首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism by which Pfiesteria shumwayae (Glasgow and Burkholder) kills fish is controversial. Several studies have implicated a Pfiesteria-associated exotoxin in fish mortality while other studies indicate that physical attack of dinoflagellates on fish (micropredation) and not exotoxin is responsible. We examined the ichthyotoxicity of two strains of P. shumwayae (CAAE 101272 and CCMP 2089) in a bioassay system that exposed test fish to the dinoflagellates both with and without direct contact in the same aquarium at the same time. Dinoflagellate-free supernatants from both strains were also tested for toxicity. The results showed that direct contact between P. shumwayae and fish significantly enhanced fish mortality with both strains (P < 0.001). About 87.5% and 100% of fish died when exposed directly to CAAE 101272 and CCMP 2089, respectively. When protected from direct contact with Pfiesteria cells, 19% of the fish exposed to CAAE 101272 and 6% of those exposed to CCMP 2089 died. No deaths were observed in controls. Supernatant killed fish when obtained from cultures of CAAE 101272 but not when obtained from CCMP 2089.Analysis of variance showed that, for both strains, fish mortality in Pfiesteria-inoculated bioassays was significantly higher than control bioassays both with and without direct contact (P < 0.001). Differences between strains were not significant (P = 0.3). These results indicate that both strains are associated with exotoxin production. However, the dominant and most consistent mechanism of fish mortality observed in this study required physical contact between fish and Pfiesteria cells.  相似文献   

2.
Occurrence of cannibalism and inferior competitive ability of predators compared to their prey have been suggested to promote coexistence in size-structured intraguild predation (IGP) systems. The intrinsic size-structure of fish provides the necessary prerequisites to test whether the above mechanisms are general features of species interactions in fish communities where IGP is common. We first experimentally tested whether Arctic char (Salvelinus alpinus) were more efficient as a cannibal than as an interspecific predator on the prey fish ninespine stickleback (Pungitius pungitius) and whether ninespine stickleback were a more efficient competitor on the shared zooplankton prey than its predator, Arctic char. Secondly, we performed a literature survey to evaluate if piscivores in general are more efficient as cannibals than as interspecific predators and whether piscivores are inferior competitors on shared resources compared to their prey fish species. Both controlled pool experiments and outdoor pond experiments showed that char imposed a higher mortality on YOY char than on ninespine sticklebacks, suggesting that piscivorous char is a more efficient cannibal than interspecific predator. Estimates of size dependent attack rates on zooplankton further showed a consistently higher attack rate of ninespine sticklebacks compared to similar sized char on zooplankton, suggesting that ninespine stickleback is a more efficient competitor than char on zooplankton resources. The literature survey showed that piscivorous top consumers generally selected conspecifics over interspecific prey, and that prey species are competitively superior compared to juvenile piscivorous species in the zooplankton niche. We suggest that the observed selectivity for cannibal prey over interspecific prey and the competitive advantage of prey species over juvenile piscivores are common features in fish communities and that the observed selectivity for cannibalism over interspecific prey has the potential to mediate coexistence in size structured intraguild predation systems.  相似文献   

3.
The first few months of life is the most vulnerable period for fish and their optimal hatching time with zooplankton prey is favored by natural selection. Traditionally, however, prey abundance (i.e., zooplankton density) has been considered important, whereas prey nutritional composition has been largely neglected in natural settings. High‐quality zooplankton, rich in both essential amino acids (EAAs) and fatty acids (FAs), are required as starting prey to initiate development and fast juvenile growth. Prey quality is dependent on environmental conditions, and, for example, eutrophication and browning are two major factors defining primary producer community structures that will directly determine the nutritional quality of the basal food sources (algae, bacteria, terrestrial matter) for zooplankton. We experimentally tested how eutrophication and browning affect the growth and survival of juvenile rainbow trout (Oncorhynchus mykiss) by changing the quality of basal resources. We fed the fish on herbivorous zooplankton (Daphnia) grown with foods of different nutritional quality (algae, bacteria, terrestrial matter), and used GC‐MS, stable isotope labeling as well as bulk and compound‐specific stable isotope analyses for detecting the effects of different diets on the nutritional status of fish. The content of EAAs and omega‐3 (ω‐3) polyunsaturated FAs (PUFAs) in basal foods and zooplankton decreased in both eutrophication and browning treatments. The decrease in ω‐3 PUFA and especially docosahexaenoic acid (DHA) was reflected to fish juveniles, but they were able to compensate for low availability of EAAs in their food. Therefore, the reduced growth and survival of the juvenile fish was linked to the low availability of DHA. Fish showed very low ability to convert alpha‐linolenic acid (ALA) to DHA. We conclude that eutrophication and browning decrease the availability of the originally phytoplankton‐derived DHA for zooplankton and juvenile fish, suggesting bottom‐up regulation of food web quality.  相似文献   

