首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu Y  Pilankatta R  Hatori Y  Lewis D  Inesi G 《Biochemistry》2010,49(46):10006-10012
ATP7A and ATP7B are P-type ATPases required for copper homeostasis and involved in the etiology of Menkes and Wilson diseases. We used heterologous expression of ATP7A or ATP7B in COS-1 cells infected with adenovirus vectors to characterize differential features pertinent to each protein expressed in the same mammalian cell type, rather than to extrinsic factors related to different cells sustaining expression. Electrophoretic analysis of the expressed protein, before and after purification, prior or subsequent to treatment with endoglycosidase, and evidenced by protein or glycoprotein staining as well as Western blotting, indicates that the ATP7A protein is glycosylated while ATP7B is not. This is consistent with the prevalence of glycosylation motifs in the ATP7A sequence, and not in ATP7B. ATP7A and ATP7B undergo copper-dependent phosphorylation by utilization of ATP, forming equal levels of an "alkali labile" phosphoenzyme intermediate that undergoes similar catalytic (P-type ATPase) turnover in both enzymes. In addition, incubation with ATP yields an "alkali stable" phosphoprotein fraction, attributed to phosphorylation of serines. Alkali stable phosphorylation occurs at lower levels in ATP7A, consistent with a different distribution of serines in the amino acid sequence. Immunostaining of COS-1 cells sustaining heterologous expression shows initial association of both ATP7A and ATP7B with Golgi and the trans-Golgi network. However, in the presence of added copper, ATP7A undergoes prevalent association with the plasma membrane while ATP7B exhibits intense trafficking with cytosolic vesicles. Glycosylation of ATP7A and phosphorylation of ATP7B apparently contribute to their different trafficking and membrane association when expressed in the same cell type.  相似文献   

2.
The copper-transporting P(1B)-type ATPases (Cu-ATPases) ATP7A and ATP7B are key regulators of physiological copper levels. They function to maintain intracellular copper homeostasis by delivering copper to secretory compartments and by trafficking toward the cell periphery to export excess copper. Mutations in the genes encoding ATP7A and ATP7B lead to copper deficiency and toxicity disorders, Menkes and Wilson diseases, respectively. This report describes the interaction between the Cu-ATPases and clusterin and demonstrates a chaperone-like role for clusterin in facilitating their degradation. Clusterin interacted with both ATP7A and ATP7B in mammalian cells. This interaction increased under conditions of oxidative stress and with mutations in ATP7B that led to its misfolding and mislocalization. A Wilson disease patient mutation (G85V) led to enhanced ATP7B turnover, which was further exacerbated when cells overexpressed clusterin. We demonstrated that clusterin-facilitated degradation of mutant ATP7B is likely to involve the lysosomal pathway. The knockdown and overexpression of clusterin increased and decreased, respectively, the Cu-ATPase-mediated copper export capacity of cells. These results highlight a new role for intracellular clusterin in mediating Cu-ATPase quality control and hence in the normal maintenance of copper homeostasis, and in promoting cell survival in the context of disease. Based on our findings, it is possible that variations in clusterin expression and function could contribute to the variable clinical expression of Menkes and Wilson diseases.  相似文献   

3.
Living organisms have developed refined and geneticaly controlled mechanisms of the copper metabolism and transport. ATP7A and ATP7B proteins play the key role in copper homeostasis in the organism. Both proteins are P-type Cu-transporting ATPases and use the energy of ATP hydrolysis to transfer the copper ions across the cellular membranes. Both proteins are localised in Golgi aparatus and involved in regulation of overall copper status in the body and their function is the export of excess copper from the cells and delivery of copper ions to Cu-dependent enzymes. Moreover in organism Cu-transporting ATPases are involved in absorption of dietary copper, Cu removal with the bile, placental copper transport and its secretion to the milk during lactation. Moreover it is known that Cu-transporting ATPases play a role in generation of anti-cancer drug resistance. Disturbances of ATP7A and ATP7B function caused by mutations lead to severe metabolic diseases Menkes and Wilson diseases, respectively.  相似文献   

