首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Organ transplantation (Tx) results in a transfer of donor leukocytes from the graft to the recipient, which can lead to chimerism and may promote tolerance. It remains unclear whether this tolerance involves donor-derived regulatory T cells (Tregs). In this study, we examined the presence and allosuppressive activity of CD4+CD25+Foxp3+ Tregs in perfusates of human liver grafts and monitored the cells presence in the circulation of recipients after liver Tx. Vascular perfusions of 22 liver grafts were performed with University of Wisconsin preservation and albumin solutions. Flow cytometric analysis revealed that perfusate T cells had high LFA-1 integrin expression and had a reversed CD4 to CD8 ratio compared with control blood of healthy individuals. These findings indicate that perfusate cells are of liver origin and not derived from residual donor blood. Further characterization of perfusate mononuclear cells showed an increased proportion of CD4+CD25+CTLA4+ T cells compared with healthy control blood. Increased percentages of Foxp3+ cells, which were negative for CD127, confirmed the enrichment of Tregs in perfusates. In MLR, CD4+CD25+ T cells from perfusates suppressed proliferation and IFN-gamma production of donor and recipient T cells. In vivo within the first weeks after Tx, up to 5% of CD4+CD25+CTLA4+ T cells in recipient blood were derived from the donor liver. In conclusion, a substantial number of donor Tregs detach from the liver graft during perfusion and continue to migrate into the recipient after Tx. These donor Tregs suppress the direct pathway alloresponses and may in vivo contribute to chimerism-associated tolerance early after liver Tx.  相似文献   

2.
3.
4.
The effect of blocking the CD28/B7 costimulatory pathway on intestinal allograft rejection was examined in mice. Murine CTLA4Ig failed to prevent the rejection of allografts transplanted into wild-type or CD4 knockout (KO) mice but did inhibit allograft rejection by CD8 KO recipients. This effect was associated with decreased intragraft mRNA for IFN-gamma and TNF-alpha and increased mRNA for IL-4 and IL-5. This altered pattern of cytokine production was not observed in allografts from murine CTLA4Ig-treated CD4 KO mice. These data demonstrate that blockade of the CD28/B7 pathway has different effects on intestinal allograft rejection mediated by CD4+ and CD8+ T cells and suggest that these T cell subsets have different costimulatory requirements in vivo. The results also suggest that the inhibition of CD4+ T cell-mediated allograft rejection by CTLA4Ig may be related to down-regulation of Th1 cytokines and/or up-regulation of Th2 cytokines.  相似文献   

5.
Blockade of the CD28/B7 T cell costimulatory pathway prolongs allograft survival and induces tolerance in some animal models. We analyzed the efficacy of a CTLA4Ig-expressing adenovirus in preventing cardiac allorejection in rats, the mechanisms underlying heart transplant acceptance, and whether the effects of CTLA4Ig were restricted to the graft microenvironment or were systemic. CTLA4Ig gene transfer into the myocardium allowed indefinite graft survival (>100 days vs 9 +/- 1 days for controls) in 90% of cases, whereas CTLA4Ig protein injected systemically only prolonged cardiac allograft survival (by up to 22 days). CTLA4Ig could be detected in the graft and in the serum for at least 1 year after gene transfer. CTLA4Ig gene transfer induced local intragraft immunomodulation at day 5 after transplantation, as shown by decreased expression of the IL-2R and MHC II Ags; decreased levels of mRNA encoding for IFN-gamma, inducible NO synthase, and TGF-beta; and inhibited proliferative responses of graft-infiltrating cells. Systemic immune responses were also down-modulated, as shown by the suppression of Ab production against donor alloantigens and cognate Ags, up to at least 120 days after gene transfer. Alloantigenic and mitogenic proliferative responses of graft-infiltrating cells and total splenocytes were inhibited and were not reversed by IL-2. In contrast, lymph node cells and T cells purified from splenocytes showed normal proliferation. Recipients of long-term grafts treated with adenovirus coding for CTLA4Ig showed organ and donor-specific tolerance. These data show that expression of CTLA4Ig was high and long lasting after adenovirus-mediated gene transfer. This expression resulted in down-modulation of responses against cognate Ags, efficient suppression of local and systemic allograft immune responses, and ultimate induction of donor-specific tolerance.  相似文献   