4.
采用光镜和电镜对引起我国养殖鱼类中毒并造成大批死亡的三毛金藻进行了详细观察,系统地研究了其特殊运动方式,形态结构,繁殖方法,孢囊,鳞片形式及纹饰,两种鞭毛的结构和功能,并对其生物学等也进行了调查研究,证明在天津地区引起鱼类中毒的是舞三毛金藻(Prymnesium saltans Massart et Conrad,1926)。同时认为鳞片结构可作为属的特征之一,但不能作为种的唯一特征。本文对舞三毛金藻亚显微结构及孢囊形态描述,进一步补充和完善了种的鉴定特征。  相似文献   

5.
North temperate fish in post‐glacial lakes are textbook examples for rapid parallel adaptive radiation into multiple trophic specialists within individual lakes. Speciation repeatedly proceeded along the benthic–limnetic habitat axis, and benthic–limnetic sister species diverge in the number of gill rakers. Yet, the utility of different numbers of gill rakers for consuming benthic vs. limnetic food has only very rarely been experimentally demonstrated. We bred and raised families of a benthic–limnetic species pair of whitefish under common garden conditions to test whether these species (i) show heritable differentiation in feeding efficiency on zooplankton, and (ii) whether variation in feeding efficiency is predicted by variation in gill raker numbers. We used zooplankton of three different size classes to investigate prey size dependency of divergence in feeding efficiency and to investigate the effect strength of variation in the number of gill rakers. Our results show strong interspecific differences in feeding efficiency. These differences are largest when fish were tested with the smallest zooplankton. Importantly, feeding efficiency is significantly positively correlated with the number of gill rakers when using small zooplankton, also when species identity is statistically controlled for. Our results support the hypothesis that a larger number of gill rakers are of adaptive significance for feeding on zooplankton and provide one of the first experimental demonstrations of trait utility of gill raker number when fish feed on zooplankton. These results are consistent with the suggested importance of divergent selection driven feeding adaptation during adaptive radiation of fish in post‐glacial lakes.  相似文献   

6.
The transition between the planktonic and the benthic habitat is a critical period for the larvae of many demersal marine organisms. Understanding the potential constraints on the timing of this habitat transition, called settlement, is important to understanding their biology. Size-specific mortality can set the limits on lifestyle and help explain ontogenetic habitat shifts. We examined whether size-based mortality risks after settlement may include micropredation by ectoparasites by testing whether survival of settlement-stage fish varies with fish size when exposed to a reef-associated micropredator. Fish (14 species) were exposed to one blood-sucking gnathiid isopod overnight, with appropriate controls; gnathiid feeding success and survival, and fish mortality were recorded relative to fish size. After adjusting for fish relatedness, we found the relationship between fish mortality and size differed with gnathiid exposure: for gnathiid-exposed fish, the mean mortality of the smallest fish was much higher (57%) than unexposed controls (10%), and decreased to ~0% for fish >12 mm standard length (SL); mortality was almost nil in controls. Thus, a predicted optimal size to switch habitat and reduce mortality risk from micropredation should be >12 mm SL. We then asked what species might be at greater risk and if the steep increase in survival at ~12 mm SL might coincide with settlement at larger sizes among fishes. Across 102 other species (32 families), 61% settled at ≥12 mm SL. After adjusting for relatedness, mean fish settlement size was 15.0 mm and this was not significantly different from 12 mm. Thus, settlement size clusters around the minimum fish size threshold our gnathiid experiment predicted would be large enough to survive a gnathiid encounter. These results suggest micropredators may contribute to size-selective mortality during settlement processes and are consistent with the hypothesis that the pelagic phase provides fish an escape from certain micropredators.  相似文献   