4.
Copper plays an essential role in human physiology and is indispensable for normal growth and development. Enzymes that are involved in connective tissue formation, neurotransmitter biosynthesis, iron transport, and others essential physiological processes require copper as a cofactor to mediate their reactions. The biosynthetic incorporation of copper into these enzymes takes places within the secretory pathway and is critically dependent on the activity of copper-transporting ATPases ATP7A or ATP7B. In addition, ATP7A and ATP7B regulate intracellular copper concentration by removing excess copper from the cell. These two transporters belong to the family of P1-type ATPases, share significant sequence similarity, utilize the same general mechanism for their function, and show partial colocalization in some cells. However, the distinct biochemical characteristics and dissimilar trafficking properties of ATP7A and ATP7B in cells, in which they are co-expressed, indicate that specific functions of these two copper-transporting ATPases are not identical. Immuno-detection studies in cells and tissues have begun to suggest specific roles for ATP7A and ATP7B. These experiments also revealed technical challenges associated with quantitative detection of copper-transporting ATPases in tissues, as illustrated here by comparing the results of ATP7A and ATP7B immunodetection in mouse cerebellum. This work was supported by the National Institute of Health grants PO1 GM 067166–01 and DK R01 DK071865 to S.L.  相似文献   

5.
COMMD1 deficiency results in defective copper homeostasis, but the mechanism for this has remained elusive. Here we report that COMMD1 is directly linked to early endosomes through its interaction with a protein complex containing CCDC22, CCDC93, and C16orf62. This COMMD/CCDC22/CCDC93 (CCC) complex interacts with the multisubunit WASH complex, an evolutionarily conserved system, which is required for endosomal deposition of F-actin and cargo trafficking in conjunction with the retromer. Interactions between the WASH complex subunit FAM21, and the carboxyl-terminal ends of CCDC22 and CCDC93 are responsible for CCC complex recruitment to endosomes. We show that depletion of CCC complex components leads to lack of copper-dependent movement of the copper transporter ATP7A from endosomes, resulting in intracellular copper accumulation and modest alterations in copper homeostasis in humans with CCDC22 mutations. This work provides a mechanistic explanation for the role of COMMD1 in copper homeostasis and uncovers additional genes involved in the regulation of copper transporter recycling.  相似文献   

6.
7.
The copper-transporting P-type ATPases (Cu-ATPases), ATP7A and ATP7B, are essential for the regulation of intracellular copper homeostasis. In this report we describe new roles for glutathione (GSH) and glutaredoxin1 (GRX1) in Cu homeostasis through their regulation of Cu-ATPase activity. GRX1 is a thiol oxidoreductase that catalyzes the reversible reduction of GSH-mixed disulfides to their respective sulfhydryls (deglutathionylation). Here, we demonstrated that glutathionylation of the Cu-ATPases and their interaction with GRX1 were affected by alterations in Cu levels. The data support our hypothesis that the Cu-ATPases serve as substrates for Cu-dependent GRX1-mediated deglutathionylation. This in turn liberates the Cu-ATPase cysteinyl thiol groups for Cu binding and transport. GSH depletion experiments led to reversible inhibition of the Cu-ATPases that correlated with effects on intracellular Cu levels and GRX1 activity. Finally, knockdown of GRX1 expression resulted in an increase in intracellular Cu accumulation. Together, these data directly implicate GSH and GRX1 with important new roles in redox regulation of the Cu-ATPases, through modulation of Cu binding by the Cu-ATPase cysteine motifs.  相似文献   

