首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A variety of resistance training interventions are used to improve field sport acceleration (e.g., free sprinting, weights, plyometrics, resisted sprinting). The effects these protocols have on acceleration performance and components of sprint technique have not been clearly defined in the literature. This study assessed 4 common protocols (free sprint training [FST], weight training [WT], plyometric training [PT], and resisted sprint training [RST]) for changes in acceleration kinematics, power, and strength in field sport athletes. Thirty-five men were divided into 4 groups (FST: n = 9; WT: n = 8; PT: n = 9; RST: n = 9) matched for 10-m velocity. Training involved two 60-minute sessions per week for 6 weeks. After the interventions, paired-sample t-tests identified significant (p ≤ 0.05) within-group changes. All the groups increased the 0- to 5-m and 0- to 10-m velocity by 9-10%. The WT and PT groups increased the 5- to 10-m velocity by approximately 10%. All the groups increased step length for all distance intervals. The FST group decreased 0- to 5-m flight time and step frequency in all intervals and increased 0- to 5-m and 0- to 10-m contact time. Power and strength adaptations were protocol specific. The FST group improved horizontal power as measured by a 5-bound test. The FST, PT, and RST groups all improved reactive strength index derived from a 40-cm drop jump, indicating enhanced muscle stretch-shortening capacity during rebound from impacts. The WT group increased absolute and relative strength measured by a 3-repetition maximum squat by approximately 15%. Step length was the major limiting sprint performance factor for the athletes in this study. Correctly administered, each training protocol can be effective in improving acceleration. To increase step length and improve acceleration, field sport athletes should develop specific horizontal and reactive power.  相似文献   

2.
Physiological, anthropometric, and power profiling data were retrospectively analyzed from 4 elite taekwondo athletes from the Australian National Olympic team 9 weeks from Olympic departure. Power profiling data were collected weekly throughout the 9-week period. Anthropometric skinfolds generated a lean mass index (LMI). Physiological tests included a squat jump and bench throw power profile, bleep test, 20-m sprint test, running VO2max test, and bench press and squat 3 repetition maximum (3RM) strength tests. After this, the athletes power, velocity, and acceleration profile during unweighted squat jumps and single-leg jumps were tracked using a linear position transducer. Increases in power, velocity, and acceleration between weeks and bilateral comparisons were analyzed. Athletes had an LMI of 37.1 ± 0.4 and were 173.9 ± 0.2 m and 67 ± 1.1 kg. Relatively weaker upper body (56 ± 11.97 kg 3RM bench press) compared to lower body strength (88 ± 2.89 kg 3RM squat) was shown alongside a VO2max of 53.29 ml(-1)·min(-1)·kg, and a 20-m sprint time of 3.37 seconds. Increases in all power variables for single-leg squat and squat jumps were found from the first session to the last. Absolute peak power in single-leg squat jumps increased by 13.4-16% for the left and right legs with a 12.9% increase in squat jump peak power. Allometrically scaled peak power showed greater increases for single-leg (right leg: 18.55%; left: 23.49%) and squat jump (14.49%). The athlete's weight did not change significantly throughout the 9-week mesocycle. Progressions in power increases throughout the weeks were undulating and can be related to the intensity of the prior week's training and athlete injury. This analysis has shown that a 9-week mesocycle before Olympic departure that focuses on core lifts has the ability to improve power considerably.  相似文献   

3.
Performance in many team sports is partially dependent on the ability to perform repeatedly at high intensity. Previous research demonstrates that capsaicin (CAP) has physiological and metabolic effects that could influence exercise performance and inflammation. The purpose of this study was to investigate the influence of CAP on performance of and the interleukin-6 (IL-6) response to repeated sprints. Nineteen healthy male experienced athletes, age 18-30 years, participated in a placebo (PCB)-controlled, crossover study. During 1 trial, they consumed 3 g·d(-1) cayenne (25.8 mg·d(-1) CAP) and the other a PCB for days. Directly after the supplementation period, they completed a repeated sprint test (RST) consisting of 15 30-m maximal effort sprints on 35-second intervals with sprint times measured via an electronic dual-beam timing system. Fasted blood draws for IL-6 were taken at baseline before supplementation, 45 minute pre-RST, and immediately post-RST. Rate of perceived exertion (RPE), muscle soreness (MS), and gastrointestinal distress (GD) for 5 symptom subscales were measured 1-minute pretest, during, posttest, and 1-minute posttest. The MS was additionally measured for 3-day posttest. Relative to the PCB, CAP significantly increased the sum of ratings of GD symptoms by 6.3-fold. There was no difference between treatments in fastest or mean sprint time, fatigue, IL-6 response, RPE, or MS. In summary, CAP did not influence repeated sprint performance or the IL-6 response but caused substantial GD. The CAP is not recommended for athletes involved in repeated sprinting.  相似文献   