7.
Non-consumptive effects (NCEs) of predators owing to induced changes in prey traits are predicted to influence the structure of ecological communities. However, evidence of the importance of NCEs is limited primarily to simple systems (e.g. two to four species) over relatively short periods (e.g. less than one generation). We examined the NCEs of a fish predator, arising from phenotypic plasticity in zooplankton prey traits, over multiple generations of a diverse zooplankton community. The presence of fish, caged to remove consumptive effects, strongly influenced zooplankton community structure, through both direct and indirect NCE pathways, altering the abundance of many taxa by magnitudes as large as 3 to 10-fold. Presence of fish affected different species of cladocerans and copepods both positively and negatively. A particularly striking result was the reversal of dominance in copepod taxa: presence of fish reduced the ratio of calanoids to cyclopoids from 6.3 to 0.43. Further, the NCE of fish had a strong negative trophic cascade to zooplankton resources (phytoplankton). To our knowledge, this is the first experiment to show that NCEs can influence the abundance of multiple prey species over time spans of multiple prey generations. Our findings demonstrate that adaptive phenotypic plasticity of individuals can scale-up to affect the structure of ecological communities.  相似文献   

8.
Gill raker divergence is a general pattern in adaptive radiations of postglacial fish, but few studies have addressed the adaptive significance of this morphological trait in foraging and eco-evolutionary interactions among predator and prey. Here, a set of subarctic lakes along a diversifying gradient of coregonids was used as the natural setting to explore correlations between gill raker numbers and planktivory as well as the impact of coregonid radiation on zooplankton communities. Results from 19 populations covering most of the total gill raker number gradient of the genus Coregonus, confirm that the number of gill rakers has a central role in determining the foraging ability towards zooplankton prey. Both at the individual and population levels, gill raker number was correlated with pelagic niche use and the size of utilized zooplankton prey. Furthermore, the average body size and the abundance and diversity of the zooplankton community decreased with the increasing diversity of coregonids. We argue that zooplankton feeding leads to an eco-evolutionary feedback loop that may further shape the gill raker morphology since natural selection intensifies under resource competition for depleted prey communities. Eco-evolutionary interactions may thus have a central role creating and maintaining the divergence of coregonid morphs in postglacial lakes.  相似文献   

9.
Many microbes cooperatively secrete extracellular products that favorably modify their environment. Consistent with social evolution theory, structured habitats play a role in maintaining these traits in microbial model systems, by localizing the benefits and separating strains that invest in these products from ‘cheater’ strains that benefit without paying the cost. It is thus surprising that many unicellular, well‐mixed microalgal populations invest in extracellular toxins that confer ecological benefits upon the entire population, for example, by eliminating nutrient competitors (allelopathy). Here we test the hypotheses that microalgal exotoxins are (1) exploitable public goods that benefit all cells, regardless of investment, or (2) nonexploitable private goods involved in cell‐level functions. We test these hypotheses with high‐toxicity (TOX+) and low‐toxicity (TOX?) strains of the damaging, mixotrophic microalga Prymnesium parvum and two common competitors: green algae and diatoms. TOX+ actually benefits from dense populations of competing green algae, which can also be prey for P. parvum, yielding a relative fitness advantage over coexisting TOX?. However, with nonprey competitors (diatoms), TOX? increases in frequency over TOX+, despite benefiting from the exclusion of diatoms by TOX+. An evolutionary unstable, ecologically devastating public good may emerge from traits selected at lower levels expressed in novel environments.  相似文献   

