共查询到20条相似文献,搜索用时 15 毫秒
1.
de la Fuente S Fonteriz RI de la Cruz PJ Montero M Alvarez J 《The Biochemical journal》2012,445(3):371-376
Mitochondria have a very large capacity to accumulate Ca(2+) during cell stimulation driven by the mitochondrial membrane potential. Under these conditions, [Ca(2+)](M) (mitochondrial [Ca(2+)]) may well reach millimolar levels in a few seconds. Measuring the dynamics of [Ca(2+)](M) during prolonged stimulation has been previously precluded by the high Ca(2+) affinity of the probes available. We have now developed a mitochondrially targeted double-mutated form of the photoprotein aequorin which is able to measure [Ca(2+)] in the millimolar range for long periods of time without problems derived from aequorin consumption. We show in the present study that addition of Ca(2+) to permeabilized HeLa cells triggers an increase in [Ca(2+)](M) up to an steady state of approximately 2-3 mM in the absence of phosphate and 0.5-1 mM in the presence of phosphate, suggesting buffering or precipitation of calcium phosphate when the free [Ca(2+)] reaches 0.5-1 mM. Mitochondrial pH acidification partially re-dissolved these complexes. These millimolar [Ca(2+)](M) levels were stable for long periods of time provided the mitochondrial membrane potential was not collapsed. Silencing of the mitochondrial Ca(2+) uniporter largely reduced the rate of [Ca(2+)](M) increase, but the final steady-state [Ca(2+)](M) reached was similar. In intact cells, the new probe allows monitoring of agonist-induced increases of [Ca(2+)](M) without problems derived from aequorin consumption. 相似文献
2.
Villalobos C Núñez L Chamero P Alonso MT García-Sancho J 《The Journal of biological chemistry》2001,276(43):40293-40297
Mitochondria take up calcium during cell activation thus shaping Ca(2+) signaling and exocytosis. In turn, Ca(2+) uptake by mitochondria increases respiration and ATP synthesis. Targeted aequorins are excellent Ca(2+) probes for subcellular analysis, but single-cell imaging has proven difficult. Here we combine virus-based expression of targeted aequorins with photon-counting imaging to resolve dynamics of the cytosolic, mitochondrial, and nuclear Ca(2+) signals at the single-cell level in anterior pituitary cells. These cells exhibit spontaneous electric activity and cytosolic Ca(2+) oscillations that are responsible for basal secretion of pituitary hormones and are modulated by hypophysiotrophic factors. Aequorin reported spontaneous [Ca(2+)] oscillations in all the three compartments, bulk cytosol, nucleus, and mitochondria. Interestingly, a fraction of mitochondria underwent much larger [Ca(2+)] oscillations, which were driven by local high [Ca(2+)] domains generated by the spontaneous electric activity. These oscillations were large enough to stimulate respiration, providing the basis for local tune-up of mitochondrial function by the Ca(2+) signal. 相似文献
3.
Mitochondrial Ca(2+) uptake plays a fundamental role in the regulation of energy production and cell survival. Under physiological conditions, mitochondrial Ca(2+) uptake occurs by a uniport mechanism driven electrophoretically by the membrane potential created by the respiratory chain. The activity and the biochemical properties of the mitochondrial calcium uniporter (MCU) were extensively characterized for decades but the molecular identity of the channel has remained elusive. Here, we review the recent discovery of the mitochondria Ca(2+) uniporter that represents a groundbreaking result for the molecular understanding of mitochondrial Ca(2+) homeostasis and will provide insight into the role of mitochondrial Ca(2+) deregulation in the pathogenesis of human disorders. 相似文献
4.