4.
The purpose of this study was to examine the effect of 10 weeks' 40-m repeated sprint training program that does not involve strength training on sprinting speed and repeated sprint speed on young elite soccer players. Twenty young well-trained elite male soccer players of age (±SD) 16.4 (±0.9) years, body mass 67.2 (±9.1) kg, and stature 176.3 (±7.4) cm volunteered to participate in this study. All participants were tested on 40-m running speed, 10 × 40-m repeated sprint speed, 20-m acceleration speed, 20-m top speed, countermovement jump (CMJ), and aerobic endurance (beep test). Participants were divided into training group (TG) (n = 10) and control group (CG) (n = 10). The study was conducted in the precompetition phase of the training program for the participants and ended 13 weeks before the start of the season; the duration of the precompetition period was 26 weeks. The TG followed a Periodized repeated sprint training program once a week. The training program consisted of running 40 m with different intensities and duration from week to week. Within-group results indicate that TG had a statistically marked improvement in their performance from pre to posttest in 40-m maximum sprint (-0.06 seconds), 10 × 40-m repeated sprint speed (-0.12 seconds), 20- to 40-m top speed (-0.05 seconds), and CMJ (2.7 cm). The CG showed only a statistically notable improvement from pre to posttest in 10 × 40-m repeated sprint speed (-0.06 seconds). Between-group differences showed a statistically marked improvement for the TG over the CG in 10 × 40-m repeated sprint speed (-0.07 seconds) and 20- to 40-m top speed (-0.05 seconds), but the effect of the improvement was moderate. The results further indicate that a weekly training with repeated sprint gave a moderate but not statistically marked improvement in 40-m sprinting, CMJ, and beep test. The results of this study indicate that the repeated sprint program had a positive effect on several of the parameters tested. However, because the sample size in this study is 20 participants, the results are valid only for those who took part in this study. Therefore, we advice to use repeated sprint training similar to the one in this study only in periods where the players have no speed training included in their program. Furthermore, the participants in this study should probably trained strength, however, benefits were observed even without strength training is most likely to be caused by the training specificity.  相似文献   

5.
To examine the physiological strain associated with hypoxic high intensity interval training (HHIT), 8 highly trained young runners (age, 18.6 ± 5.3 years) randomly performed, 5 × 3-minute intervals in either normoxic (N, 90% of the velocity associated with VO(2max), vVO(2max)) or hypoxic (H, simulated 2,400-m altitude, 84% of νVO(2max)) conditions. Cardiorespiratory (ventilation [V(E)], oxygen consumption [V(O2)], heart rate [HR], oxygen saturation [SpO(2)]), rating of central perceived exertion (RPE(C)) responses, changes in neutrophils, erythropoietin (EPO), blood lactate ([La]) and, bicarbonate ([HCO(-)(3)]), vagal-related indices of HR variability (natural logarithm of the square root of the mean of the sum of the squares of differences [Ln rMSSD]) and maximal sprint and jump performances were compared after each session. Compared with N, H was associated with similar V(E) (Cohen's d ± 90% confidence limits, 0.0 ± 0.4, with % chances of higher/similar/lower values of 15/61/24) but at least lower VO(2) (-0.8 ± 0.4, 0/0/100), HR (-0.4 ± 0.4, 1/21/78), and SpO(2) (-1.8 ± 0.4, 0/0/100). Rating of perceived exertion was very likely higher (+0.5 ± 0.4, 92/8/0). Changes in [HCO(3)] (-0.6 ± 0.8, 5/13/83), [La] (+0.2 ± 0.4, 52/42/5), and EPO (+0.2 ± 0.4, 55/40/5) were at least possibly greater after H compared with those after N, whereas changes in neutrophils were likely lower (-0.5 ± 0.7, 4/15/81). Changes in 20-m sprint time (+0.20 ± 0.23, 49/50/1) were possibly lower after H. There was no clear difference in the changes in Ln rMSSD (+0.2 ± 1.7, 48/18/34) and jump (+0.3 ± 0.9, 60/25/15). In conclusion, although perceived as harder, HHIT is not associated with an exaggerated physiological stress in highly trained young athletes. The present results also confirm that HHIT may not be optimal for training both the cardiorespiratory and neuromuscular determinants of running performance in this population.  相似文献   

