首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Circadian clocks use a wide range of environmental cues, including cycles of light, temperature, food, and social interactions, to fine-tune rhythms in behavior and physiology. Although social cues have been shown to influence circadian clocks of a variety of organisms including the fruit fly Drosophila melanogaster, their mechanism of action is still unclear. Here, the authors report the results of their study aimed at investigating if daily cycles of presence and absence (PA) of conspecific male visitors are able to entrain the circadian locomotor activity rhythm of male hosts living under constant darkness (DD). The results suggest that PA cycles may not be able to entrain circadian locomotor activity rhythms of Drosophila. The outcome does not change when male hosts are presented with female visitors, suggesting that PA cycles of either sex may not be effective in bringing about stable entrainment of circadian clocks in D. melanogaster. However, in hosts whose clock phase has already been set by light/dark (LD) cycles, daily PA cycles of visitors can cause measurable change in the phase of subsequent free-running rhythms, provided that their circadian clocks are labile. Thus, the findings of this study suggest that D. melanogaster males may not be using cyclic social cues as their primary zeitgeber (time cue) for entrainment of circadian clocks, although social cues are capable of altering the phase of their circadian rhythms.  相似文献   

2.
The cuticle deposition rhythm, which is observed in the apodeme of the furca in the thorax, is controlled by a peripheral circadian clock in the epidermal cells and entrained to light-dark (LD) cycles via CRYPTOCHROME (CRY) in Drosophila melanogaster. In the present study, we examined the effects of temperature (TC) cycles and the combination of LD and TC cycles on entrainment of the cuticle deposition rhythm. The rhythm was entrained to TC cycles, whose period was 28 h. In T = 21 and 24 h, the rhythm was entrained to TC cycles in some individuals. CRY is not necessary for temperature entrainment of the cuticle deposition rhythm because the rhythm in cry(b) (lacking functional CRY) was entrained to TC cycles. Temperature entrainment of the rhythm was achieved even when the thoraxes or furcae were cultured in vitro, suggesting that the mechanism for temperature entrainment is independent of the central clock in the brain and the site of the thermoreception resides in the epidermal cells. When LD and TC cycles with different periods were applied, the rhythm was entrained to LD cycles with a slight influence of TC cycles. Thus, the LD cycle is a stronger zeitgeber than the TC cycle. The variance of the number of the cuticle layers decreased in the flies kept under LD and TC cycles with the same period in which the thermophase coincided with the photophase. Therefore, we conclude that LD and TC cycles synergistically entrain the rhythm. Synergistic effects of LD and TC cycles on entrainment were also observed even when the thoraxes were cultured in vitro, suggesting that the light and temperature information is integrated within the peripheral circadian system.  相似文献   

3.
Cryptochrome (CRY) is a blue-light-absorbing protein involved in the photic entrainment of the circadian clock in Drosophila melanogaster. We have investigated the locomotor activity rhythms of flies carrying cryb mutant and revealed that they have two separate circadian oscillators with different responsiveness to light. When kept in constant light conditions, wild-type flies became arrhythmic, while cryb mutant flies exhibited free-running rhythms with two rhythmic components, one with a shorter and the other with a longer free-running period. The rhythm dissociation was dependent on the light intensities: the higher the light intensities, the greater the proportion of animals exhibiting the two oscillations. External photoreceptors including the compound eyes and the ocelli are the likely photoreceptors for the rhythm dissociation, since rhythm dissociation was prevented in so1;cryb and norpAP41;cryb double mutant flies. Immunohistochemical analysis demonstrated that the PERIOD expression rhythms in ventrally located lateral neurons (LNvs) occurred synchronously with the shorter period component, while those in the dorsally located per-expressing neurons showed PER expression most likely related to the longer period component, in addition to that synchronized to the LNvs. These results suggest that the Drosophila locomotor rhythms are driven by two separate per-dependent clocks, responding differentially to constant light.  相似文献   