Low cytoplasmic [Ca(2+)] activates I(CRAC) independently of global Ca(2+) store depletion in RBL-1 cells 总被引:1,自引:0,他引:1
Release of Ca(2+) from inositol (1,4,5)-trisphosphate-sensitive Ca(2+) stores causes "capacitative calcium entry," which is mediated by the so-called "Ca(2+) release-activated Ca(2+) current" (I(CRAC)) in RBL-1 cells. Refilling of the Ca(2+) stores or high cytoplasmic [Ca(2+)] ([Ca(2+)](cyt)) inactivate I(CRAC). Here we address the question if also [Ca(2+)](cyt) lower than the resting [Ca(2+)](cyt) influences store-operated channels. We therefore combined patch clamp and mag fura-2 fluorescence methods to determine simultaneously both I(CRAC) and [Ca(2+)] within Ca(2+) stores of RBL-1 cells ([Ca(2+)](store)). We found that low [Ca(2+)](cyt) in the range of 30-50 nM activates I(CRAC) and Ca(2+) influx spontaneously and independently of global Ca(2+) store depletion, while elevation of [Ca(2+)](cyt) to the resting [Ca(2+)](cyt) (100 nM) resulted in store dependence of I(CRAC) activation. We conclude that spontaneous activation of I(CRAC) by low [Ca(2+)](cyt) could serve as a feedback mechanism keeping the resting [Ca(2+)](cyt) constant. 相似文献
5.
Berman MC 《Biochimica et biophysica acta》2000,1509(1-2):42-54
The Ca(2+) binding sites of the Ca(2+)-ATPase of skeletal muscle sarcoplasmic reticulum (SR) have been identified as two high-affinity sites orientated towards the cytoplasm, two sites of low affinity facing the lumen, and a transient occluded species that is isolated from both membrane surfaces. Binding and release studies, using (45)Ca(2+), have invoked models with sequential binding and release from high- and low-affinity sites in a channel-like structure. We have characterised turnover conditions in isolated SR vesicles with oxalate in a Ca(2+)-limited state, [Ca(2)](lim), where both high- and low-affinity sites are vacant in the absence of chelators (Biochim. Biophys. Acta 1418 (1999) 48-60). Thapsigargin (TG), a high-affinity specific inhibitor of the Ca(2+)-ATPase, released a fraction of total Ca(2+) at [Ca(2+)](lim) that accumulated during active transport. Maximal Ca(2+) release was at 2:1 TG/ATPase. Ionophore, A23187, and Triton X-100 released the rest of Ca(2+) resistant to TG. The amount of Ca(2+) released depended on the incubation time at [Ca(2+)](lim), being 3.0 nmol/mg at 20 s and 0.42 nmol/mg at 1000 s. Rate constants for release declined from 0. 13 to 0.03 s(-1). The rapidly released early fraction declined with time and k=0.13 min(-1). Release was not due to reversal of the pump cycle since ADP had no effect; neither was release impaired with substrates acetyl phosphate or GTP. A phase of reuptake of Ca(2+) followed release, being greater with shorter delay (up to 200 s) following active transport. Reuptake was minimal with GTP, with delays more than 300 s, and was abolished by vanadate and at higher [TG], >5 microM. Ruthenium red had no effect on efflux, indicating that ryanodine-sensitive efflux channels in terminal cisternal membranes are not involved in the Ca(2+) release mechanism. It is concluded that the Ca(2+) released by TG is from the occluded Ca(2+) fraction. The Ca(2+) occlusion sites appear to be independent of both high-affinity cytoplasmic and low-affinity lumenal sites, supporting a multisite 'in line' sequential binding mechanism for Ca(2+) transport. 相似文献
6.
We describe experiments in which the low affinity indicator Oregon Green BAPTA 5N was used to record the spatially resolved changes in [Ca(2+)] from intracellular stores in rat gastric myocytes. Cells were loaded with the membrane permeant form of the indicator and imaged using a confocal scanning laser microscope. In doubly stained cells the Oregon Green signal colocalized with BIODIPY 558/568 Brefeldin A, a label for the endo/sarcoplasmic reticulum (SR) and Golgi apparatus. Oregon Green BAPTA 5N was calibrated in gastric myocytes, giving an in situ K(d) of 90 microM. The resting free [Ca(2+)] within the SR averaged 65 microM. A reversible decrease in Oregon Green fluorescence was observed on bath application of Inositol triphosphate (IP(3)) (10 microM) to permeabilized cells. Similar changes were also observed when cyclopiazonic acid (5 microM) was applied to intact myocytes, again with recovery of store [Ca(2+)] following drug washout. Identical patterns of Ca(2+) depletion were seen when caffeine (1 microM) and carbachol (10 microM) were applied sequentially to the same cells, suggesting that activation of ryanodine and IP(3)-sensitive channels can result in the release of Ca(2+) from the same regions of the SR. 相似文献
7.