10.
Synopsis Fishes producing high-frequency wavelike electrical discharges maintain a relatively rigid body axis and swim forwards and backwards with equal ease. Using stop-action videotape filming we have observed the gymnotiform Apteronotus albifrons feeding on zooplankton and oligochaete annelids. Here it is reported that reverse swimming is characteristic of two foraging behaviors: searching for prey and assessing it. In assessing a potential prey item, fish typically scan it from tail to head by swimming backwards, then ingest it after a short forward lunge. A scan in the opposite direction-from head to tail by forward swimming-would have the prey located near the tail and out of position for the final lunge. Food choice experiments indicate that these electrosensing fish feed equally well, and take larger rather than smaller zooplankton, under light and dark conditions. Furthermore, electric fish take normal (light) colored and darkened prey (Daphnia) in a 50: 50 ratio under both dark and light conditions. These results are consistent with the interpretation that electrosensory cues are being used to detect zooplankton and other prey. Together, our observations support Lissmann's (1958, 1974) and Lissmann & Machin's (1958) assertion that backwards swimming is a component of a locomotory pattern guided by the constraints produced by an active electrical sense.  相似文献   

11.
Ecosystems are fragmented by natural and anthropogenic processes that affect organism movement and ecosystem dynamics. When a fragmentation restricts predator but not prey movement, then the prey produced on one side of an ecosystem edge can subsidize predators on the other side. When prey flux is high, predator density on the receiving side increases above that possible by in situ prey productivity, and when low, the formerly subsidized predators can impose strong top-down control of in situ prey—in situ prey experience apparent competition from the subsidy. If predators feed on some evolutionary clades of in situ prey over others, then subsidy-derived apparent competition will induce phylogenetic structure in prey composition. Dams fragment the serial nature of river ecosystems by prohibiting movement of organisms and restricting flowing water. In the river tailwater just below a large central Mexican dam, fish density was high and fish gorged on reservoir-derived zooplankton. When the dam was closed, water flow and the zooplankton subsidy ceased, densely packed pools of fish formed, fish switched to feed on in situ prey, and the tailwater macroinvertebrate community was phylogenetic structured. We derived expectations of structure from trait-based community assembly models based on macroinvertebrate body size, tolerance to anthropogenic disturbance, and fish-diet selectivity. The diet-selectivity model best fit the observed tailwater phylogenetic structure. Thus, apparent competition from subsidies phylogenetically structures prey communities, and serial variation in phylogenetic community structure can be indicative of fragmentation in formerly continuous ecosystems.  相似文献   

12.
Two groups of largemouth bass, Micropterus salmoides , were reared in the laboratory. One group was reared on an artificial, passive diet (frozen brine shrimp) whereas the second was reared on a natural, active diet (cultured zooplankton). Observations on the development of feeding behaviour indicated that the motor patterns and duration (number of weeks in the behavioural repertoire) of the feeding acts did not differ between fry reared on the two diets. While feeding on their respective diets, natural-diet fry performed significantly more orientations and bites, the two major early feeding acts, than did the artificial-diet fry. When tested with live fish prey, fish reared on the natural diet performed fewer orientations and strikes and captured more prey per fry than did the artificial-diet fry. Natural-diet fry had a significantly better net efficiency (captures minus strikes minus orientations) than did artificial-diet fry. Diet, experience, and length (T.L.) of fry affected their predator efficiency significantly. We argue that providing hatchery-reared bass fry with an opportunity to prey on live forage fish once or twice before their release would enhance their survival and eventual recruitment into natural populations.  相似文献   