6.
Several evidences suggest that regulatory T cells (Treg) promote Th17 differentiation. Based on this hypothesis, we tested the effect of IL-17A neutralization in a model of skin transplantation in which long-term graft survival depends on a strong in vivo Treg expansion induced by transient exogenous IL-2 administration. As expected, IL-2 supplementation prevented rejection of MHC class II disparate skin allografts but, surprisingly, not in IL-17A-deficient recipients. We attested that IL-17A was not required for IL-2-mediated Treg expansion, intragraft recruitment or suppressive capacities. Instead, IL-17A prevented allograft rejection by inhibiting Th1 alloreactivity independently of Tregs. Indeed, T-bet expression of naive alloreactive CD4+ T cells and the subsequent Th1 immune response was significantly enhanced in IL-17A deficient mice. Our results illustrate for the first time a protective role of IL-17A in CD4+-mediated allograft rejection process.  相似文献   

7.
BACKGROUND: To analyse the effects of local (ex vivo) or systemic (in vivo) administration of adenovirus type 5 encoding CTLA4Ig (AdCTLA4Ig) on its influence to prolong corneal allograft survival and to study the underlying mechanisms. METHODS: A MHC class I/II mismatched rat corneal transplant model was used. Recipients were randomly assigned to receive ex vivo gene-modified corneas expressing either CTLA4Ig, CTLA4Ig/IL-10 or a single intraperitoneal (i.p.) injection (1.0 x 10(9) or 1.0 x 10(10) infectious particles) of AdCTLA4Ig 1 day before transplantation and graft survival was analysed. The immunoregulatory effect of this treatment was examined by analysing intra-graft cytokine mRNA expression pattern at day 12 post-transplant. The anti-adenovirus immunity also was investigated. RESULTS: Ex vivo gene transfer resulted in a modest but significant prolongation of graft survival (p = 0.0036 compared to no treatment). In contrast, systemic gene therapy (1.0 x 10(9) or 1.0 x 10(10) infectious particles) significantly prolonged graft survival (p = 0.0007 and 0.0001, respectively, compared to no treatment). Systemic (1.0 x 10(10) infectious particles) therapy resulted in frequent indefinite survival of allogeneic grafts which was not observed in the other therapeutic regimens. Moreover, systemic therapy prevented the intra-graft accumulation and activation of T cells and resulted in a reduced mRNA expression of both TH1 and TH2 cytokines. The generation of anti-adenovirus antibodies was also efficiently inhibited. CONCLUSIONS: CTLA4Ig gene therapy is a successful strategy for the prevention of allogeneic graft rejection in corneal transplantation. Our work has further elucidated the mechanisms of corneal allograft rejection which may lead to novel therapeutic strategies.  相似文献   

8.
In all but a small minority of cases, continued survival of solid organ grafts after transplantation depends on lifelong, nonselective immunosuppression that, although effective, results in increased rates of infection, cancer, and vascular disease. Therapeutic strategies that engage or mimic self-tolerance may allow prolonged allograft survival without the disadvantages of nonspecific immunotherapy. Pretreatment of recipient mice with donor alloantigen combined with transient modulation of the peripheral T cell pool with anti-CD4 Ab leads to the indefinite survival of MHC-incompatible cardiac allografts without further therapy. Tolerance is dependent on CD25+ CD4+ regulatory T cells that arise from naive CD25- precursors and regulate rejection via both IL-10 and CTLA-4. Although these cells are clearly effective at controlling rejection, the proven ability of recently activated CD25+ cells to mediate bystander regulation raises the possibility that tolerized individuals might also have a reduced capacity to respond to environmental pathogens. We have examined anti-influenza responses in tolerized primary heart recipients, secondary recipients following adoptive transfer of regulatory populations, and tolerized mice in which bystander regulation has been deliberately induced. Neither virus-specific CTL activity in vitro nor the clearance of virus in vivo was significantly diminished in any of these treatment groups compared with infected unmanipulated controls. The data suggest that the induction of dominant allograft tolerance dependent on regulatory T cells does not necessarily result in attenuated responses to pathogens providing further support for the development of tolerance induction protocols in clinical transplantation.  相似文献   