6.
This study aimed to investigate the effects of immediate postgame recovery interventions (seated rest, supine electrostimulation, low-intensity land exercises, and water exercises) on anaerobic performance (countermovement jump [CMJ], bounce jumping, 10-m sprint), hormones (salivary cortisol, urinary catecholamines), and subjective ratings (rate of perceived exertion [RPE], leg muscle pain, Questionnaire of Recovery Stress for Athletes [RestQ Sport], 10-point Likert scale), and hours of sleep of futsal players. Heart rate (HR), blood lactate, and RPE were used to evaluate the intensity of 4 futsal games in 10 players using a crossover design (P < 0.05), randomly allocating athletes to 1 of the 4 recovery interventions at the end of each game. No significant difference emerged between HR, blood lactate, RPE, and level of hydration of the games. A significant difference (P < 0.001) between games emerged for total urinary catecholamines, with an increase from the first to the second game and a gradual reduction up to the fourth game. After the game, significant reductions in CMJ (P < 0.001) and 10-m sprints (P < 0.05) emerged. No significant difference was found between recovery interventions for anaerobic performances, hormones, muscle pain, and RestQ Sport. Even though a well-balanced diet, rehydration, and controlled lifestyle might represent a sufficient recovery intervention in young elite athletes, the players perceived significantly increased benefit (P < 0.01) from the electrostimulation (7.8 +/- 1.4 points) and water exercises (7.6 +/- 2.1 points) compared to dry exercises (6.6 +/- 1.8 points) and seated rest (5.2 +/- 0.8 points.), which might improve their attitude toward playing. To induce progressive hormonal adaptation to the high exercise load of multiple games, in the last 2 weeks of the preseason, coaches should organize friendly games at a level similar to that of the competitive season.  相似文献   

7.
The aim of the present study was to examine the effect of in-season strength maintenance training frequency on strength, jump height, and 40-m sprint performance in professional soccer players. The players performed the same strength training program twice a week during a 10-week preparatory period. In-season, one group of players performed 1 strength maintenance training session per week (group 2 + 1; n = 7), whereas the other group performed 1 session every second week (group 2 + 0.5; n = 7). Only the strength training frequency during the in-season differed between the groups, whereas the exercise, sets and number of repetition maximum as well as soccer sessions were similar in the 2 groups. The preseason strength training resulted in an increased strength, sprint, and jump height (p < 0.05). During the first 12 weeks of the in-season, the initial gain in strength and 40-m sprint performance was maintained in group 2 + 1, whereas both strength and sprint performance were reduced in group 2 + 0.5 (p < 0.05). There was no statistical significant change in jump height in any of the 2 groups during the first 12 weeks of the in-season. In conclusion, performing 1 weekly strength maintenance session during the first 12 weeks of the in-season allowed professional soccer players to maintain the improved strength, sprint, and jump performance achieved during a preceding 10-week preparatory period. On the other hand, performing only 1 strength maintenance session every second week during the in-season resulted in reduced leg strength and 40-m sprint performance. The practical recommendation from the present study is that during a 12-week period, 1 strength maintenance session per week may be sufficient to maintain initial gain in strength and sprint performance achieved during a preceding preparatory period.  相似文献   

