首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantitative studies of coral communities in the central and northern Red Sea were designed for comparison of the community structure in both areas. The central Red Sea provides reef-building Scleractinia and reef-inhabiting Alcyonaria with optimal temperature conditions, whereas the north tip of the Gulf of Aqaba (29°30 N) represents the northernmost outpost of coral reefs in the Indian Ocean. It is generally assumed that coral diversity decreases towards the margins of the global reef-belt. In the Red Sea, generic diversity of hermatypic Scleractinia slightly decreases from the central to the northern part (51 : 48 genera); but cnidarian species abundance (species number per 25 m2 area) was found to increase from 62 to 98 species and the Shannon-Wiener diversity index increased from 2.58 to 3.67 with regard to colony number. The mean colony size was 189 cm2 at Sanganeb-Atoll, but only 52 cm2 at Aqaba. The mean numbers of colonies were inversely related: 662 per 25 m2 at Sanganeb-Atoll and 2028 at Aqaba. Uninhabited parts of the studied areas amounted to 47 % at Sanganeb-Atoll and to 56 % at Aqaba. The community structure of the studied areas indicates that occasional perturbations prevent the progress of the community towards a low-diversity equilibrium state. Since severe hydrodynamic damage is extremely rare in 10 m depth, major disturbances may occur by sedimentation, by the interference of grazers (e. g.Diadema setosum) and due to overgrowth by space-competitors (mainly soft corals). These events are to be regarded as throwbacks in the process of monopolization of the area by well adapted species. Recovery from such perturbations (i.e. recolonization of dead areas) obviously takes place at different velocities in the northern and central Red Sea, for the mean water temperature at Aqaba is 5 °C lower than in the central Red Sea. Hence the process of taking over a given space by a few species proceeds further in the central Red Sea than at its northern end. The increase in diversity per area towards high latitudes is comparable to that with depth. It is concluded from the great number of species at Aqaba that these reefs mark the northernmost outpost of the Indian Ocean only geographically but not ecophysiologically; they would occur at even higher latitudes, if the Gulf of Aqaba extended farther north.  相似文献   

2.
3.
Genetic structure within marine species may be driven by local adaptation to their environment, or alternatively by historical processes, such as geographic isolation. The gulfs and seas bordering the Arabian Peninsula offer an ideal setting to examine connectivity patterns in coral reef fishes with respect to environmental gradients and vicariance. The Red Sea is characterized by a unique marine fauna, historical periods of desiccation and isolation, as well as environmental gradients in salinity, temperature, and primary productivity that vary both by latitude and by season. The adjacent Arabian Sea is characterized by a sharper environmental gradient, ranging from extensive coral cover and warm temperatures in the southwest, to sparse coral cover, cooler temperatures, and seasonal upwelling in the northeast. Reef fish, however, are not confined to these seas, with some Red Sea fishes extending varying distances into the northern Arabian Sea, while their pelagic larvae are presumably capable of much greater dispersal. These species must therefore cope with a diversity of conditions that invoke the possibility of steep clines in natural selection. Here, we test for genetic structure in two widespread reef fish species (a butterflyfish and surgeonfish) and eight range‐restricted butterflyfishes across the Red Sea and Arabian Sea using genome‐wide single nucleotide polymorphisms. We performed multiple matrix regression with randomization analyses on genetic distances for all species, as well as reconstructed scenarios for population subdivision in the species with signatures of isolation. We found that (a) widespread species displayed more genetic subdivision than regional endemics and (b) this genetic structure was not correlated with contemporary environmental parameters but instead may reflect historical events. We propose that the endemic species may be adapted to a diversity of local conditions, but the widespread species are instead subject to ecological filtering where different combinations of genotypes persist under divergent ecological regimes.  相似文献   