9.
The PD-1:PDL pathway plays an important role in regulating alloimmune responses but its role in transplantation tolerance is unknown. We investigated the role of PD-1:PDL costimulatory pathway in peripheral and a well established model of central transplantation tolerance. Early as well as delayed blockade of PDL1 but not PDL2 abrogated tolerance induced by CTLA4Ig in a fully MHC-mismatched cardiac allograft model. Accelerated rejection was associated with a significant increase in the frequency of IFN-gamma-producing alloreactive T cells and expansion of effector CD8(+) T cells in the periphery, and a decline in the percentage of Foxp3(+) graft infiltrating cells. Similarly, studies using PDL1/L2-deficient recipients confirmed the results with Ab blockade. Interestingly, while PDL1-deficient donor allografts were accepted by wild-type recipients treated with CTLA4Ig, the grafts developed severe chronic rejection and vasculopathy when compared with wild-type grafts. Finally, in a model of central tolerance induced by mixed allogeneic chimerism, engraftment was not abrogated by PDL1/L2 blockade. These novel data demonstrate the critical role of PDL1 for induction and maintenance of peripheral transplantation tolerance by its ability to alter the balance between pathogenic and regulatory T cells. Expression of PDL1 in donor tissue is critical for prevention of in situ graft pathology and chronic rejection.  相似文献   

10.
Sensitization to donor Ags is an enormous problem in clinical transplantation. In an islet allograft model, presensitization of recipients through donor-specific transfusion (DST) 4 wk before transplantation results in accelerated rejection. We demonstrate that combined DST with anti-CD154 (CD40L) therapy not only prevents the deleterious presensitization produced by pretransplant DST in the islet allograft model, it also induces broad alloantigen-specific tolerance and permits subsequent engraftment of donor islet or cardiac grafts without further treatment. In addition, our data strongly indicate that CTLA4-negative T cell signals are required to achieve prolonged engraftment of skin allograft or tolerance to islet allograft in recipients treated with a combination of pretransplant DST and anti-CD154 mAb. We provide direct evidence that a CD28-independent CTLA4 signal delivers a strong negative signal to CD4+ T cells that can block alloimmune MLR responses. In this study immune deviation into a Th2 (IL-4) response was associated with, but did not insure, graft tolerance, as the inopportune timing of B7 blockade with CTLA4/Ig therapy prevented uniform tolerance but did not prevent Th2-type immune deviation. While CTLA4-negative signals are necessary for tolerance induction, Th1 to Th2 immune deviation cannot be sufficient for tolerance induction. Combined pretransplant DST with anti-CD154 mAb treatment may be attractive for clinical deployment, and strategies aimed to selectively block CD28 without interrupting CTLA4/B7 interaction might prove highly effective in the induction of tolerance.  相似文献   

11.
Specific and selective immunological unresponsiveness to donor alloantigens can be induced in vivo. We have shown previously that CD25+CD4+ T cells from mice exhibiting long-term operational tolerance to donor alloantigens can regulate rejection of allogeneic skin grafts mediated by CD45RB(high)CD4+ T cells. In this study, we wished to determine whether donor-specific regulatory cells can be generated during the induction phase of unresponsiveness, i.e., before transplantation. We provide evidence that pretreatment with anti-CD4 Ab plus a donor-specific transfusion generates donor-specific regulatory CD25+CD4+ T cells that can suppress rejection of skin grafts mediated by naive CD45RB(high)CD4+ T cells. Regulatory cells were contained only in the CD25+ fraction, as equivalent numbers of CD25-CD4+ T cells were unable to regulate rejection. This pretreatment strategy led to increased expression of CD122 by the CD25+CD4+ T cells. Blockade of both the IL-10 and CTLA-4 pathways abrogated immunoregulation mediated by CD25+ T cells, suggesting that IL-10 and CTLA-4 are required for the functional activity of this population of immunoregulatory T cells. In clinical transplantation, the generation of regulatory T cells that could provide dynamic control of rejection responses is a possible route to permanent graft survival without the need for long-term immunosuppression.  相似文献   