8.
Copper is essential for human health and copper imbalance is a key factor in the aetiology and pathology of several neurodegenerative diseases. The copper-transporting P-type ATPases, ATP7A and ATP7B are key molecules required for the regulation and maintenance of mammalian copper homeostasis. Their absence or malfunction leads to the genetically inherited disorders, Menkes and Wilson diseases, respectively. These proteins have a dual role in cells, namely to provide copper to essential cuproenzymes and to mediate the excretion of excess intracellular copper. A unique feature of ATP7A and ATP7B that is integral to these functions is their ability to sense and respond to intracellular copper levels, the latter manifested through their copper-regulated trafficking from the transGolgi network to the appropriate cellular membrane domain (basolateral or apical, respectively) to eliminate excess copper from the cell. Research over the last decade has yielded significant insight into the enzymatic properties and cell biology of the copper-ATPases. With recent advances in elucidating their localization and trafficking in human and animal tissues in response to physiological stimuli, we are progressing rapidly towards an integrated understanding of their physiological significance at the level of the whole animal. This knowledge in turn is helping to clarify the biochemical and cellular basis not only for the phenotypes conferred by individual Menkes and Wilson disease patient mutations, but also for the clinical variability of phenotypes associated with each of these diseases. Importantly, this information is also providing a rational basis for the applicability and appropriateness of certain diagnostic markers and therapeutic regimes. This overview will provide an update on the current state of our understanding of the localization and trafficking properties of the copper-ATPases in cells and tissues, the molecular signals and posttranslational interactions that govern their trafficking activities, and the cellular basis for the clinical phenotypes associated with disease-causing mutations.  相似文献   

9.
ATP7B mutations result in Cu storage in the liver and brain in Wilson disease (WD). Atox1 and COMMD1 were found to interact with ATP7B and involved in copper transport in the hepatocyte. To understand the molecular etiology of WD, we analyzed ATP7B, Atox1 and COMMD1 genes. Direct sequencing of (i) ATP7B gene was performed in 112 WD patients to identify the spectrum of disease-causing mutations in the French population, (ii) Atox1 gene was performed to study the known polymorphism 5'UTR-99T>C in 78 WD patients with two ATP7B mutations and (iii) COMMD1 gene was performed to detect the nucleotide change c.492GAT>GAC. MLPA (Multiplex Ligation-dependent Probe Amplification) analysis was performed in WD patients presenting only one ATP7B mutation. Among our 112 WD unrelated patients, 83 different ATP7B gene mutations were identified, 27 of which were novel. Two ATP7B mutations were identified in 98 WD cases, and one mutation was identified in 14 cases. In two of these 14 WD patients, we identified the deletion of exon 4 of the ATP7B gene by MLPA technique. In 78 selected patients of the cohort with two mutations in ATP7B, we have examined genotype-phenotype correlation between the detected changes in Atox1 and COMMD1 genes, and the presentation of the WD patients. Based on the data of this study, no major role can be attributed to Atox1 and COMMD in the pathophysiology or clinical variation of WD.  相似文献   

10.
《Cell reports》2023,42(5):112417
  1. Download : Download high-res image (219KB)
  2. Download : Download full-size image
  相似文献   

11.
Copper sulfate (CuSO4), micron copper oxide (micron CuO) and nano copper oxide (nano CuO) at different concentrations were, respectively, added to culture media containing Caco-2 cells and their effects on Ctr1, ATP7A/7B, MT and DMT1 gene expression and protein expression were investigated and compared. The results showed that nano CuO promoted mRNA expression of Ctr1 in Caco-2 cells, and the difference was significant compared with micron CuO and CuSO4. Nano CuO was more effective in promoting the expression of Ctr1 protein than CuSO4 and micron CuO at the same concentration. Nano CuO at a concentration of 62.5 μM increased the mRNA expression levels of ATP7A and ATP7B, and the difference was significant compared with CuSO4. The addition of CuSO4 and nano CuO to the culture media promoted the expression of ATP7B proteins. CuSO4 at a concentration of 125 μM increased the mRNA expression level of MT in Caco-2 cells, and the difference was significant compared with nano CuO and micron CuO. Nano CuO at a concentration of 62.5 μM inhibited the mRNA expression of DMT1, and the difference was significant compared with CuSO4 and micron CuO. Thus, the effects of CuSO4, micron CuO and nano CuO on the expression of copper transport proteins and the genes encoding these proteins differed considerably. Nano CuO has a different uptake and transport mechanism in Caco-2 cells to those of CuSO4 and micron CuO.  相似文献   