Rossi AE Boncompagni S Wei L Protasi F Dirksen RT 《American journal of physiology. Cell physiology》2011,301(5):C1128-C1139
Muscle contraction requires ATP and Ca(2+) and, thus, is under direct control of mitochondria and the sarcoplasmic reticulum. During postnatal skeletal muscle maturation, the mitochondrial network exhibits a shift from a longitudinal ("longitudinal mitochondria") to a mostly transversal orientation as a result of a progressive increase in mitochondrial association with Ca(2+) release units (CRUs) or triads ("triadic mitochondria"). To determine the physiological implications of this shift in mitochondrial disposition, we used confocal microscopy to monitor activity-dependent changes in myoplasmic (fluo 4) and mitochondrial (rhod 2) Ca(2+) in single flexor digitorum brevis (FDB) fibers from 1- to 4-mo-old mice. A robust and sustained Ca(2+) accumulation in triadic mitochondria was triggered by repetitive tetanic stimulation (500 ms, 100 Hz, every 2.5 s) in FDB fibers from 4-mo-old mice. Specifically, mitochondrial rhod 2 fluorescence increased 272 ± 39% after a single tetanus and 412 ± 45% after five tetani and decayed slowly over 10 min following the final tetanus. Similar results were observed in fibers expressing mitochondrial pericam, a mitochondrial-targeted ratiometric Ca(2+) indicator. Interestingly, sustained mitochondrial Ca(2+) uptake following repetitive tetanic stimulation was similar for triadic and longitudinal mitochondria in FDB fibers from 1-mo-old mice, and both mitochondrial populations were found by electron microscopy to be continuous and structurally tethered to the sarcoplasmic reticulum. Conversely, the frequency of osmotic shock-induced Ca(2+) sparks per CRU density decreased threefold (from 3.6 ± 0.2 to 1.2 ± 0.1 events·CRU(-1)·min(-1)·100 μm(-2)) during postnatal development in direct linear correspondence (r(2) = 0.95) to an increase in mitochondrion-CRU pairing. Together, these results indicate that mitochondrion-CRU association promotes Ca(2+) spark suppression but does not significantly impact mitochondrial Ca(2+) uptake. 相似文献
8.
Powered by the steep mitochondrial membrane potential Ca(2+) permeates into the mitochondria via the Ca(2+) uniporter and is then extruded by a mitochondrial Na(+)/Ca(2+) exchanger. This mitochondrial Ca(2+) shuttling regulates the rate of ATP production and participates in cellular Ca(2+) signaling. Despite the fact that the exchanger was functionally identified 40 years ago its molecular identity remained a mystery. Early studies on isolated mitochondria and intact cells characterized the functional properties of a mitochondrial Na(+)/Ca(2+) exchanger, and showed that it possess unique functional fingerprints such as Li(+)/Ca(2+) exchange and that it is displaying selective sensitivity to inhibitors. Purification of mitochondria proteins combined with functional reconstitution led to the isolation of a polypeptide candidate of the exchanger but failed to molecularly identify it. A turning point in the search for the exchanger molecule came with the recent cloning of the last member of the Na(+)/Ca(2+) exchanger superfamily termed NCLX (Na(+)/Ca(2+)/Li(+) exchanger). NCLX is localized in the inner mitochondria membrane and its expression is linked to mitochondria Na(+)/Ca(2+) exchange matching the functional fingerprints of the putative mitochondrial Na(+)/Ca(2+) exchanger. Thus NCLX emerges as the long sought mitochondria Na(+)/Ca(2+) exchanger and provide a critical molecular handle to study mitochondrial Ca(2+) signaling and transport. Here we summarize some of the main topics related to the molecular properties of the Na(+)/Ca(2+) exchanger, beginning with the early days of its functional identification, its kinetic properties and regulation, and culminating in its molecular identification. 相似文献
9.