4.
《Chronobiology international》2013,30(9):1008-1016
Light and temperature are the major environmental cycles that can synchronize circadian rhythms in a variety of organisms. Previously, we have shown that under light/dark cycles of various photoperiods, the Drosophila species ananassae exhibits unimodal activity pattern with a prominent morning activity peak in contrast with Drosophila melanogaster and Drosophila malerkotliana, which show bimodal activity pattern with morning and evening activity peaks. Here we report that circadian clocks controlling activity/rest rhythm of these two less-studied species D. malerkotliana and D. ananassae can be synchronized by temperature cycles and that even under temperature cycles D. ananassae exhibits only a pronounced morning (thermophase onset) activity peak. Although D. melanogaster and D. ananassae exhibit differences in the phase of activity/rest rhythm under temperature cycles, circadian clocks of both show similar sensitivity to warm temperature pulses. Circadian period of activity/rest rhythm of D. ananassae differs from the other two species at some moderate-range temperatures; however, in conditions that are more extreme, circadian clocks of D. melanogaster, D. malerkotliana and D. ananassae appear to be largely temperature compensated.  相似文献   

5.
In this paper, we report the results of our extensive study on eclosion rhythm of four independent populations of Drosophila melanogaster that were reared in constant light (LL) environment of the laboratory for more than 700 generations. The eclosion rhythm of these flies was assayed under LL, constant darkness (DD) and three periodic light‐dark (LD) cycles (T20, T24, and T28). The percentage of vials from each population that exhibited circadian rhythm of eclosion in DD and in LL (intensity of approximately 100 lux) was about 90% and 18%, respectively. The mean free‐running period (τ) of eclosion rhythm in DD was 22.85 ± 0.87 h (mean ± SD). Eclosion rhythm of these flies entrained to all the three periodic LD cycles, and the phase relationship (ψ) of the peak of eclosion with respect to “lights‐on” of the LD cycle was significantly different in the three periodic light regimes (T20, T24, and T28). The results thus clearly demonstrate that these flies have preserved the ability to exhibit circadian rhythm of eclosion and the ability to entrain to a wide range of periodic LD cycles even after being in an aperiodic environment for several hundred generations. This suggests that circadian clocks may have intrinsic adaptive value accrued perhaps from coordinating internal metabolic cycles in constant conditions, and that the entrainment mechanisms of circadian clocks are possibly an integral part of the clockwork.  相似文献   

6.
In this paper, we report the results of our study aimed at a systematic analysis of the circadian phenotypes of fruit flies Drosophila melanogaster selected for early and late adult emergence, in light of the "morning and evening oscillator" (M and E) model for circadian clocks. We monitored adult emergence and activity/rest rhythms in these flies under light/dark (LD) cycles with short (8:16 h), normal (12:12 h) and long (16:8 h) photoperiods, as well as under constant darkness (DD). Across all the three LD cycles, the early populations displayed a morning phenotype with peak of emergence and activity occurring earlier than the controls and greater anticipation to "lights-on" and weak anticipation to "lights-off", while the late populations showed an evening phenotype with peak of emergence and activity occurring later than the controls and greater anticipation to lights-off and weak anticipation to lights-on. The gate of adult emergence and duration of activity in the early populations was narrower than the controls, while those of the late populations were wider than the controls. In addition, the circadian periodicities of adult emergence and activity/rest rhythms of the early flies were significantly shorter than the controls, while those of the late flies were significantly longer than the controls. In summary, the circadian phenotypes indicate that the early populations have evolved a dominant M oscillator, while the late populations have evolved a dominant E oscillator, thus providing an empirical support for the M and E model in Drosophila.  相似文献   