8.
This investigation evaluated the effects of a 4-week, 12-session training program using resisted sprint training (RST), assisted sprint training (AST), and traditional sprint training (TST) on maximal velocity and acceleration in National Collegiate Athletic Association (NCAA) Division IA female soccer athletes (n = 27). The subjects, using their respective training modality, completed 10 maximal effort sprints of 20 yd (18.3 m) followed by a 20-yd (18.3 m) deceleration to jog. Repeated measures multivariate analyses of variance and analyses of variance demonstrated significant (p < 0.001) 3-way interactions (time × distance × group) and 2-way interactions (time × group), respectively, for both velocity and acceleration. Paired t-tests demonstrated that maximum 40-yd (36.6-m) velocity increased significantly in both the AST (p < 0.001) and RST (p < 0.05) groups, with no change in the TST group. Five-yard (4.6-m), 15-yd (13.7 m), 5- to 15-yd (4.6- to 13.7-m) acceleration increased significantly (p < 0.01) in the AST group and did not change in the RST and TST groups. Fifteen- to 25-yd (13.7- to 22.9-m) acceleration increased significantly (p < 0.01) in the RST group, decreased significantly (p < 0.01) in the AST group, and was unchanged in the TST group. Twenty-five to 40-yd (22.9- to 36.6-m) acceleration increased significantly (p < 0.05) in the RST group and remained unchanged in the AST and TST groups. It is purposed that the increased 5-yd (4.6-m) and 15-yd (13.7-m) accelerations were the result of enhanced neuromuscular facilitation in response to the 12-session supramaximal training protocol. Accordingly, it is suggested that athletes participating in short distance acceleration events (i.e., ≤15 yd; ≤13.7 m) use AST protocols, whereas athletes participating in events that require greater maximum velocity (i.e., >15 yd; > 13.7 m) should use resisted sprint training protocols.  相似文献   

9.
The purpose of this study was to examine the physiological effects of different sprint repetition protocols on professional footballers. Of particular interest were the abilities of repeated sprint protocols to induce fatigue to an extent observed during competitive soccer. Six professional soccer players were assessed for fatigue rate and physiological responses of heart rate (HR), blood lactate (BLa), and rating of perceived exertion (RPE) during the performance of 4 repeated sprint drills, each totaling a sprint distance of 600 m. The 4 drills used 15- or 40-m sprints with 1:4 or 1:6 exercise: rest ratios. The 15-m sprint drill with 1:4 exercise:rest ratio induced the greatest fatigue (final sprint time 15% greater than initial sprint time) and greatest physiological responses. The 40-m sprint drill using a 1:4 exercise:rest ratio produced similar BLa and HR responses to the 15-m drill (13-14 mmol.L(-1) and 89% HRmax, respectively) but significantly lower RPE (mean +/- SD: 17.1 +/- 0.4 vs. 18.8 +/- 0.4, p < 0.05) and fatigue rates (11.1 vs. 15.0%, p < 0.01). Both sprint distance and exercise:rest ratio independently influenced fatigue rate, with the 15-m sprint distance and the 1:4 exercise:rest ratio inducing significantly (p < 0.01) greater fatigue than the 40-m sprint distance and the 1:6 exercise:rest ratio. The magnitude of fatigue during the 40- x 15-m sprint drill using a 1:6 exercise:rest ratio was 7.5%, which is close to the fatigue rate previously reported during actual soccer play. The present study is the first to examine both variations in sprint distances and rest ratios simultaneously, and the findings may aid the design of repeated sprint training for soccer.  相似文献   

10.
The purpose of this study was to determine the reliability and validity of regulating exercise intensity by ratings of perceived exertion in step dance sessions. Ten male college-aged students voluntarily participated in 2 step dance sessions for 45 minutes at 70-80% of their heart rate (HR) reserves with a 1-week interval between sessions. The step dance sessions included the same choreography with 10 minutes of warm-up, 25 minutes of the main part, 5 minutes of calisthenics for legs and abdomen, and 5 minutes of cool-down. In each session, subjects' ratings of perceived exertion (RPEs) were determined by Borg's 6-20 scale together with HR and lactic acid (LA) levels with 10-minute intervals. Values for RPE, HR, and LA increased nonlinearly in both sessions, and their trends were explained by polynomial equations to the second degree. The RPE values increased throughout each session, whereas HR and LA showed a decrease in the last time interval, which indicated that RPE did not maintain exercise intensity at proper range. Reliability coefficients for RPE scores in the first and last session ranged from 0.602 to 0.684. These findings suggest that RPE was a reliable but not a valid method for regulating exercise intensity in step dance sessions.  相似文献   