Modulation of mitochondrial Ca(2+) homeostasis by Bcl-2 总被引:7,自引:0,他引:7
Zhu L Ling S Yu XD Venkatesh LK Subramanian T Chinnadurai G Kuo TH 《The Journal of biological chemistry》1999,274(47):33267-33273
We have investigated the role of mitochondrial Ca(2+) (Ca(m)) homeostasis in cell survival. Disruption of Ca(m) homeostasis via depletion of the mitochondrial Ca(2+) store was the earliest event that occurred during staurosporine-induced apoptosis in neuroblastoma cells (SH-SY5Y). The decrease of Ca(m) preceded activation of the caspase cascade and DNA fragmentation. Overexpression of the anti-apoptosis protein Bcl-2 led to increased Ca(m) load, increased mitochondrial membrane potential (DeltaPsi(m)), and inhibition of staurosporine-induced apoptosis. On the other hand, ectopic expression of the pro-apoptotic protein Bik led to decreased Ca(m) load and decreased DeltaPsi(m). Inhibition of calcium uptake into mitochondria by ruthenium red induced a dose-dependent apoptosis as determined by nuclear staining and DNA ladder assay. Similarly, reducing the Ca(m) load by lowering the extracellular calcium concentration also led to apoptosis. We suggest that the anti-apoptotic effect of Bcl-2 is related to its ability to maintain a threshold level of Ca(m) and DeltaPsi(m) while the pro-apoptotic protein Bik has the opposite effect. Furthermore, both ER and mitochondrial Ca(2+) stores are important, and the depletion of either one will result in apoptosis. Thus, our results, for the first time, provide evidence that the maintenance of Ca(m) homeostasis is essential for cell survival. 相似文献
10.
Montero M Alonso MT Albillos A García-Sancho J Alvarez J 《Molecular biology of the cell》2001,12(1):63-71
We have reported that a population of chromaffin cell mitochondria takes up large amounts of Ca(2+) during cell stimulation. The present study focuses on the pathways for mitochondrial Ca(2+) efflux. Treatment with protonophores before cell stimulation abolished mitochondrial Ca(2+) uptake and increased the cytosolic [Ca(2+)] ([Ca(2+)](c)) peak induced by the stimulus. Instead, when protonophores were added after cell stimulation, they did not modify [Ca(2+)](c) kinetics and inhibited Ca(2+) release from Ca(2+)-loaded mitochondria. This effect was due to inhibition of mitochondrial Na(+)/Ca(2+) exchange, because blocking this system with CGP37157 produced no further effect. Increasing extramitochondrial [Ca(2+)](c) triggered fast Ca(2+) release from these depolarized Ca(2+)-loaded mitochondria, both in intact or permeabilized cells. These effects of protonophores were mimicked by valinomycin, but not by nigericin. The observed mitochondrial Ca(2+)-induced Ca(2+) release response was insensitive to cyclosporin A and CGP37157 but fully blocked by ruthenium red, suggesting that it may be mediated by reversal of the Ca(2+) uniporter. This novel kind of mitochondrial Ca(2+)-induced Ca(2+) release might contribute to Ca(2+) clearance from mitochondria that become depolarized during Ca(2+) overload. 相似文献
11.
Effects of polyamines on mitochondrial Ca(2+) transport 总被引:2,自引:0,他引:2
Mammalian mitochondria are able to enhance Ca(2+) accumulation in the presence of polyamines by activating the saturable systems of Ca(2+) inward transport and buffering extramitochondrial Ca(2+) concentrations to levels similar to those in the cytosol of resting cells. This effect renders them responsive to regulate free Ca(2+) concentrations in the physioloical range. The mechanism involved is due to a rise in the affinity of the Ca(2+) transport system, induced by polyamines, most probably exhibiting allosteric behaviour. The regulatory site of this mechanism is the so-called S(1) binding site of polyamines, which operates in physiological conditions and is located in the energy well between the two peaks present in the energy profile of mitochondrial spermine transport. Spermine is bidirectionally transported across teh inner membrane by cycling, in which influx and efflux are driven by electrical and pH gradients, respectively. Most probably, polyamine affects the Ca(2+) transport system when it acts from the outside-that is, in the direction of its uniporter channel, in order to reach the S(1) site. Important physiological functions are related to activation of Ca(2+) transport systems by polyamines and their interactions with the S(1) site. These functions include a rise in the metabolic rate for energy supply and modulation of mitochondrial permeability transition induction, with consequent effects on the triggering of the apoptotic pathway. 相似文献
12.