12.
Portmann R  Solioz M 《FEBS letters》2005,579(17):3589-3595
Wilson disease is a disorder of copper metabolism, due to inherited mutations in the Wilson copper ATPase gene ATP7B. To purify and study the function of the ATPase, the enzyme was truncated by five of the six metal binding domains and endowed with an N-terminal histidine-tag for affinity purification. This construct, delta1-5WNDP, was able to functionally complement a yeast strain defective in its native copper ATPase CCC2. Delta1-5WNDP was purified by Ni-affinity chromatography and reconstituted into proteoliposomes. This allowed, for the first time, the functional study of the Wilson ATPase in a purified, reconstituted system.  相似文献   

13.
Wilson’s disease (WD) is characterized by accumulation of high levels of copper in liver due to malfunction of copper transporter ATP7B which is central for copper homeostasis. Here we report for the first time that mesenchymal stem cells (MSC) derived from bone marrow express detectable levels of ATP7B. The role of ATP7B overexpression for MSC survival and selection in high copper was investigated. Hepatoma cell line HepG2 that has a high intrinsic expression of ATP7B served as a control. Using retroviral vector a significant higher expression level of ATP7B could be achieved in MSCs. Whereas copper treatment resulted in cell death in untransduced MSCs, viability assays demonstrated a unique copper resistance of ATP7B overexpressing MSCs that outcompeted HepG2. In long-term cell culture stable transgene expression for up to 9 weeks was shown for ATP7B overexpressing MSCs which rapidly overgrew untransduced cells. Our findings suggest that ATP7B overexpression provides an important selection advantage to MSCs in high copper microenvironments, and may represent novel cell transplants for therapy of WD.  相似文献   

14.
COMMD1 (copper metabolism gene MURR1 (mouse U2af1-rs1 region1) domain) belongs to a family of multifunctional proteins that inhibit nuclear factor NF-kappaB. COMMD1 was implicated as a regulator of copper metabolism by the discovery that a deletion of exon 2 of COMMD1 causes copper toxicosis in Bedlington terriers. Here, we report the detailed characterization and specific copper binding properties of purified recombinant human COMMD1 as well as that of the exon 2 product, COMMD(61-154). By using various techniques including native-PAGE, EPR, UV-visible electronic absorption, intrinsic fluorescence spectroscopies as well as DEPC modification of histidines, we demonstrate that COMMD1 specifically binds copper as Cu(II) in 1:1 stoichiometry and does not bind other divalent metals. Moreover, the exon 2 product, COMMD(61-154), alone was able to bind Cu(II) as well as the wild type protein, with a stoichiometry of 1 mol of Cu(II) per protein monomer. The protection of DEPC modification of COMMD1 by Cu(II) implied that Cu(II) binding involves His residues. Further investigation by DEPC modification of COMMD(61-154) and subsequent MALDI MS mapping and MS/MS sequencing identified the protection of His101 and His134 residues in the presence of Cu(II). Fluorescence studies of single point mutants of the full-length protein revealed the involvement of M110 in addition to H134 in direct Cu(II) binding. Taken together, the data provide insight into the function of COMMD1 and especially COMMD(61-154), a product of exon 2 that is deleted in terriers affected by copper toxicosis, as a regulator of copper homeostasis.  相似文献   

15.
Copper is an essential transition metal but is toxic in excess; therefore, its metabolism needs to be tightly regulated. Defects in the regulation of copper can lead to various disorders characterized by copper deficiency or copper excess. Recently, we characterized the COMMD1 (previously MURR1) gene as the defective gene in canine copper toxicosis. The molecular functions of COMMD1 remain unknown, but significant progress has been made in identifying the cellular processes in which COMMD1 participates, through the identification of proteins interacting with COMMD1. This review discusses how COMMD1 functions as a regulator of not only copper homeostasis but also sodium transport and the NF-kappaB signaling pathway. We outline the possible mechanisms through which COMMD1 exerts these newly identified functions.  相似文献   