7.
In insects, the role of circadian clocks in the temporal regulation of adult emergence rhythm under natural conditions has not previously been reported. Here we present the results of a study aimed at examining the time course and waveform of emergence rhythm in the fruit fly Drosophila melanogaster under seminatural condition (SN). We studied this rhythm in wild-type and clock mutant flies under SN in parallel with laboratory condition (LAB) to examine (1) how the rhythm differs between SN and LAB, (2) what roles the circadian clock protein PERIOD and the circadian photoreceptor CRYPTOCHROME (CRY) play in the regulation of emergence rhythm under SN, and (3) whether there is seasonality in the rhythm. Under SN, wild-type flies displayed tightly gated emergence, peaking at "dawn" and gradually tapering down toward the evening, with little or no emergence by night, while in LAB, flies emerged throughout the light phase of light-dark (LD) cycles. The period loss-of-function mutant (per ( 0 )) flies were arrhythmic in LAB but displayed weak rhythmic emergence under SN. Under SN, cry mutants displayed less robust rhythm with wider gates, greater variance in peak timing, and enhanced nighttime emergence compared to controls. Furthermore, flies showed seasonal variation in emergence rhythm, coupled either to light or to humidity/temperature depending on the severity of environmental conditions. These results suggest that adult emergence rhythm of Drosophila is more robust in nature, is coupled to environmental cycles, and shows seasonal variations.  相似文献   

8.
Circadian clocks use a wide range of environmental cues, including cycles of light, temperature, food, and social interactions, to fine-tune rhythms in behavior and physiology. Although social cues have been shown to influence circadian clocks of a variety of organisms including the fruit fly Drosophila melanogaster, their mechanism of action is still unclear. Here, the authors report the results of their study aimed at investigating if daily cycles of presence and absence (PA) of conspecific male visitors are able to entrain the circadian locomotor activity rhythm of male hosts living under constant darkness (DD). The results suggest that PA cycles may not be able to entrain circadian locomotor activity rhythms of Drosophila. The outcome does not change when male hosts are presented with female visitors, suggesting that PA cycles of either sex may not be effective in bringing about stable entrainment of circadian clocks in D. melanogaster. However, in hosts whose clock phase has already been set by light/dark (LD) cycles, daily PA cycles of visitors can cause measurable change in the phase of subsequent free-running rhythms, provided that their circadian clocks are labile. Thus, the findings of this study suggest that D. melanogaster males may not be using cyclic social cues as their primary zeitgeber (time cue) for entrainment of circadian clocks, although social cues are capable of altering the phase of their circadian rhythms. (Author correspondence: , )  相似文献   

9.
A population of the fruit fly Drosophila melanogaster was raised in periodic light/dark (LD) cycles of 12:12 h for about 35 generations. Eclosion, locomotor activity, and oviposition were found to be rhythmic in these flies, when assayed in constant laboratory conditions where the light intensity, temperature, humidity and other factors which could possibly act as time cue for these flies, were kept constant. These rhythms also entrained to a LD cycle of 12:12 h in the laboratory with each of them adopting a different temporal niche. The free-running periods (tau) of the eclosion, locomotor activity and oviposition rhythms were significantly different from each other. The peak of eclosion and the onset of locomotor activity occurred during the light phase of the LD cycle, whereas the peak of oviposition was found to occur during the dark phase of the LD cycle. Based on these results, we conclude that different circadian oscillators control the eclosion, locomotor activity and oviposition rhythms in the fruit fly D. melanogaster.  相似文献   

10.
Insects display an impressive variety of daily rhythms, which are most evident in their behaviour. Circadian timekeeping systems that generate these daily rhythms of physiology and behaviour all involve three interacting elements: the timekeeper itself (i.e. the clock), inputs to the clock through which it entrains and otherwise responds to environmental cues such as light and temperature, and outputs from the clock through which it imposes daily rhythms on various physiological and behavioural parameters. In insects, as in other animals, cellular clocks are embodied in clock neurons capable of sustained autonomous circadian rhythmicity, and those clock neurons are organized into clock circuits. Drosophila flies spend their entire lives in small areas near the ground, and use their circadian brain clock to regulate daily rhythms of rest and activity, so as to organize their behaviour appropriately to the daily rhythms of their local environment. Migratory locusts and butterflies, on the other hand, spend substantial portions of their lives high up in the air migrating long distances (sometimes thousands of miles) and use their circadian brain clocks to provide time-compensation to their sun-compass navigational systems. Interestingly, however, there appear to be substantial similarities in the cellular and network mechanisms that underlie circadian outputs in all insects.  相似文献   

