting from the same callus, indicating that the loss occurred in culture after fusion had taken place. It is possible that this deletion contributes to somaclonal variation.  相似文献   

11.
Medicago truncatula (barrel medic) has emerged as a model legume and accession A17 is the reference genotype selected for the sequencing of the genome. In the present study we compare the A17 chromosomal configuration with that of other accessions by examining pollen viability and genetic maps of intraspecific hybrids. Hybrids derived from crosses between M. truncatula accessions, representative of the large genetic variation within the germplasm collection, were evaluated for pollen viability using Alexander's stain. Genetic maps were generated for the following crosses: SA27063 x SA3054 (n = 94), SA27063 x A17 (n = 92), A17 x Borung (n = 99) and A17 x A20 (n = 69). All F(1) individuals derived from crosses involving A17 showed 50% pollen viability or less. Examination of the recombination frequencies between markers of chromosomes 4 and 8 revealed an apparent genetic linkage between the lower arms of these chromosomes in genetic maps derived from A17. Semisterility and unexpected linkage relationship are both good indicators of a reciprocal translocation. The implications of the A17 distinctive chromosomal rearrangement on studies of genetic mapping, genome sequencing and synteny between species are discussed.  相似文献   

12.
Summary Tetraploid (2n=4x=48) 2EBN Mexican wild species in the series Longipedicellata, which consists of Solanum fendleri, S. hjertingii, S. papita, S. polytrichon, and S. stoloniferum, were crossed with two 2EBN cultivated diploid (2n=2x=24) clones. The resulting triploid hybrids (2n=3x=36) produced 2n pollen (triplandroids) by the mechanism of parallel orientation of anaphase II spindles. The percentage of stainable pollen in 520 triploids ranged between 0 and 23.5%, with a mean of 2.7%. Triploids producing between 13.0 and 23.5% stainable pollen were crossed as staminate parents to the tetraploid cultivars, resulting in abundant pentaploid (2n=5x=60) and near-pentaploid hybrid progeny. Crosses of triploids with lower percentage of stainable pollen as pollen parent to the tetraploid cultivars did not yield fruit, unless rescue pollen from a tetraploid cultivar was added 2 days later. Pentaploid hybrids were selected among selfed tetraploid progenies using morphological and isoxyme markers transmitted from their cultivated diploid parents. These pentaploid hybrids were vigorous and had uniformly sterile pollen. They were female fertile and were crossed with tetraploid cultivars, yielding an average of 19 seeds per fruit. Triplandroids provide the opportunity of transferring 2EBN tetraploid Mexican wild species in the series Longipedicellata germ plasm into the 4EBN cultivated potatoes.Cooperative investigations of the ARS, USDA, and the Washington State University Agricultural Research Center, Prosser, WA 99350, USA. H/LA Paper No. 90-03, College of Agriculture and Home Economies Research Center, Washington State University, Pullman, WA 99164, USA  相似文献   

13.
Summary Crosses made between tetraploid and diploid, 2n pollen-producing species directly transfer from one-half to the entire diploid genome from the diploid to the tetraploid level, depending on the mechanism of 2n pollen formation and the amount of crossing-over that occurs. Tetraploid plants that result from tetraploid x diploid hybridizations can be further utilized in a breeding program. It is postulated that preferential pairing between homologous chromosomes derived from the original tetraploid or diploid parent occurs in the tetraploid x diploid hybrid. Depending on the genetic divergence of the species involved, preferential pairing of homologous chromosomes may range from zero to one. Theoretical estimates of the amount of preferential pairing and the standard errors of these estimates are derived for cases where the diploid parent produces 2n gametes by either a first division or a second division restitution mechanism.  相似文献   

14.
The possibility to obtain diploid hybrids by pollination of allotetraploid wild potato species Solanum acaule and S. stoloniferum plants with fertile pollen of S. tuberosum dihaploids was demonstrated for the first time. Dihaploid hybrids have arisen with comparatively high frequency (from 12.5 to 33.3%). They were characterized by high regularity of meiosis and high fertility. They easily crossed with S. tuberosum dihaploids, forming viable progeny. This seems prospective for effective introgression of valuable genetic gene pool of wild allotetraploid potato species in breeding material of S. tuberosum on the diploid level.  相似文献   

15.
Chromosome numbers and fertility studies of 73 male and 30 female flowering germplasm accessions of Dioscorea alata L. were carried out. All males were tetraploids showing the same chromosome number (n=20 or 2n=40) and were pollen fertile (10.9–96.2%), most of them being highly fertile. Among the female the majority were higher ploids (hexa-and octoploids; 2n=60 and 80) and sexually completely sterile. There were only two tetraploid female accessions which were sexually fertile. Pollination studies revealed that seed sterility in D. alata was due to female sterility associated with the occurrence of higher levels of ploidy. The female sex-limited occurrence of higher polyploidy and sterility observed in D. alata is a curious situation among dioecious higher plants.  相似文献   