11.
A large number of team sports require athletes to repeatedly produce maximal or near maximal sprint efforts of short duration interspersed with longer recovery periods of submaximal intensity. This type of team sport activity can be characterized as prolonged, high-intensity, intermittent running (PHIIR). The primary purpose of the present study was to determine the physiological factors that best relate to a generic PHIIR simulation that reflects team sport running activity. The second purpose of this study was to determine the relationship between common performance tests and the generic PHIIR simulation. Following a familiarization session, 16 moderately trained (VO2max = 40.0 +/- 4.3 ml x kg(-1) x min(-1)) women team sport athletes performed various physiological, anthropometrical, and performance tests and a 30-minute PHIIR sport simulation on a nonmotorized treadmill. The mean heart rate and blood lactate concentration during the PHIIR sport simulation were 164 +/- 6 b x min(-1) and 8.2 +/- 3.3 mmol x L(-1), respectively. Linear regression demonstrated significant relationships between the PHIIR sport simulation distance and running velocity attained at a blood lactate concentration of 4 mmol x L(-1) (LT) (r = 0.77, p < 0.05), 5 x 6-second repeated cycle sprint work (r = 0.56, p < 0.05), 30-second Wingate test (r = 0.61, p < 0.05), peak aerobic running velocity (Vmax) (r = 0.69, p < 0.05), and Yo-Yo Intermittent Recovery Test (Yo-Yo IR1) distance (r = 0.50, p < 0.05), respectively. These results indicate that an increased LT is associated with improved PHIIR performance and that PHIIR performance may be monitored by determining Yo-Yo IR1 performance, 5 x 6-second repeated sprint cycle test work, 30-second Wingate test performance, Vmax, or LT. We suggest that training programs should focus on improving both LT and Vmax for increasing PHIIR performance in moderately trained women. Future studies should examine optimal training methods for improving these capacities in team sport athletes.  相似文献   

12.
This study investigated the effect of 3 warm-up procedures on subsequent swimming and overall triathlon performance. Seven moderately trained, amateur triathletes completed 4 separate testing sessions comprising 1 swimming time trial (STT) and 3 sprint distance triathlons (SDT). Before each SDT, the athletes completed 1 of three 10-minute warm-up protocols including (a) a swim-only warm-up (SWU), (b) a run-swim warm-up (RSWU), and (c) a control trial of no warm-up (NWU). Each subsequent SDT included a 750-m swim, a 500-kJ (~20 km) ergometer cycle and a 5-km treadmill run, which the athletes performed at their perceived race intensity. Blood lactate, ratings of perceived exertion, core temperature, and heart rate were recorded over the course of each SDT, along with the measurement of swim speed, swim stroke rate, and swim stroke length. There were no significant differences in individual discipline split times or overall triathlon times between the NWU, SWU, and RSWU trials (p > 0.05). Furthermore, no difference existed between trials for any of the swimming variables measured (p > 0.05) nor did they significantly differ from the preliminary STT (p > 0.05). The findings of this study suggest that warming up before an SDT provides no additional benefit to subsequent swimming or overall triathlon performance.  相似文献   

13.
When testing the ability of sportsmen to repeat maximal intensity efforts, or when designing specific training exercises to improve it, fatigue during repeated sprints is usually investigated through a number of sprints identical for all subjects, which induces a high intersubject variability in performance decrement in a typical heterogeneous group of athletes (e.g., team sport group, students, and research protocol volunteers). Our aim was to quantify the amplitude of the reduction in this variability when individualizing the sprint dose, that is, when requiring subjects to perform the number of sprints necessary to reach a target level of performance decrement. Fifteen healthy men performed 6-second sprints on a cycle ergometer with 24 seconds of rest until exhaustion or until 20 repetitions in case no failure occurred. Peak power output (PPO) was measured and a fatigue index (FI) computed. The variability in PPO decrement was compared between the 10th sprint and the sprint at which subject reached the target FI of 10%. Individual FI values after the 10th sprint were 14.6 ± 6.9 vs. 11.1 ± 1.2%, when individualizing the sprint dose, which corresponded to coefficients of interindividual variability of ~47.3 and ~10.8%, respectively. Individualizing the sprint dose substantially reduced intersubject variability in performance decrement, enabling a more standardized state of fatigue in repeated-sprints protocols designed to induce fatigue and test or train this specific repeated-sprint ability in a heterogeneous group of athletes. A direct feedback on the values of performance parameters is necessary between each sprint for the experimenter to set this individualized sprint dose.  相似文献   