11.
The authors derived early and late populations of fruit flies showing increased incidence of emergence during morning or evening hours by imposing selection for timing of emergence under 12:12 h light/dark (LD) cycles. From previous studies, it was clear that the increased incidence of adult emergence during morning and evening hours in early and late populations was a result of evolution of divergent and characteristic emergence waveforms in these populations. Such characteristic waveforms are henceforth referred to as "evolved emergence waveforms" (EEWs). The early and late populations also evolved different circadian clocks, which is evident from the divergence in their clock period (τ) and photic phase response curve (PRC). Although correlation between emergence waveforms and clock properties suggests functional significance of circadian clocks, τ and PRCs do not satisfactorily explain the early and late emergence phenotypes. In order to understand the functional significance of the PRC for early and late emergence phenotypes, the authors investigated whether circadian clocks of these flies exhibit any difference in photosensitivity under entrained conditions. Such differences would suggest that the light requirement for circadian entrainment of the emergence rhythm in early and late populations is different. To test this, they examined if early and late flies differ in their light utilization behavior, first by assaying their emergence rhythm under complete photoperiod and then in three different skeleton photoperiods. The results showed that early and late populations require different durations of light during the morning and evening to achieve their EEWs, suggesting that for the circadian entrainment of the emergence rhythm, early and late flies utilize light from different parts of the day.  相似文献   

12.
In this paper, we report the results of our extensive study on eclosion rhythm of four independent populations of Drosophila melanogaster that were reared in constant light (LL) environment of the laboratory for more than 700 generations. The eclosion rhythm of these flies was assayed under LL, constant darkness (DD) and three periodic light-dark (LD) cycles (T20, T24, and T28). The percentage of vials from each population that exhibited circadian rhythm of eclosion in DD and in LL (intensity of approximately 100 lux) was about 90% and 18%, respectively. The mean free-running period (τ) of eclosion rhythm in DD was 22.85 ± 0.87 h (mean ± SD). Eclosion rhythm of these flies entrained to all the three periodic LD cycles, and the phase relationship (ψ) of the peak of eclosion with respect to “lights-on” of the LD cycle was significantly different in the three periodic light regimes (T20, T24, and T28). The results thus clearly demonstrate that these flies have preserved the ability to exhibit circadian rhythm of eclosion and the ability to entrain to a wide range of periodic LD cycles even after being in an aperiodic environment for several hundred generations. This suggests that circadian clocks may have intrinsic adaptive value accrued perhaps from coordinating internal metabolic cycles in constant conditions, and that the entrainment mechanisms of circadian clocks are possibly an integral part of the clockwork.  相似文献   

13.
The oviposition rhythm of individual flies of Drosophila melanogaster from a population maintained in an aperiodic environment (with light, temperature, humidity, and other factors which could provide time cues, kept constant) for several hundred generations was assayed in constant light (LL), in light/dark (LD 12:12 hr) cycle, and in constant darkness (DD). More than 50% of the flies assayed exhibited rhythmicity in oviposition in all three light regimes. The results indicate that the phenomenon of egg laying is rhythmic in individual D. melanogaster females and is controlled by an endogenous time keeping mechanism. The persistence of the oviposition rhythm in a large proportion of individuals in the population after several hundred generations of rearing in a constant environment strengthens the view that possessing biological clocks may confer some intrinsic fitness advantage even to organisms living in aperiodic environments. J. Exp. Zool. 290:541-549, 2001.  相似文献   