Waldeck-Weiermair M Duan X Naghdi S Khan MJ Trenker M Malli R Graier WF 《Cell calcium》2010,48(5):288-301
Uncoupling proteins 2 and 3 (UCP2/3) are essential for mitochondrial Ca(2+) uptake but both proteins exhibit distinct activities in regard to the source and mode of Ca(2+) mobilization. In the present work, structural determinants of their contribution to mitochondrial Ca(2+) uptake were explored. Previous findings indicate the importance of the intermembrane loop 2 (IML2) for the contribution of UCP2/3. Thus, the IML2 of UCP2/3 was substituted by that of UCP1. These chimeras had no activity in mitochondrial uptake of intracellularly released Ca(2+), while they mimicked the wild-type proteins by potentiating mitochondrial sequestration of entering Ca(2+). Alignment of the IML2 sequences revealed that UCP1, UCP2 and UCP3 share a basic amino acid in positions 163, 164 and 167, while only UCP2 and UCP3 contain a second basic residue in positions 168 and 171, respectively. Accordingly, mutants of UCP3 in positions 167 and 171/172 were made. In permeabilized cells, these mutants exhibited distinct Ca(2+) sensitivities in regard to mitochondrial Ca(2+) sequestration. In intact cells, these mutants established different activities in mitochondrial uptake of either intracellularly released (UCP3(R171,E172)) or entering (UCP3(R167)) Ca(2+). Our data demonstrate that distinct sites in the IML2 of UCP3 effect mitochondrial uptake of high and low Ca(2+) signals. 相似文献
13.
Stimulation of mitochondrial oxidative metabolism by Ca(2+) is now generally recognised as important for the control of cellular ATP homeostasis. Here, we review the mechanisms through which Ca(2+) regulates mitochondrial ATP synthesis. We focus on cardiac myocytes and pancreatic β-cells, where tight control of this process is likely to play an important role in the response to rapid changes in workload and to nutrient stimulation, respectively. We also describe a novel approach for imaging the Ca(2+)-dependent regulation of ATP levels dynamically in single cells. 相似文献
14.
Romanin C Gamsjaeger R Kahr H Schaufler D Carlson O Abernethy DR Soldatov NM 《FEBS letters》2000,487(2):301-306
Ca(2+)-induced inactivation of L-type Ca(2+) is differentially mediated by two C-terminal motifs of the alpha(1C) subunit, L (1572-1587) and K (1599-1651) implicated for calmodulin binding. We found that motif L is composed of a highly selective Ca(2+) sensor and an adjacent Ca(2+)-independent tethering site for calmodulin. The Ca(2+) sensor contributes to higher Ca(2+) sensitivity of the motif L complex with calmodulin. Since only combined mutation of both sites removes Ca(2+)-dependent current decay, the two-site modulation by Ca(2+) and calmodulin may underlie Ca(2+)-induced inactivation of the channel. 相似文献
15.
tcBid promotes Ca(2+) signal propagation to the mitochondria: control of Ca(2+) permeation through the outer mitochondrial membrane 总被引:4,自引:0,他引:4
Calcium spikes established by IP(3) receptor-mediated Ca(2+) release from the endoplasmic reticulum (ER) are transmitted effectively to the mitochondria, utilizing local Ca(2+) interactions between closely associated subdomains of the ER and mitochondria. Since the outer mitochondrial membrane (OMM) has been thought to be freely permeable to Ca(2+), investigations have focused on IP(3)-driven Ca(2+) transport through the inner mitochondrial membrane (IMM). Here we demonstrate that selective permeabilization of the OMM by tcBid, a proapoptotic protein, results in an increase in the magnitude of the IP(3)-induced mitochondrial [Ca(2+)] signal. This effect of tcBid was due to promotion of activation of Ca(2+) uptake sites in the IMM and, in turn, to facilitation of mitochondrial Ca(2+) uptake. In contrast, tcBid failed to control the delivery of sustained and global Ca(2+) signals to the mitochondria. Thus, our data support a novel model that Ca(2+) permeability of the OMM at the ER- mitochondrial interface is an important determinant of local Ca(2+) signalling. Facilitation of Ca(2+) delivery to the mitochondria by tcBid may also support recruitment of mitochondria to the cell death machinery. 相似文献
16.