4.
Tropical reefs have been impacted by thermal anomalies caused by global warming that induced coral bleaching and mortality events globally. However, there have only been very few recordings of bleaching within the Red Sea despite covering a latitudinal range of 15° and consequently it has been considered a region that is less sensitive to thermal anomalies. We therefore examined historical patterns of sea surface temperature (SST) and associated anomalies (1982–2012) and compared warming trends with a unique compilation of corresponding coral bleaching records from throughout the region. These data indicated that the northern Red Sea has not experienced mass bleaching despite intensive Degree Heating Weeks (DHW) of >15°C‐weeks. Severe bleaching was restricted to the central and southern Red Sea where DHWs have been more frequent, but far less intense (DHWs <4°C‐weeks). A similar pattern was observed during the 2015–2016 El Niño event during which time corals in the northern Red Sea did not bleach despite high thermal stress (i.e. DHWs >8°C‐weeks), and bleaching was restricted to the central and southern Red Sea despite the lower thermal stress (DHWs < 8°C‐weeks). Heat stress assays carried out in the northern (Hurghada) and central (Thuwal) Red Sea on four key reef‐building species confirmed different regional thermal susceptibility, and that central Red Sea corals are more sensitive to thermal anomalies as compared to those from the north. Together, our data demonstrate that corals in the northern Red Sea have a much higher heat tolerance than their prevailing temperature regime would suggest. In contrast, corals from the central Red Sea are close to their thermal limits, which closely match the maximum annual water temperatures. The northern Red Sea harbours reef‐building corals that live well below their bleaching thresholds and thus we propose that the region represents a thermal refuge of global importance.  相似文献   

5.
As the Earth's temperature continues to rise, coral bleaching events become more frequent. Some of the most affected reef ecosystems are located in poorly monitored waters, and thus, the extent of the damage is unknown. We propose the use of marine heatwaves (MHWs) as a new approach for detecting coral reef zones susceptible to bleaching, using the Red Sea as a model system. Red Sea corals are exceptionally heat‐resistant, yet bleaching events have increased in frequency. By applying a strict definition of MHWs on >30 year satellite‐derived sea surface temperature observations (1985–2015), we provide an atlas of MHW hotspots over the Red Sea coral reef zones, which includes all MHWs that caused major coral bleaching. We found that: (a) if tuned to a specific set of conditions, MHWs identify all areas where coral bleaching has previously been reported; (b) those conditions extended farther and occurred more often than bleaching was reported; and (c) an emergent pattern of extreme warming events is evident in the northern Red Sea (since 1998), a region until now thought to be a thermal refuge for corals. We argue that bleaching in the Red Sea may be vastly underrepresented. Additionally, although northern Red Sea corals exhibit remarkably high thermal resistance, the rapidly rising incidence of MHWs of high intensity indicates this region may not remain a thermal refuge much longer. As our regionally tuned MHW algorithm was capable of isolating all extreme warming events that have led to documented coral bleaching in the Red Sea, we propose that this approach could be used to reveal bleaching‐prone regions in other data‐limited tropical regions. It may thus prove a highly valuable tool for policymakers to optimize the sustainable management of coastal economic zones.  相似文献   

6.
Marine sponges are associated with a remarkable array of microorganisms. Using a tag pyrosequencing technology, this study was the first to investigate in depth the microbial communities associated with three Red Sea sponges, Hyrtios erectus, Stylissa carteri and Xestospongia testudinaria. We revealed highly diverse sponge-associated bacterial communities with up to 1000 microbial operational taxonomic units (OTUs) and richness estimates of up to 2000 species. Altogether, 26 bacterial phyla were detected from the Red Sea sponges, 11 of which were absent from the surrounding sea water and 4 were recorded in sponges for the first time. Up to 100 OTUs with richness estimates of up to 300 archaeal species were revealed from a single sponge species. This is by far the highest archaeal diversity ever recorded for sponges. A non-negligible proportion of unclassified reads was observed in sponges. Our results demonstrated that the sponge-associated microbial communities remained highly consistent in the same sponge species from different locations, although they varied at different degrees among different sponge species. A significant proportion of the tag sequences from the sponges could be assigned to one of the sponge-specific clusters previously defined. In addition, the sponge-associated microbial communities were consistently divergent from those present in the surrounding sea water. Our results suggest that the Red Sea sponges possess highly sponge-specific or even sponge-species-specific microbial communities that are resistant to environmental disturbance, and much of their microbial diversity remains to be explored.  相似文献   