13.
14.
Juvenile Platax orbicularis switches foraging tactics from diurnal herbivory to nocturnal zooplanktivory within a day. To examine how juvenile fish actively feed on zooplankton prey during nighttime, a field-recorded video analysis was conducted in the reefs off Kuchierabu-jima Island, southern Japan. Juveniles consistently showed fast and sudden attacks that were accurately directed at individual zooplankton prey, and changed feeding frequencies with different prey densities. A negative relationship was observed between feeding frequency and prey density, with higher feeding frequencies occurring at lower prey concentrations, implying a disturbance effect of clouded zooplankton prey on the juvenile fish. A clear transition from a ram-based to a suction-based feeding mode was observed with fish size, suggesting that changes in the feeding behaviors occur even in juveniles fishes, without drastic morphological changes.  相似文献   

15.
1. Recent theoretical insights have shown that predator species may help each other to persist by size-selective foraging on a shared prey. By feeding on a certain prey stage, a predator may induce a compensatory response in another stage of the same prey species, thereby favouring other predators; a phenomenon referred to as emergent facilitation. 2. To test whether emergent facilitation may occur in a natural system, we performed an enclosure experiment where we mimicked fish predation by selectively removing large zooplankton and subsequently following the response of the invertebrate predator Bythotrephes longimanus. 3. Positive responses to harvest were observed in the biomass of juvenile individuals of the dominant zooplankton Holopedium gibberum and in Bythotrephes densities. Hence, by removing large prey, we increased the biomass of small prey, i.e. stage-specific biomass overcompensation was present in the juvenile stage of Holopedium. This favoured Bythotrephes, which preferentially feed on small Holopedium. 4. We argue that the stage-specific overcompensation occurred as a result of increased per capita fecundity of adult Holopedium and as a result of competitive release following harvest. If shown to be common, emergent facilitation may be a major mechanism behind observed predator extinctions and patterns of predator invasions.  相似文献   

16.
Recent studies suggest the necessity of understanding the interactive effects of predation and productivity on species coexistence and prey diversity. Models predict that coexistence of prey species with different competitive abilities can be achieved if inferior resource competitors are less susceptible to predation and if productivity and/or predation pressure are at intermediate levels. Hence, predator effects on prey diversity are predicted to be highly context dependent: enhancing diversity from low to intermediate levels of productivity or predation and reducing diversity of prey at high levels of productivity or predation. While several studies have examined the interactive effects of herbivory and productivity on primary producer diversity, experimental studies of such effects in predator‐prey systems are rare. We tested these predictions using an aquatic field mesocosm experiment in which initial density of the zooplankton predator Notonecta undulata and productivity were manipulated to test their interactive effects on diversity of seven zooplankton, cladoceran species that were common in surrounding ponds. Two productivity levels were imposed via phosphorus enrichment at levels comparable to low and intermediate levels found within neighboring natural ponds. We used open systems to allow for natural dispersal and behaviorally‐mediated numerical responses by the flight‐capable predator. Effects of predators on zooplankton diversity depended on productivity level. At low and high productivity, prey species richness declined while at high productivity it showed a unimodal relationship with increasing the predator density. Effects of treatments were weaker when using Pielou's evenness index or the inverse Simpson index as measures of prey diversity. Our findings are generally consistent with model predictions in which predators can facilitate prey coexistence and diversity at intermediate levels of productivity and predation intensity. Our work also shows that the functional form of the relationship between prey diversity and predation intensity can be complex and highly dependent on environmental context.  相似文献   

17.
Predation is a key process driving coral reef fish population dynamics, with higher per capita prey mortality rates on reefs with more predators. Reef predators often forage together, and at high densities, they may either cooperate or antagonize one another, thereby causing prey mortality rates to be substantially higher or lower than one would expect if predators did not interact. However, we have a limited mechanistic understanding of how prey mortality rates change with predator densities. We re-analyzed a previously published observational dataset to investigate how the foraging response of the coney grouper (Cephalopholis fulva) feeding on the bluehead wrasse (Thalassoma bifasciatum) changed with shifts in predator and prey densities. Using a model-selection approach, we found that per-predator feeding rates were most consistent with a functional response that declines as predator density increases, suggesting either antagonistic interactions among predators or a shared antipredator behavioral response by the prey. Our findings suggest that variation in predator density (natural or anthropogenic) may have substantial consequences for coral reef fish population dynamics.  相似文献   