16.
The Wilson disease protein (ATP7B) is a copper-transporting ATPase that is responsible for regulating copper homeostasis in human tissues. ATP7B is associated with cancer resistance to cisplatin, one of the most widely used anticancer drugs. This minireview discusses the possible mechanisms of tumor resistance to cisplatin mediated by ATP7B. Cisplatin binds to the N-terminal cytosolic domain of ATP7B, which contains multiple copper-binding sites. Active platinum efflux catalyzed by ATP7B is unlikely to significantly contribute to cisplatin resistance in vivo. Transient platinum sequestration in the metal-binding domain followed by transfer to an acceptor protein or a low molecular weight compound is proposed as an alternative mechanism of cisplatin detoxification in the cell.  相似文献   

17.
The copper-transporting ATPases Atp7A and Atp7B play a major role in controlling intracellular copper levels. In addition, they are believed to deliver copper to the copper-requiring proteins destined for the secretory vesicles. One cuproprotein, dopamine -hydroxylase (DBH) functions in the biosynthesis of norepinephrine and epinephrine, neurohormones in endocrine and nervous tissue. To evaluate the consequences of loss of Atp7B on the function of DBH, the level of proteins in adrenal gland were compared between normal mice and mice containing a null mutation in the ATP7B gene. The levels of DBH, as well as another vesicular protein, chromogranin A, are reduced in the ATP7B–/– mice. In addition to the lower level of enzyme, the products of DBH catalytic activity, norepinephrine and epinephrine, are also decreased. Although these changes are a consequence of ATP7B gene function, Atp7B mRNA is not normally expressed in the adrenal gland. Instead, Atp7A mRNA is present. The levels of copper and DBH RNA within adrenals of the ATP7B–/– mice are not different from the wild type. The results of these experiments suggest that copper-requiring enzymes are affected by a loss of ATP7B even in tissue not normally expressing this protein. Therefore the multisystemic effects observed in Wilson disease, the human disorder characterized by mutation in ATP7B, may be a secondary consequence of the major accumulation of copper in liver.  相似文献   

18.
Wilson disease is a genetic disorder characterized by the accumulation of copper in the body by defective biliary copper excretion. Wilson disease gene product (ATP7B) functions in copper incorporation to ceruloplasmin (Cp) and biliary copper excretion. However, copper metabolism in hepatocytes has been still unclear. Niemann-Pick disease type C (NPC) is a lipid storage disorder and the most commonly mutated gene is NPC1 and its gene product NPC1 is a late endosome protein and regulates intracellular vesicle traffic. In the present study, we induced NPC phenotype and examined the localization of ATP7B and secretion of holo-Cp, a copper-binding mature form of Cp. The vesicle traffic was modulated using U18666A, which induces NPC phenotype, and knock down of NPC1 by RNA interference. ATP7B colocalized with the late endosome markers, but not with the trans-Golgi network markers. U18666A and NPC1 knock down decreased holo-Cp secretion to culture medium, but did not affect the secretion of other secretory proteins. Copper accumulated in the cells after the treatment with U18666A. These findings suggest that ATP7B localizes in the late endosomes and that copper in the late endosomes is transported to the secretory compartment via NPC1-dependent pathway and incorporated into apo-Cp to form holo-Cp.  相似文献   

19.
20.
We have recently shown that during in vivo photoinhibition the D1 protein is degraded via a modified form, designated D1*. Depending on light conditions, the amount of D1* varies in leaves between 0 and 50% of total D1 content. By isolating thylakoids from leaves acclimated to different light levels, and performing photoinhibition experiments on these thylakoids, the following results on D1 protein degradation were obtained: (i) the protease involved in D1 degradation requires activation by light; (ii) neither acceptor nor donor side photoinhibition of PSII induces formation of D1* in vitro; (iii) in isolated thylakoids, the transformation of D1 to D1* can be induced in low light in the presence of ATP, which suggests that D1* is a phosphorylated form of the D1 protein; (iv) D1*, induced either in vivo or in vitro, is much less susceptible to degradation during illumination of isolated thylakoids than the original D1 protein. We suggest that the modification to D1* is a means to prevent disassembly of photodamaged photosystem II complex in appressed membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号