14.
This study examined the effect of dietary consumption of carbohydrates (CHO) on the blood lactate to rating of perceived exertion (La:RPE) ratio during an intense micro-cycle of exercise training. This ratio is a proposed biomarker of exercise training stress and potential indicator for under- or overtraining in athletes. Sixteen male athletes were randomly assigned into two groups; high CHO (H-CHO; 60% of daily caloric intake) and low CHO (L-CHO; 30% of daily caloric intake). Diets were controlled the day before and for the three days of the micro-cycle. The micro-cycle consisted of three successive days of 60 minutes of intense cycling (~70% of VO2peak). Blood samples were obtained immediately before and after exercise (post) on each day of exercise training (D1, D2, D3) and were analyzed for blood lactate. Rating of perceived exertion (RPE) scores were taken at the end of each exercise session and combined with the post exercise lactate value to form the La:RPE ratio. An analysis of variance (ANOVA) showed a significant difference between the La:RPE ratio for the H-CHO and L-CHO groups at D3 even though the exercise intensity was not significantly different between the groups. Specifically, the ratio was significantly (p < 0.02) lower on D3 in the L-CHO group (~31% lower) than in the H-CHO group. From these findings it is recommended that diet needs to be monitored when using the La:RPE ratio as an exercise training biomarker to determine whether an athlete is truly under-training or overtraining. Athletes or coaches that use the La:RPE ratio as a training biomarker, but do not monitor dietary CHO intake need to interpreted their findings carefully.  相似文献   

15.
Speed and acceleration are essential for field sport athletes. However, the mechanical factors important for field sport acceleration have not been established in the scientific literature. The purpose of this study was to determine the biomechanical and performance factors that differentiate sprint acceleration ability in field sport athletes. Twenty men completed sprint tests for biomechanical analysis and tests of power, strength, and leg stiffness. The sprint intervals analyzed were 0-5, 5-10, and 0-10 m. The subjects were split into a faster and slower group based on 0- to 10-m velocity. A 1-way analysis of variance determined variables that significantly (p ≤ 0.05) distinguished between faster and slower acceleration. All subject data were then pooled for a correlation analysis to determine factors contributing most to acceleration. The results showed that 0- to 5-m (~16% difference) and 0- to 10-m (~11% difference) contact times for the faster group were significantly lower. Times to peak vertical and horizontal force during ground contact were lower for the faster group. This was associated with the reduced support times achieved by faster accelerators and their ability to generate force quickly. Ground contact force profiles during initial acceleration are useful discriminators of sprint performance in field sport athletes. For the strength and power measures, the faster group demonstrated a 14% greater countermovement jump and 48% greater reactive strength index. Significant correlations were found between velocity (0-5, 5-10, and 0-10 m) and most strength and power measures. The novel finding of this study is that training programs directed toward improving field sport sprint acceleration should aim to reduce contact time and improve ground force efficiency. It is important that even during the short sprints required for field sports, practitioners focus on good technique with short contact times.  相似文献   

16.
Although the potential link between running loads and soft-tissue injury is appealing, the evidence supporting or refuting this relationship in high-performance team sport athletes is nonexistent, with all published studies using subjective measures (e.g., ratings of perceived exertion) to quantify training loads. The purpose of this study was to investigate the risk of low-intensity (e.g., walking, jogging, total distances) and high-intensity (e.g., high acceleration and velocity efforts, repeated high-intensity exercise bouts) movement activities on lower body soft-tissue injury in elite team sport athletes. Thirty-four elite rugby league players participated in this study. Global positioning system data and the incidence of lower body soft-tissue injuries were monitored in 117 skill training sessions during the preseason and in-season periods. The frailty model (an extension of the Cox proportional regression model for recurrent events) was applied to calculate the relative risk of injury after controlling for all other training data. The risk of injury was 2.7 (95% confidence interval 1.2-6.5) times higher when very high-velocity running (i.e., sprinting) exceeded 9 m per session. Greater distances covered in mild, moderate, and maximum accelerations and low- and very low-intensity movement velocities were associated with a reduced risk of injury. These results demonstrate that greater amounts of very high-velocity running (i.e., sprinting) are associated with an increased risk of lower body soft-tissue injury, whereas distances covered at low and moderate speeds offer a protective effect against soft-tissue injury. From an injury prevention perspective, these findings provide empirical support for restricting the amount of sprinting performed in preparation for elite team sport competition. However, coaches should also consider the consequences of reducing training loads on the development of physical qualities and playing performance.  相似文献   