16.
The genus Lolium comprises several species of economical importance in temperate countries, mostly due to their high nutritional value and adaptability to cold environments, including southern regions of Brazil. Recently, several diploid cultivars and populations, as well as synthetic tetraploid cultivars have been explored. In order to viabilize or to direct crossings, it is important that the accessions present regular meiosis, thus, producing viable pollen grains. In this way, this study aimed at investigating the meiosis of nine accessions of Lolium multiflorum used in breeding programs, seeking to evaluate its viability in future crossings. The meiosis of diploid plants (2n?=?2×?=?14) is more regular than the artificially tetraploidized genotypes (2n?=?4×?=?28). In the tetraploids, univalent, bivalent, and multivalent configurations were observed. The irregularities were associated to mixoploidy, irregular segregation of chromosomes, spindle disorders, asynchrony, micronuclei, and cellular fusion and formation of syncyte. The abnormalities affected the meiotic index of tetraploid cultivars, characterizing them as unstable. Nevertheless, both diploid and tetraploid genotypes are considered able to participate in crossings because, although there are abnormalities, they do not occur at levels that could affect the production of viable pollen grains.  相似文献   

17.
Potato (Solanum tuberosum L.) and tomato (Lycopersicon esculentum) are members of the Solanaceae (nightshade family) and have the same basic chromosome number (x = 12). However, they cannot be cross-hybridized and, until now, it was unknown how conserved the gene order might be between these two species. We report herein the construction of a genetic linkage map of potato chromosomes based on genomic and cDNA clones from tomato. The potato map was drawn from segregation data derived from the interspecific cross S. phureja X (S. tuberosum X S. chacoense) (2n = 2x = 24), and consists of 135 markers defining 12 distinct linkage groups. Nearly all of the tomato probes tested hybridized to potato DNA, and in most cases, the copy number of the employed clones was the same in both species. Furthermore, all clones mapped to the same linkage group in both species. For nine chromosomes, the order of loci appears to be identical in the two species, while for the other three, intrachromosomal rearrangements are apparent, all of which appear to be paracentric inversions with one breakpoint at or near the centromere. These results are consistent with cytogenetic theory, previously untested in plants, which predicts that paracentric inversions will have the least negative effect on fitness and thus be the most likely form of chromosomal rearrangements to survive through evolutionary time. Linkage maps based on a common set of restriction fragment length polymorphism markers provide a basis for uniting the previously separate disciplines of tomato and potato genetics. Using these maps, it may now be possible to test theories about homologies or orthologies of other genes, including those coding for disease resistance and stress tolerances.  相似文献   

18.
Z W Liu  R R Wang 《Génome》1993,36(1):102-111
To elucidate the genome constitutions of the tetraploid (2n = 4x = 28) species Elytrigia caespitosa, Lophopyrum nodosum, and Pseudoroegneria geniculata ssp. scythica and the hexaploid (2n = 6x = 42) Thinopyrum intermedium, meiotic pairing was studied in these species as well as 10 hybrids. Karyotype analysis with aceto-orcein stained root-tip cells was performed for the four species and the hybrids of T. bessarabicum with E. caespitosa, P. geniculata ssp. scythica, and T. intermedium. Karyotype analysis by Giemsa C-banding was carried out with the three tetraploid species and the two triploid hybrids involving T. bessarabicum. The species behaved as strict allopolyploids. All hybrids were male sterile with few stainable pollen grains. It is concluded from the results that the three tetraploid species have the genome formula JeJeSS and T. intermedium has the formula JeJeJeJeSS. The chromosomes of the Je and S genomes in these species had C-banding patterns differing from each other and from those of the extant diploid species. Based on these findings, the four species investigated should be placed in the same genus or the same section of a genus. However, new combinations are not proposed at this time pending future taxonomic investigation of the genome constitution of Elytrigia repens (L.) Nevski.  相似文献   

19.
The existence of neopolyploidy in prairie cordgrass (Spartina pectinata Link) has been documented. The neohexaploid was discovered coexisting with tetraploids in central Illinois, and has been reported to exhibit competitiveness in the natural environment. It is hypothesized that the natural tetraploid cytotype produced the hexaploid cytotype via production of unreduced gametes. Meiosis I chromosome pairing was observed in tetraploid (2n?=?4x?=?40), hexaploid (2n?=?6x?=?60), and octoploid (2n?=?8x?=?80) accessions and the percentage of meiotic abnormality was determined. Significant differences in meiotic abnormality exist between tetraploid, hexaploid, and octoploid cytotypes. An elevated incidence of abnormal, predominantly trivalent pairing in the neohexaploid suggests that it may possess homologous chromosomes in sets of three, in contrast to the tetraploid and octoploid cytotypes, which likely possess homologous chromosomes in sets of two. Abnormal chromosome pairing in the hexaploid may result in unequal allocation of chromosomes to daughter cells during later stages of meiosis. Chromosome pairing patterns in tetraploid, hexaploid, and octoploid cytotypes indicate genome compositions of AABB, AAABBB, and AABBA′A′B′B′, respectively.  相似文献   

20.
J Song  F Dong  J Jiang 《Génome》2000,43(1):199-204
Lack of reliable techniques for chromosome identification is the major obstacle for cytogenetics research in plant species with large numbers of small chromosomes. To promote molecular cytogenetics research of potato (Solanum tuberosum, 2n = 4x = 48) we developed a bacterial artificial chromosome (BAC) library of a diploid potato species S. bulbocastanum. The library consists of 23,808 clones with an average insert size of 155 kb, and represents approximately 3.7 equivalents to the potato genome. The majority of the clones in the BAC library generated distinct signals on specific potato chromosomes using fluorescence in situ hybridization (FISH). The hybridization signals provide excellent cytological markers to tag individual potato chromosomes. We also demonstrated that the BAC clones can be mapped to specific positions on meiotic pachytene chromosomes. The excellent resolution of pachytene FISH can be used to construct a physical map of potato by mapping molecular marker-targeted BAC clones on pachytene chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号