7.
The Red Sea is an extreme marine environment, with conditions limiting the application of standard geochemical proxies for the reconstruction of paleoclimate. In order to develop paleoenvironmental reconstruction methods which are not dependent on chemical signals, we investigated the distribution of planktonic foraminifera in the surface sediments and assessed the viability of constructing foraminiferal transfer functions in this basin. We find a distinct gradient in the faunal assemblage along the basin's axis, which is reflected in a high correlation between faunal composition and all considered environmental parameters (temperature, salinity, chlorophyll a concentration, stratification, and oxycline depth). As a result, transfer functions constructed by different methods (ANN, MAT, IKM, WA-PLS) appear to be able to estimate all of these parameters with a high average accuracy (15% of the parameter's range in the Red Sea). However, redundancy analysis of the distribution of foraminiferal assemblages in surface sediments alone did not yield unambiguous results in terms of which of the considered factors exerts a primary control on the foraminifera distribution and which of the observed relationships are the result of the mutual correlation among the environmental factors. To disentangle the effect of individual environmental parameters, we applied the obtained transfer functions on a newly generated Holocene record from the central Red Sea. The integration of published paleoclimate reconstructions with our data allowed us to identify productivity as the most likely primary control of the planktonic foraminifera distribution in the Red Sea. The generated transfer functions can estimate paleoproductivity with acceptable accuracy (RMSEP chlorophyll a = 0.1 mg/m3; ~ 8% of recent range), but only under such conditions in the past when circulation patterns and salinity levels in the basin were fundamentally comparable to the present day. Since productivity in the central and southern Red Sea is closely linked with the Monsoon-driven water exchange across the Strait of Bab al Mandab, the resulting reconstructions can provide indirect information on the mode and intensity of the monsoonal system in the past.  相似文献   

8.
The connectivity among marine populations is determined by the dispersal capabilities of adults as well as their eggs and larvae. Dispersal distances and directions have a profound effect on gene flow and genetic differentiation within species. Genetic homogeneity over large areas is a common feature of coral reef fishes and can reflect high dispersal capability resulting in high levels of gene flow. If fish larvae return to their parental reef, gene flow would be restricted and genetic differentiation could occur. Larabicus quadrilineatus (Labridae) is considered as an endemic fish species of the Red Sea and Gulf of Aden. The juveniles of this species are cleaner fish that feed on ectoparasites of other fishes. Here, we investigated the genetic population structure and gene flow in L. quadrilineatus among five locations in the Red Sea to infer connectivity among them. To estimate genetic diversity, we analysed 369 bp of 237 mitochondrial DNA control region sequences. Haplotype and nucleotide diversities were higher in the southern than in the northern Red Sea. Analysis of molecular variance (amova) detected the highest significant genetic variation between northern and central/southern populations (Phi(CT) = 0.01; P < 0.001). Migration analysis revealed a several fold higher northward than southward migration, which could be explained by oceanographic conditions and spawning season. Even though the Phi(ST) value of 0.01 is rather low and implies a long larval dispersal distance, estimates based on the isolation-by-distance model show a very low mean larval dispersal distance (0.44-5.1 km) compared to other studies. In order to enable a sustainable ornamental fishery on the fourline wrasse, the results of this study suggest that populations in the northern and southern Red Sea should be managed separately as two different stocks. The rather low larval dispersal distance of about 5 km needs to be considered in the design of marine protected areas to enable connectivity and self-seeding.  相似文献   

9.
Alien species are considered one of the prime threats to biodiversity, driving major changes in ecosystem structure and function. Identifying the traits associated with alien introduction has been largely restricted to comparing indigenous and alien species or comparing alien species that differ in abundance or impact. However, a more complete understanding may emerge when the entire pool of potential alien species is used as a control, information that is rarely available. In the eastern Mediterranean, the marine environment is undergoing an unparalleled species composition transformation, as a flood of aliens have entered from the Red Sea following the opening of the Suez Canal in 1869. In this study, we compile data on species traits, geographical distribution, and environmental affinity of the entire pool of reef‐associated fish species in the Red Sea and more generally across the Indo‐Pacific. We use this extensive data to identify the prime characteristics separating Red Sea species that have become alien in the Mediterranean from those that have not. We find that alien species occupy a larger range of environments in their native ranges, explaining their ability to colonize the seasonal Mediterranean. Red Sea species that naturally experience high maximum temperatures in their native range have a high probability of becoming alien. Thus, contrary to predictions of an accelerating number of aliens following increased water temperatures, hotter summers in this region may prevent the establishment of many alien species. We further find that ecological trait diversity of alien species is substantially more evenly spaced and more divergent than random samples from the pool of Red Sea species, pointing at additional processes, such as competition, promoting ecological diversity among alien species. We use these results to provide a first quantitative ranking of the potential of Red Sea species to become established in the eastern Mediterranean.  相似文献   