12.
Immune activation via TLRs is known to prevent transplantation tolerance in multiple animal models. To investigate the mechanisms underlying this barrier to tolerance induction, we used complementary murine models of skin and cardiac transplantation in which prolonged allograft acceptance is either spontaneous or pharmacologically induced with anti-CD154 mAb and rapamycin. In each model, we found that prolonged allograft survival requires the presence of natural CD4(+)Foxp3(+) T regulatory cells (Tregs), and that the TLR9 ligand CpG prevents graft acceptance both by interfering with natural Treg function and by promoting the differentiation of Th1 effector T cells in vivo. We further demonstrate that although Th17 cells differentiate from naive alloreactive T cells, these cells do not arise from natural Tregs in either CpG-treated or untreated graft recipients. Finally, we show that CpG impairs natural Treg suppressor capability and prevents Treg-dependent allograft acceptance in an IL-6-independent fashion. Our data therefore suggest that TLR signals do not prevent prolonged graft acceptance by directing natural Tregs into the Th17 lineage or by using other IL-6-dependent mechanisms. Instead, graft destruction results from the ability of CpG to drive Th1 differentiation and interfere with immunoregulation established by alloreactive natural CD4(+)Foxp3(+) Tregs.  相似文献   

13.
Previous work on blockade of CD40-CD40 ligand interaction in mice and primates with anti-CD40 ligand mAbs has resulted in a moderate prolongation of allograft survival without the development of true allograft tolerance. In this study, we show in rats that adenovirus-mediated gene transfer of CD40Ig sequences into the graft resulted in prolonged (>200 days) expression of CD40Ig and in long-term (>300 days) survival. Recipients expressing CD40Ig displayed strongly (>90%) inhibited mixed leukocyte reactions and alloantibody production at early (days 5 and 17) and late time points (>100 day) after transplantation, but showed limited inhibition of leukocyte infiltration and cytokine production as evaluated by immunohistology at early time points (day 5). Recipients of long-surviving hearts showed donor-specific hyporesponsiveness since acceptance of second cardiac allografts was donor specific. Nevertheless, long-term allografts (>100 days) displayed signs of chronic rejection vasculopathy. Occluded vessels showed leukocyte infiltration, mainly composed of CD4(+) and CD8(+) cells, macrophages, and mast cells. These recipients also showed antidonor CTL activity. Recipients expressing CD40Ig did not show nonspecific immunosuppression, as they were able to mount anticognate immune responses that were partially inhibited at early time points and were normal thereafter. We conclude that gene transfer-mediated expression of CD40Ig resulted in a highly efficient inhibition of acute heart allograft rejection in rats. This treatment induced donor-specific inhibition of certain alloreactive mechanisms in the short-, but not the long-term, which resulted in long-term survival of allografts concomitant with the development of chronic rejection.  相似文献   

14.
Regulatory T cells preserve tolerance to peripheral self-Ags and may control the response to allogeneic tissues to promote transplantation tolerance. Although prior studies have demonstrated prolonged allograft survival in the presence of regulatory T cells (T-reg), data documenting the capacity of these cells to promote tolerance in immunocompetent transplant models are lacking, and the mechanism of suppression in vivo remains unclear. We used a TCR transgenic model of allograft rejection to characterize the in vivo activity of CD4(+)CD25(+) T-reg. We demonstrate that graft Ag-specific T-reg effectively intercede in the rejection response of naive T cells to established skin allografts. Furthermore, CFSE labeling demonstrates impaired proliferation of naive graft Ag-specific T cells in the draining lymph node in the presence of T-reg. These results confirm the efficacy of T-reg in promoting graft survival and suggest that their suppressive action is accomplished in part through inhibition of proliferation.  相似文献   

15.
Regulatory T cells (Tregs) are implicated in immune tolerance and are variably dependent on IL-10 for in vivo function. Brief peritransplant treatment of multiple nonhuman primates (NHP) with anti-CD3 immunotoxin and deoxyspergualin has induced stable (5-10 years) rejection-free tolerance to MHC-mismatched allografts, which associated with sustained elevations in serum IL-10. In this study, we demonstrate that resting and activated PBMC from long-term tolerant NHP recipients are biased to secrete high levels of IL-10, compared with normal NHP PBMC. Although IL-10-producing CD4+ Tregs (type 1 regulatory cells (TR1)/IL-10 Tregs) were undetectable (<0.5%) in normal rhesus monkeys, 7.5 +/- 1.7% of circulating CD4+ T cells of tolerant rhesus recipients expressed IL-10. In addition to this >15-fold increase in Tr1/IL-10 Tregs, the tolerant monkeys exhibited a nearly 3-fold increase in CD4+CD25+ Tregs, 8.1 +/- 3.0% of CD4 T cells vs 2.8 +/- 1.4% in normal cohorts (p < 0.02). The frequency of CD4+CD25+IL-10+ cells was elevated 5-fold in tolerant vs normal NHP (1.8 +/- 0.9% vs 0.4 +/- 0.2%). Rhesus CD4+CD25+ Tregs exhibited a memory phenotype, and expressed high levels of Foxp3 and CTLA-4 compared with CD4+CD25- T cells. Also, NHP CD4+CD25+ Tregs proliferated poorly after activation and suppressed proliferation of CD4+CD25- effector T cells, exhibiting regulatory properties similar to rodent and human CD4+CD25+ Tregs. Of note, depletion of CD4+CD25+ Tregs restored indirect pathway antidonor responses in tolerant NHP. Our study demonstrates an expanded presence of Treg populations in tolerant NHP recipients, suggesting that these adaptations may be involved in maintenance of stable tolerance.  相似文献   