14.
BACKGROUND: Circadian clocks are synchronized by both light:dark cycles and by temperature fluctuations. Although it has long been known that temperature cycles can robustly entrain Drosophila locomotor rhythms, nothing is known about the molecular mechanisms involved. RESULTS: We show here that temperature cycles induce synchronized behavioral rhythms and oscillations of the clock proteins PERIOD and TIMELESS in constant light, a situation that normally leads to molecular and behavioral arrhythmicity. We show that expression of the Drosophila clock gene period can be entrained by temperature cycles in cultured body parts and isolated brains. Further, we show that the phospholipase C encoded by the norpA gene contributes to thermal entrainment, suggesting that a receptor-coupled transduction cascade signals temperature changes to the circadian clock. We initiated the further genetic dissection of temperature-entrainment and isolated the novel Drosophila mutation nocte, which is defective in molecular and behavioral entrainment by temperature cycles but synchronizes normally to light:dark cycles. CONCLUSIONS: We conclude that temperature synchronization of the circadian clock is a tissue-autonomous process that is able to override the arrhythmia-inducing effects of constant light. Our data suggest that it involves a cell-autonomous signal-transduction cascade from a thermal receptor to the circadian clock. This process includes the function of phospholipase C and the product specified by the novel mutation nocte.  相似文献   

15.
We reared wild type (Canton-S) and period mutant flies, i.e., per(S) and per(L), of Drosophila melanogaster in constant darkness, constant light or 24h light dark cycles with various light to dark ratios throughout the development from embryo to early adult. The locomotor activity rhythms of newly eclosed individuals were subsequently monitored in the lighting conditions, in which they had been reared, for several days and then in constant darkness. Circadian rhythms were clearly exhibited in constant darkness even in flies reared in constant light and constant darkness as well as flies reared in light-dark cycles, but the freerunning period differed among groups. The results suggest that the circadian clock is assembled without any cyclical photic information, and that the light influences the developing circadian clock of Drosophila to alter the freerunning period. The effects of light on the rhythm differed in some aspects between per(L) flies and the other two strains. Possible mechanisms through which light affects the developing circadian clock are discussed. Copyright 1997 Elsevier Science Ltd. All rights reserved  相似文献   

16.
The freerunning period of circadian clocks in constant environmental conditions can be history-dependent, and one effect of entrainment of circadian clocks by light cycles is to cause long-lasting changes in the freerunning period that are termed after-effects. We have studied after-effects of entrainment to 22-h (LD 8:14) and 26-h (LD 8:18) light cycles in the cockroach Leucophaea maderae. We find that in cockroaches, the freerunning period of the locomotor activity rhythm, measured in constant darkness (DD), is 0.7h less after entrainment to T22 than after entrainment to T26. Induction of after-effects requires several days (>1 week) entrainment, and after induction, after-effects will persist in DD for over 40 days. Further after-effects are unaltered by phase-resetting of up to 12h caused by exposure to low-temperature pulses (7 degrees C) of 24 or 48h duration. After-effects also persist through re-entrainment for 2 weeks to 24-h light cycles. These results indicate that after-effects arise from stable changes in the circadian system that are likely to be independent of phase relationships among oscillators within the circadian system. We also show that entrainment to temperature cycles does not generate after-effects indicating that light may be unique in its ability to generate lasting changes in pacemaker period.  相似文献   

17.
The eclosion and oviposition rhythms of flies from a population of Drosophila melanogaster maintained under constant conditions of the laboratory were assayed under constant light (LL), constant darkness (DD), and light/dark (LD) cycles of 10:10h (T20), 12:12h (T24), and 14:14h (T28). The mean (+/- 95% confidence interval; CI) free-running period (tau) of the oviposition rhythm was 26.34 +/- 1.04h and 24.50 +/- 1.77h in DD and LL, respectively. The eclosion rhythm showed a tau of 23.33 +/- 0.63 h (mean +/- 95% CI) in DD, and eclosion was not rhythmic in LL. The tau of the oviposition rhythm in DD was significantly greater than that of the eclosion rhythm. The eclosion rhythm of all 10 replicate vials entrained to the three periodic light regimes, T20, T24, and T28, whereas the oviposition rhythm of only about 24 and 41% of the individuals entrained to T20 and T24 regimes, respectively, while about 74% of the individuals assayed in T28 regimes showed entrainment. Our results thus clearly indicate that the tau and the limits of entrainment of eclosion rhythm are different from those of the oviposition rhythm, and hence this reinforces the view that separate oscillators may regulate these two rhythms in D. melanogaster.  相似文献   