10.
Fluctuations in abundance, diversity and species composition of benthic foraminifera from two sites of the northern and southern Red Sea indicate strong variability of deep-sea ecosystems during the last four glacial to interglacial cycles. In total, five and four different benthic foraminiferal assemblages have been identified in the northern core and southern core, respectively. Comparison with recent faunas from the Red Sea and adjacent oceans allowed the reconstruction of temporal changes in deep-water ventilation, salinity and food availability at the seafloor. Generally, the abundance of infaunal and miliolid taxa increase during glacial intervals indicating increased organic matter fluxes, oxygen decrease and salinity increase in deep waters during these times. These fluctuations are attributed to enhanced oxygen consumption rates and temporarily reduced deep-water formation in the northern Red Sea during glacial intervals. The recorded environmental changes are a reflection of both high- and low-latitude climate changes. The northern Red Sea is mainly influenced by glacio-eustatic sea level fluctuations that control deep-water formation rates and by mid-latitude climate changes of the Mediterranean region that control surface productivity. In contrast, deep-sea ecosystem variability of the southern Red Sea is additionally influenced by low-latitude climate changes attributed to the NE monsoon intensity that drives the inflow of nutrient-rich surface waters from the Gulf of Aden. These results demonstrate the high sensitivity of deep-sea ecosystems of the Red Sea to both global and regional climate changes.  相似文献   

11.
12.
Trypauchen vagina (Bloch & Schneider, 1801) is a goby that lives burrowed into the substrata feeding on small invertebrates. It is native to the Indo-pacific region, ranging from Kuwait to China. Recently, this fish has been reported outside the original range of distribution, being found in the Mediterranean Sea, and more recently in the northeastern Brazilian coast. The Mediterranean reports are usually associated with Lessepsian migration, while the reports from Brazil are possibly related to ballast water transportation. In the present work, we provide eight new records from southeastern Brazilian coast, all made in São Paulo state, far from the first record. These additional records raised concern since the presence of an alien species could implicate in environmental and economic losses. Thus, we decide to model the environmental suitability for this goby in the Brazilian coast, specially focusing on major ports, usually places with high ballast water propagule pressure. In addition, an analysis of the suitability in the Red Sea was also made, to verify the hypothesis of Lessepsian migration. The results revealed that temperature and primary productivity are among the most important parameters for the presence of T. vagina, also indicating a high environmental suitability for this species in the Red Sea and Brazilian coast, especially in southeastern region, where the new records were made. Due to the number of collected individuals, it is hard to affirm that this taxon presents a self-sustaining population in Brazilian waters, but the several registers, in different locations and different life stages point to an establishment of the species in this new region. This population status allied with a high environmental suitability is alarming and should motivate new studies concerning T. vagina in Brazilian waters.  相似文献   

13.
The Red Sea has long been recognized as a region of high biodiversity and endemism. Despite this diversity and early history of scientific work, our understanding of the ecology of coral reefs in the Red Sea has lagged behind that of other large coral reef systems. We carried out a quantitative assessment of ISI-listed research published from the Red Sea in eight specific topics (apex predators, connectivity, coral bleaching, coral reproductive biology, herbivory, marine protected areas, non-coral invertebrates and reef-associated bacteria) and compared the amount of research conducted in the Red Sea to that from Australia’s Great Barrier Reef (GBR) and the Caribbean. On average, for these eight topics, the Red Sea had 1/6th the amount of research compared to the GBR and about 1/8th the amount of the Caribbean. Further, more than 50 % of the published research from the Red Sea originated from the Gulf of Aqaba, a small area (<2 % of the area of the Red Sea) in the far northern Red Sea. We summarize the general state of knowledge in these eight topics and highlight the areas of future research priorities for the Red Sea region. Notably, data that could inform science-based management approaches are badly lacking in most Red Sea countries. The Red Sea, as a geologically “young” sea located in one of the warmest regions of the world, has the potential to provide insight into pressing topics such as speciation processes as well as the capacity of reef systems and organisms to adapt to global climate change. As one of the world’s most biodiverse coral reef regions, the Red Sea may yet have a significant role to play in our understanding of coral reef ecology at a global scale.  相似文献   

14.