T Sugiyama K Hasegawa N Yanai K Mikoshiba M Obinata Y Matsuda 《Biochemical and biophysical research communications》1999,264(3):774-776
Proliferation of smooth muscle cells (SMC) has a role in the development of cardiovascular diseases. We investigated the alteration of contractile signals in proliferating SMC by measuring the increase in intracellular [Ca(2+)] to endothelin-1 (ET-1), noradrenaline (NA), or angiotensin II (AgII). We found that the increase in intracellular [Ca(2+)] by NA or ET-1 decreased in proliferating SMC in comparison to growth-arrested SMC. The increase in intracellular [Ca(2+)] by AgII was stable between the cells. Immunoblotting of inositol 1,4,5-trisphosphate receptors (IP(3)Rs) which are responsible for the mobilization of Ca(2+) by those vasoactive substances revealed that expression of IP(3)R type 1 and type 2 was decreased. Expression of IP(3)R type 3 was increased. The altered Ca(2+) signaling by the cell growth might involve the expression of IP(3)R subtypes. 相似文献
17.
ZhuGe R Fogarty KE Tuft RA Lifshitz LM Sayar K Walsh JV 《The Journal of general physiology》2000,116(6):845-864
Ca(2+) sparks are highly localized cytosolic Ca(2+) transients caused by a release of Ca(2+) from the sarcoplasmic reticulum via ryanodine receptors (RyRs); they are the elementary events underlying global changes in Ca(2+) in skeletal and cardiac muscle. In smooth muscle and some neurons, Ca(2+) sparks activate large conductance Ca(2+)-activated K(+) channels (BK channels) in the spark microdomain, causing spontaneous transient outward currents (STOCs) that regulate membrane potential and, hence, voltage-gated channels. Using the fluorescent Ca(2+) indicator fluo-3 and a high speed widefield digital imaging system, it was possible to capture the total increase in fluorescence (i.e., the signal mass) during a spark in smooth muscle cells, which is the first time such a direct approach has been used in any system. The signal mass is proportional to the total quantity of Ca(2+) released into the cytosol, and its rate of rise is proportional to the Ca(2+) current flowing through the RyRs during a spark (I(Ca(spark))). Thus, Ca(2+) currents through RyRs can be monitored inside the cell under physiological conditions. Since the magnitude of I(Ca(spark)) in different sparks varies more than fivefold, Ca(2+) sparks appear to be caused by the concerted opening of a number of RyRs. Sparks with the same underlying Ca(2+) current cause STOCs, whose amplitudes vary more than threefold, a finding that is best explained by variability in coupling ratio (i.e., the ratio of RyRs to BK channels in the spark microdomain). The time course of STOC decay is approximated by a single exponential that is independent of the magnitude of signal mass and has a time constant close to the value of the mean open time of the BK channels, suggesting that STOC decay reflects BK channel kinetics, rather than the time course of [Ca(2+)] decline at the membrane. Computer simulations were carried out to determine the spatiotemporal distribution of the Ca(2+) concentration resulting from the measured range of I(Ca(spark)). At the onset of a spark, the Ca(2+) concentration within 200 nm of the release site reaches a plateau or exceeds the [Ca(2+)](EC50) for the BK channels rapidly in comparison to the rate of rise of STOCs. These findings suggest a model in which the BK channels lie close to the release site and are exposed to a saturating [Ca(2+)] with the rise and fall of the STOCs determined by BK channel kinetics. The mechanism of signaling between RyRs and BK channels may provide a model for Ca(2+) action on a variety of molecular targets within cellular microdomains. 相似文献
18.