18.
Synergic contribution of light and temperature is known to cause a paradoxical masking effect (inhibition of activity by bright light and high temperature) on various rhythms of animals. The present study reports the paradoxical masking effects of 1000-lux photophase at 25°C on the locomotor activity rhythm of Drosophila malerkotliana. Flies were subjected to light (L)-dark (D) 12:12 cycles wherein the photophase was varied from 10 to 1000 lux, whereas the scotophase was set to 0 lux in these and subsequent LD cycles. At 10, 100, and 500 lux, the flies were diurnal; however, at 1000 lux they were nocturnal. Transfer from LD 12:12 cycles to continuous darkness (DD) initiated free-running rhythmicity in all flies. Free-running rhythms of the flies switched from the 10-lux to the 500-lux groups started from the last activity-onset phase of the rhythm following 3-5 transient cycles, suggesting involvement of the circadian pacemaker. In contrast, the free-running rhythm of the flies of the 1000-lux group began abruptly from the last lights-on phase of the LD cycle, indicating noninvolvement of the pacemaker. Furthermore, all flies showed nocturnal activity in the two types of LD 12:12 cycles when the photophase was 1000 lux. The first type of LD cycles had three succeeding photophases of 100, 1000, and again 100 lux, whereas the second type of LD cycles had only one photophase of 1000 lux, but the LD 12:12 cycles were reversed to DL 12:12 cycles. Apparently, the combined effects of light and temperature caused such paradoxical masking effects. This hypothesis was tested by repeating the above experiments at 20°C. Flies in all experiments exhibited a diurnal activity pattern, even when the photophase was 1000 lux. Thus, the present study demonstrates that the paradoxical masking effect in D. malerkotliana was caused by the additive influence of light intensity and temperature. This strategy appears to have physiological significance, i.e., to shun and thus protect against the bright photophase at high temperature in the field.  相似文献   

19.
To establish whether the suprachiasmatic nuclei (SCN) of the Ruin lizard (Podarcis sicula) play a role in entrainment of circadian rhythms to light, we examined the effects of exposure to 24-h light-dark (LD) cycles on the locomotor behavior of lizards with SCN lesions. Lizards became arrhythmic in response to complete SCN lesion under constant temperature and constant darkness (DD), and they remained arrhythmic after exposure to LD cycles. Remnants of SCN tissue in other lesioned lizards were sufficient to warrant entrainment to LD cycles. Hence, the SCN of Ruin lizards are essential both to maintain locomotor rhythmicity and to mediate entrainment of these rhythms to light. We also asked whether light causes expression of Fos-like immunoreactivity (Fos-LI) in the SCN. Under LD cycles, the SCN express a daily rhythm in Fos-LI. Because Fos-LI is undetectable in DD, the rhythm seen in LD cycles is caused by light. We further showed that unilateral SCN lesions in DD induce dramatic period changes. Altogether, the present data support the existence of a strong functional similarity between the SCN of lizards and the SCN of mammals.  相似文献   

20.
The authors report the results of their study aimed at investigating the consequence of targeted ablation of ventral lateral neurons (LN(v)s--neurons regulating eclosion and locomotor activity rhythms) and genetic disruption of pigment-dispersing factor (PDF--an important output of circadian clocks) on the egg-laying rhythm of Drosophila melanogaster. The results clearly suggest that genetic ablation of LN(v)s and loss of function mutation of PDF abolish eclosion and locomotor activity rhythms, whereas the egg-laying rhythm continues unabated. Furthermore, the results also demonstrate that the period of egg-laying rhythm remains unchanged under different ambient temperatures and nutrition levels, suggesting that the egg-laying rhythm of D. melanogaster is temperature and nutrition compensated. Based on these results, the authors conclude that the egg-laying rhythm in D. melanogaster is regulated by non-LN(v)-based, non-PDF-mediated circadian clocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号