Sea surface temperatures (SST) and chlorophyll a concentrations (Chl a) in the southern Red Sea have wide variations based on distance from the coast. To understand how these variations can affect the diversity of symbionts hosted by reef-associated organisms, we conducted a study in the central and southern Red Sea to examine the diversity of Symbiodiniaceae hosted by the zooxanthellate zoantharian Palythoa tuberculosa at different distances from the coast: offshore (FBO), midshelf (FBM) and inshore (FBI) of Farasan Banks, and inshore at Thuwal (TI). Genomic DNA was extracted from 198 specimens, followed by amplification of the ribosomal DNA internal transcribed spacer 2 (ITS-2) and noncoding region of the chloroplast plastid minicircle (psbAncr). Durusdinium and six lineages of Cladocopium (Pt-1-a, Pt-1-b, Pt-1-c, Pt-1-d, Pt-3-a, Pt-3-b) were identified based on sequences of the two marker regions. Changes in composition of Symbiodiniaceae lineages were observed from FBI (high SST, high Chl a) to FBO (low SST, low Chl a). Molecular variance analyses showed that distance from coast was the most likely predictor of differences in Cladocopium lineages. Multinomial logistic regression analysis showed a transition among different Cladocopium lineages as SST increased. One Cladocopium lineage, Pt-1-b, demonstrated higher prevalences at high SSTs and increased in prevalences at the same rate as thermotolerant Durusdinium. Additionally, Cladocopium lineage Pt-3-a had a high affinity to low Chl a concentrations. This study demonstrates that environmental variations in SSTs and Chl a concentrations are significant predictors for the diversity of dominant Symbiodiniaceae within individual host P. tuberculosa colonies. We theorize that flexibility with different lineages of Symbiodiniaceae allows generalist P. tuberculosa to live across a wide range of environments in the southern Red Sea.

  相似文献   

15.
Kochzius M  Blohm D 《Gene》2005,347(2):295-301
The aim of this study is to reveal gene flow between populations of the coral reef dwelling lionfish Pterois miles in the Gulf of Aqaba and northern Red Sea. Due to the fjord-like hydrography and topology of the Gulf of Aqaba, isolation of populations might be possible. Analysis of 5' mitochondrial control region sequences from 94 P. miles specimens detected 32 polymorphic sites, yielding 38 haplotypes. Sequence divergence among different haplotypes ranged from 0.6% to 9.9% and genetic diversity was high (h=0.85, pi=1.9%). AMOVA indicates panmixia between the Gulf of Aqaba and northern Red Sea, but analysis of migration pattern shows an almost unidirectional migration originating from the Red Sea.  相似文献   

16.
Little is known about the biodiversity of microbial eukaryotes in the South China Sea, especially in waters at bathyal depths. Here, we employed SSU rDNA gene sequencing to reveal the diversity and community structure across depth and distance gradients in the South China Sea. Vertically, the highest alpha diversity was found at 75‐m depth. The communities of microbial eukaryotes were clustered into shallow‐, middle‐, and deep‐water groups according to the depth from which they were collected, indicating a depth‐related diversity and distribution pattern. Rhizaria sequences dominated the microeukaryote community and occurred in all samples except those from less than 50‐m deep, being most abundant near the sea floor where they contributed ca. 64–97% and 40–74% of the total sequences and OTUs recovered, respectively. A large portion of rhizarian OTUs has neither a nearest named neighbor nor a nearest neighbor in the GenBank database which indicated the presence of new phylotypes in the South China Sea. Given their overwhelming abundance and richness, further phylogenetic analysis of rhizarians were performed and three new genetic clusters were revealed containing sequences retrieved from the deep waters of the South China Sea. Our results shed light on the diversity and community structure of microbial eukaryotes in this not yet fully explored area.  相似文献   

17.
The aim of this paper was (1) to update sponge diversity and distribution in the Mediterranean and (2) to re-examine faunal relationships among the Mediterranean areas on the basis of their sponge fauna. The Mediterranean demosponge faunal list was updated to 629 species by taking into consideration recent data from previously poorly studied areas. The species lists of 14 Mediterranean areas were compared on the basis of their sponge species richness, species composition, and taxonomic relatedness of species using multivariate analyses and diversity measures, such as PD, Delta+, and Lambda+. The 14 Mediterranean areas examined for their diversity and affinities were assembled into four major zoogeographic groups: the northwestern, northeastern, the central zone, and southeastern areas. Richest in species numbers were the areas belonging to the two northern groups. The species richness comparisons and similarity analyses performed at the generic level showed that it can be safely used as a surrogate for sponge species diversity in the Mediterranean. The results of this study showed that the simple traditional division of the Mediterranean Sea into a western, central, and eastern basin cannot reliably describe the distribution of sponges in the area. Thus, the W to E faunal decline previously presented for several faunal groups shifts to a general NNW-SSE pattern when one examines separately the northern and the southern parts of the traditional basins. This gradient seems to be in agreement with differences in key environmental variables, such as latitude, salinity, temperature, and water circulation, besides the typically examined distance from Gibraltar. Handling editor: T. P. Crowe  相似文献   