Lee KP Nair AV Grimm C van Zeeland F Heller S Bindels RJ Hoenderop JG 《Cell calcium》2010,48(5):275-287
TRPV5, a member of transient receptor potential (TRP) superfamily of ion channels, plays a crucial role in epithelial calcium transport in the kidney. This channel has a high selectivity for Ca(2+) and is tightly regulated by intracellular Ca(2+) concentrations. Recently it was shown that the molecular basis of deafness in varitint-waddler mouse is the result of hair cell death caused by the constitutive activity of transient receptor potential mucolipin 3 (TRPML3) channel carrying a helix breaking mutation, A419P, at the intracellular proximity of the fifth transmembrane domain (TM5). This mutation significantly elevates intracellular Ca(2+) concentration and causes rapid cell death. Here we show that substituting the equivalent location in TRPV5, the M490, to proline significantly modulates Ca(2+)-dependent inactivation of TRPV5. The single channel conductance, time constant of inactivation (τ) and half maximal inhibition constant (IC(50)) of TRPV5(M490P) were increased compared to TRPV5(WT). Moreover TRPV5(M490P) showed lower Ca(2+) permeability. Out of different point mutations created to characterize the importance of M490 in Ca(2+)-dependent inactivation, only TRPV5(M490P)-expressing cells showed apoptosis and extremely altered Ca(2+)-dependent inactivation. In conclusion, the TRPV5 channel is susceptible for helix breaking mutations and the proximal intracellular region of TM5 of this channel plays an important role in Ca(2+)-dependent inactivation. 相似文献
19.
G Bellomo R Fulceri E Albano A Gamberucci A Pompella M Parola A Benedetti 《Cell calcium》1991,12(5):335-341
The alterations of mitochondrial membrane potential during the development of irreversible cell damage were investigated by measuring rhodamine-123 uptake and distribution in primary cultures as well as in suspensions of rat hepatocytes exposed to different toxic agents. Direct and indirect mechanisms of mitochondrial damage have been identified and a role for Ca2+ in the development of this type of injury by selected compounds was assessed by using extracellular as well as intracellular Ca2+ chelators. In addition, mitochondrial uncoupling by carbonylcyanide-m-chloro-phenylhydrazone (CCCP) resulted in a marked depletion of cellular ATP that was followed by an increase in cytosolic Ca2+ concentration, immediately preceding cell death. These results support the existence of a close relationship linking, in a sort of reverberating circuit, the occurrence of mitochondrial dysfunction and the alterations in cellular Ca2+ homeostasis during hepatocyte injury. 相似文献
20.
Synaptotagmins constitute a large family of membrane proteins implicated in Ca(2+)-triggered exocytosis. Structurally similar synaptotagmins are differentially localized either to secretory vesicles or to plasma membranes, suggesting distinct functions. Using measurements of the Ca(2+) affinities of synaptotagmin C2-domains in a complex with phospholipids, we now show that different synaptotagmins exhibit distinct Ca(2+) affinities, with plasma membrane synaptotagmins binding Ca(2+) with a 5- to 10-fold higher affinity than vesicular synaptotagmins. To test whether these differences in Ca(2+) affinities are functionally important, we examined the effects of synaptotagmin C2-domains on Ca(2+)-triggered exocytosis in permeabilized PC12 cells. A precise correlation was observed between the apparent Ca(2+) affinities of synaptotagmins in the presence of phospholipids and their action in PC12 cell exocytosis. This was extended to PC12 cell exocytosis triggered by Sr(2+), which was also selectively affected by high-affinity C2-domains of synaptotagmins. Together, our results suggest that Ca(2+) triggering of exocytosis involves tandem Ca(2+) sensors provided by distinct plasma membrane and vesicular synaptotagmins. According to this hypothesis, plasma membrane synaptotagmins represent high-affinity Ca(2+) sensors involved in slow Ca(2+)-dependent exocytosis, whereas vesicular synaptotagmins function as low-affinity Ca(2+) sensors specialized for fast Ca(2+)-dependent exocytosis. 相似文献