18.
The feeding ecology of four pelagic fish species was studied in relation to their prey availability in the Gulf of Riga (Baltic Sea) during the summer 1999-2006. The zooplankton community was dominated by the cladoceran Bosmina longispina, rotifers Keratella cochlearis and K. quadrata and the copepod Eurytemora affinis, with the highest interannual variability in abundance recorded for B. longispina. The last influenced the diet of adult sprat Sprattus sprattus, juvenile smelt Osmerus eperlanus and three-spined stickleback Gasterosteus aculeatus as these were strongly selecting for B. longispina. The fish feeding activity did not match the abundance dynamics of their preferred prey, suggesting that fishes may switch to consume other prey in case the preferred diet was limited. A considerable dietary overlap indicated high potential competition between pelagic fish species. While herring Clupea harengus membras and G. aculeatus were relying on very different food, the diets of young O. eperlanus and G. aculeatus were very similar. Interannual variability in zooplankton composition and abundance significantly affected the diet composition of fishes, but those changes were insufficient to exert a consistent influence upon fish feeding activity and total amounts of zooplankton consumed.  相似文献   

19.
Trophically-transmitted parasites can affect intermediate host behaviors, resulting in spatial differences in parasite prevalence and distribution that shape the dynamics of hosts and their ecosystems. This variability may arise through differences in physical habitats or biological interactions between parasites and their hosts, and may occur on very fine spatial scales. Using a pseudophyllidean cestode (Schistocephalus solidus) and the threespine stickleback (Gasterosteus aculeatus) as a model parasite–host complex, we investigated the association of infection with host diet composition and stomach fullness in different habitats of two large lakes in southwest Alaska. To become infected, the fish must consume pelagic copepods infected with the parasite’s procercoid stage, so we predicted higher infection rates of fish in offshore habitats (where zooplankton are the primary prey) compared to fish from the littoral zone. Sticklebacks collected from the littoral and limnetic zones were assayed for parasites and their stomach contents were classified, counted, and weighed. Contrary to our prediction, permutational multivariate analysis of variance and principal components analysis revealed that threespine sticklebacks in the littoral zone, which consumed a generalist diet (pelagic zooplankton and benthic invertebrates), had higher parasite prevalence and biomass intensity than conspecifics in the limnetic zone, which consumed zooplankton. These results, consistent in two different lakes, suggest that differences in parasite prevalence between habitats may have been determined by a shift in host habitat due to infection, differential host mortality across habitats, differential procercoid prevalence in copepods across habitats, or a combination of the three factors. This paradoxical result highlights the potential for fine spatial variability in parasite abundance in natural systems.  相似文献   

20.
Z. Maciej Gliwicz 《Hydrobiologia》1994,272(1-3):201-210
One of the most obvious features of tropical lakes and reservoirs is the small body size of their zooplankton taxa. It is believed that this is the result of high and persistent predation by abundant planktivorous fish, which select large-bodied zooplankton prey thus making them more vulnerable to extinction in tropical as compared to temperate habitats. Do these extinctions result directly from fish predation? Could the high predation-induced mortality alone be responsible for an extermination of the population from a habitat? Or could indirect effects of predation be responsible? Some important indirect effects can be seen at the demographic level; these include reduced reproduction in the population resulting from higher vulnerability of ovigerous females to predation by visually oriented planktivores. Other important indirect effects can be observed at the individual level; these include shifts in behavior (from foraging to predator avoidance) and adjustments in physiology (from high to low feeding rate) in those planktonic animals which detect danger from their predators by sensing either the ‘predator odor’ or an ‘alarm substance’ originating from injured conspecific prey. Although a zooplankton species density may mostly result from the brutal force of direct predator impact on the population (mortality), it is more likely that its distribution in time and space could be attributed to a combination of indirect effects of predation on individual behavior and physiology. An example of periodicity in density and depth distribution patterns of Cahora Bassa zooplankton species and their periodic exterminations seems to confirm the role of indirect effects of predation by planktivorous fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号