16.
Pretreatment of pancreatic islets in 95% oxygen culture depletes graft-associated APCs and leads to indefinite allograft acceptance in immunocompetent recipients. As such, the APC-depleted allograft represents a model of peripheral alloantigen presentation in the absence of donor-derived costimulation. Over time, a state of donor-specific tolerance develops in which recipients are resistant to donor APC-induced graft rejection. Thus, persistence of the graft is sufficient to induce tolerance independent of other immune interventions. Donor-specific tolerance could be adoptively transferred to immune-deficient SCID recipient mice transplanted with fresh immunogenic islet allografts, indicating that the original recipient was not simply "ignorant" of donor antigens. Interestingly, despite the fact that the original islet allograft presented only MHC class I alloantigens, CD8+ T cells obtained from tolerant animals readily collaborated with naive CD4+ T cells to reject donor-type islet grafts. Conversely, tolerant CD4+ T cells failed to collaborate effectively with naive CD8+ T cells for the rejection of donor-type grafts. In conclusion, the MHC class I+, II- islet allograft paradoxically leads to a change in the donor-reactive CD4 T cell subset and not in the CD8 subset. We hypothesize that the tolerant state is not due to direct class I alloantigen presentation to CD8 T cells but, rather, occurs via the indirect pathway of donor Ag presentation to CD4 T cells in the context of host MHC class II molecules.  相似文献   

17.
Exploring new immunosuppressive strategies inducing donor-specific hyporesponsiveness is an important challenge in transplantation. For this purpose, a careful immune monitoring and graft histology assessment is mandatory. Here, we report the results of a pilot study conducted in twenty renal transplant recipients, analyzing the immunomodulatory effects of a protocol based on induction therapy with rabbit anti-thymocyte globulin low doses, sirolimus, and mofetil mycophenolate. Evolution of donor-specific cellular and humoral alloimmune response, peripheral blood lymphocyte subsets and apoptosis was evaluated. Six-month protocol biopsies were performed to assess histological lesions and presence of FOXP3+ regulatory T cells (Tregs) in interstitial infiltrates. After transplantation, there was an early and transient apoptotic effect, mainly within the CD8+ HLADR+ T cells, combined with a sustained enhancement of CD4+ CD25(+high) lymphocytes in peripheral blood. The incidence of acute rejection was 35%, all steroid sensitive. Importantly, only pretransplant donor-specific cellular alloreactivity could discriminate patients at risk to develop acute rejection. Two thirds of the patients became donor-specific hyporesponders at 6 and 24 mo, and the achievement of this immunologic state was not abrogated by prior acute rejection episodes. Remarkably, donor-specific hyporesponders had the better renal function and less chronic renal damage. Donor-specific hyporesponsiveness was inhibited by depleting CD4+ CD25(+high) T cells, which showed donor-Ag specificity. FOXP3+ CD4+ CD25(+high) Tregs both in peripheral blood and in renal infiltrates were higher in donor-specific hyporesponders than in nonhyporesponders, suggesting that the recruitment of Tregs in the allograft plays an important role for renal acceptance. In conclusion, reaching donor-specific hyporesponsiveness is feasible after renal transplantation and associated with Treg recruitment in the graft.  相似文献   