18.
Biogeography of the marine birds of a confined sea, the Mediterranean   总被引:3,自引:0,他引:3  
Aim The Mediterranean sea is a winter productive oligotrophic basin where Atlantic water replaces water lost through evaporation, this influx being a major source of productivity and fertility. The long coastlines and the large number of islands cause high oceanographic heterogeneity. Moreover, during its geological history, it has dried out several times. So we describe the consequences of these particular features on species richness, distribution, and breeding ecology of marine birds. Location The Mediterranean sea (including the Black Sea and the Sea of Azov) communicates with the Atlantic Ocean only through a 14 km wide channel (Straits of Gibraltar), and since 1869, with the Red Sea through the Suez Canal. Methods The Mediterranean was subdivided into different areas, according to physical oceanographic entities and productivity, linked to numbers and distribution of both breeding and wintering marine birds (defined as species strongly dependent on marine resources, breeding only on islands and/or the coastline). Results The total marine bird biomass, and species diversity, are lower in the Mediterranean than in the near Atlantic. The eastern Mediterranean, with lowest primary productivity, contains fewer marine bird taxa than the more productive western part. Taxa which mainly occur in the western and southern parts of the Mediterranean migrate through the Straits of Gibraltar to winter in the southern Atlantic, while those inhabiting the northern and eastern parts are sedentary, as a result of differences in species composition. Northern coastal basin communities (i.e. the Tyrrhenian and the Balearic Seas), are composed of less pelagic, and earlier breeding species, that rear chicks during the productive season. These latter taxa are actually the most typical Mediterranean taxa, in terms of endemism. Main conclusions The Mediterranean marine bird community is not tropical, but rather, shows the highest affinity with the Atlantic temperate community. Its level of endemism is however high and comparable to other confined basins such as the Red Sea.  相似文献   

19.
The stability and persistence of coral reefs in the decades to come is uncertain due to global warming and repeated bleaching events that will lead to reduced resilience of these ecological and socio‐economically important ecosystems. Identifying key refugia is potentially important for future conservation actions. We suggest that the Gulf of Aqaba (GoA) (Red Sea) may serve as a reef refugium due to a unique suite of environmental conditions. Our hypothesis is based on experimental detection of an exceptionally high bleaching threshold of northern Red Sea corals and on the potential dispersal of coral planulae larvae through a selective thermal barrier estimated using an ocean model. We propose that millennia of natural selection in the form of a thermal barrier at the southernmost end of the Red Sea have selected coral genotypes that are less susceptible to thermal stress in the northern Red Sea, delaying bleaching events in the GoA by at least a century.  相似文献   

20.
It remains unknown whether and to what extent marine prokaryotic communities are capable of degrading plastic in the ocean. To address this knowledge gap, we combined enrichment experiments employing low-density polyethylene (LDPE) as the sole carbon source with a comparison of bacterial communities on plastic debris in the Pacific, the North Atlantic and the northern Adriatic Sea. A total of 35 operational taxonomic units (OTUs) were enriched in the LDPE-laboratory incubations after 1 year, of which 20 were present with relative abundances > 0.5% in at least one plastic sample collected from the environment. From these, OTUs classified as Cognatiyoonia, Psychrobacter, Roseovarius and Roseobacter were found in the communities of plastics collected at all oceanic sites. Additionally, OTUs classified as Roseobacter, Pseudophaeobacter, Phaeobacter, Marinovum and Cognatiyoonia, also enriched in the LDPE-laboratory incubations, were enriched on LDPE communities compared to the ones associated to glass and polypropylene in in-situ incubations in the northern Adriatic Sea after 1 month of incubation. Some of these enriched OTUs were also related to known alkane and hydrocarbon degraders. Collectively, these results demonstrate that there are prokaryotes capable of surviving with LDPE as the sole carbon source living on plastics in relatively high abundances in different water masses of the global ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号