17.
We evaluated the effect of different types of sprint interval sessions on the balance between anabolic and catabolic hormones and circulating inflammatory cytokines. Twelve healthy elite junior handball players (17-25 years) participated in the study. Exercise consisted of increasing distance (100 m, 200 m, 300 m, 400 m) and decreasing distance (400 m, 300 m, 200 m, 100 m) sprint interval runs on a treadmill (at random order), at a constant work rate of 80% of the personal maximal speed (calculated from the maximal speed of a 100 m run). The total rest period between the runs in the different interval sessions were similar. Blood samples were collected before, after each run, and after 1-hour recovery. Both types of sprint interval trainings led to a significant (p < 0.05) increase in lactate and the anabolic factors growth hormone, insulin-like growth factor-I (IGF-I), IGF binding protein-3 (IGFBP-3), and testosterone levels. Both types of sprint interval sessions led to a significant (p < 0.05) increase in the circulating pro- and anti-inflammatory mediators IL-1, IL-6, and IL1ra. IL-6 remained elevated in both sessions after 1-hour recovery. Area under the curve was significantly greater (p < 0.05) for lactate and growth hormone (GH) in the decreasing distance session. In contrast, rate of perceived exertion was higher in the increasing distance session, but this difference was not statistically significant (p = 0.07). Changes in anabolic-catabolic hormones and inflammatory mediators can be used to gauge the training intensity of anaerobic-type exercise. Changes in the GH-IGF-I axis and testosterone level suggest exercise-related anabolic adaptations. Increases in inflammatory mediators may indicate their important role in muscle tissue repair after anaerobic exercise. The decreasing distance interval was associated with a greater metabolic (lactate) and anabolic (GH) response but not with a higher rate of perceived exertion. Coaches and athletes should be aware of these differences, and as a result, of a need for specific recovery adaptations after different interval training protocols.  相似文献   

18.
This study investigated the reliability of the session rating of perceived exertion (RPE) scale to quantify exercise intensity during high-intensity (H), moderate-intensity (M), and low-intensity (L) resistance training. Nine men (24.7 +/- 3.8 years) and 10 women (22.1 +/- 2.6 years) performed each intensity twice. Each protocol consisted of 5 exercises: back squat, bench press, overhead press, biceps curl, and triceps pushdown. The H consisted of 1 set of 4-5 repetitions at 90% of the subject's 1 repetition maximum (1RM). The M consisted of 1 set of 10 repetitions at 70% 1RM, and the L consisted of 1 set of 15 repetitions at 50% 1RM. RPE was measured following the completion of each set and 30 minutes postexercise (session RPE). Session RPE was higher for the H than M and L exercise bouts (p < or = 0.05). Performing fewer repetitions at a higher intensity was perceived to be more difficult than performing more repetitions at a lower intensity. The intraclass correlation coefficient for the session RPE was 0.88. The session RPE is a reliable method to quantify various intensities of resistance training.  相似文献   

19.
20.
The objective of this study was to estimate the oxygen uptake (&OV0312;O2) in elite youth soccer players using measures of heart rate (HR) and ratings of perceived exertion (RPEs). Forty-six regional-level male youth soccer players (~13 years) participated in 2 VO(2)max tests. Data for HR, RPE, and VO(2) were simultaneously recorded during the VO(2)max tests with incremental running speed. Regression equations were derived from the first VO(2)max test. Two weeks later, all players performed the same VO(2)max test to validate the developed regression equations. There were no significant differences between the estimated values in the first test and actual values in the second test. During the continuous endurance exercise, the combination of percentage of maximal HR (%HRmax) and RPE measures gave similar estimation of %VO(2)max (R = 83%) in comparison to %HRmax alone (R = 81%). However, the estimation of VO(2) using combined %HRmax and RPE was not satisfactory (R = 45-46%). Therefore, the use of %HRmax (without RPE) to estimate %VO(2)max could be a useful tool in young soccer players during field-based continuous endurance testing and training. Specifically, coaches can use the %HRmax to quantify internal loads (%VO(2)max) and subsequently implement continuous endurance training at appropriate intensities. Furthermore, it seems that RPE is more useful as a measure of internal load during noncontinuous (e.g., intermittent and sprint) exercises but not to estimate %VO(2)max during continuous aerobic exercise (R = 59%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号