18.
A link between PDL1 and T regulatory cells in fetomaternal tolerance   总被引:1,自引:0,他引:1  
Acceptance of the fetus expressing allogeneic paternal Ags by the mother is a physiologic model of transplantation tolerance. Various mechanisms contribute to fetal evasion from immune attack by maternal leukocytes. We have recently demonstrated that the inhibitory costimulatory molecule PDL1 plays a critical role in fetomaternal tolerance in that PDL1 blockade or deficiency resulted in decreased allogeneic fetal survival rates. CD4(+)CD25(+) T regulatory cells (Tregs) have also been demonstrated to play an important role in fetomaternal tolerance. Since PDL1 is expressed on Tregs, we explored the interactions between PDL1 and Tregs in vivo in a mouse model of fetomaternal tolerance. Depletion of CD25(+) T cells abrogated the effect of anti-PDL1 Ab indicating that the effect of PDL1 is possibly mediated by CD25(+) Tregs. Adoptive transfer of Tregs from wild-type but not PDL1-deficient mice into PDL1-deficient recipients significantly improved fetal survival. The frequency, phenotype and placental trafficking of Tregs from PDL1-deficient mice were similar to those of wild-type controls, but were defective in inhibiting alloreactive Th1 cells in vitro. This is the first report providing evidence for a link between PDL1 and T regulatory cells in mediating fetomaternal tolerance.  相似文献   

19.
T cell Ig domain and mucin domain (TIM)-3 has previously been established as a central regulator of Th1 responses and immune tolerance. In this study, we examined its functions in allograft rejection in a murine model of vascularized cardiac transplantation. TIM-3 was constitutively expressed on dendritic cells and natural regulatory T cells (Tregs) but only detected on CD4(+)FoxP3(-) and CD8(+) T cells in acutely rejecting graft recipients. A blocking anti-TIM-3 mAb accelerated allograft rejection only in the presence of host CD4(+) T cells. Accelerated rejection was accompanied by increased frequencies of alloreactive IFN-γ-, IL-6-, and IL-17-producing splenocytes, enhanced CD8(+) cytotoxicity against alloantigen, increased alloantibody production, and a decline in peripheral and intragraft Treg/effector T cell ratio. Enhanced IL-6 production by CD4(+) T cells after TIM-3 blockade plays a central role in acceleration of rejection. Using an established alloreactivity TCR transgenic model, blockade of TIM-3 increased allospecific effector T cells, enhanced Th1 and Th17 polarization, and resulted in a decreased frequency of overall number of allospecific Tregs. The latter is due to inhibition in induction of adaptive Tregs rather than prevention of expansion of allospecific natural Tregs. In vitro, targeting TIM-3 did not inhibit nTreg-mediated suppression of Th1 alloreactive cells but increased IL-17 production by effector T cells. In summary, TIM-3 is a key regulatory molecule of alloimmunity through its ability to broadly modulate CD4(+) T cell differentiation, thus recalibrating the effector and regulatory arms of the alloimmune response.  相似文献   

20.
The CD134-CD134 ligand (CD134L) costimulatory pathway has been shown to be critical for both T and B cell activation; however, its role in regulating the alloimmune response remains unexplored. Furthermore, its interactions with other costimulatory pathways and immunosuppressive agents are unclear. We investigated the effect of CD134-CD134L pathway blockade on allograft rejection in fully MHC-mismatched rat cardiac and skin transplantation models. CD134L blockade alone did not prolong graft survival compared with that of untreated recipients, and in combination with donor-specific transfusion, cyclosporine, or rapamycin, was less effective than B7 blockade in prolonging allograft survival. However, in combination with B7 blockade, long-term allograft survival was achieved in all recipients (>200 days). Moreover, this was synergistic in reducing the frequency of IFN-gamma-producing alloreactive lymphocytes and inhibiting the generation of activated/effector lymphocytes. Most impressively, this combination prevented rejection in a presensitized model using adoptive transfer of primed lymphocytes into athymic heart transplant recipients. In comparison to untreated recipients (mean survival time (MST): 5.3 +/- 0.5 days), anti-CD134L mAb alone modestly prolonged allograft survival (MST: 14 +/- 2.8 days) as did CTLA4Ig (MST: 21.5 +/- 1.7 days), but all grafts were rejected within 24 days. Importantly, combined blockade further and significantly prolonged allograft survival (MST: 75.3 +/- 12.7 days) and prevented the expansion and/or persistence of primed/effector alloreactive T cells. Our data suggest that CD134-CD134L is a critical pathway in alloimmune responses, especially recall/primed responses, and is synergistic with CD28-B7 in mediating T cell effector responses during allograft rejection. Understanding the mechanisms of collaboration between these different pathways is important for the development of novel strategies to promote long-term allograft survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号